
Visual Comput (2005) 21: 1–9
DOI 10.1007/s00371-005-0331-1 O R I G I N A L A R T I C L E

Hang Yu
Ee-Chien Chang
Zhiyong Huang
Zhijian Zheng

Fast rendering of foveated volumes in
wavelet-based representation

Published online: ?? ?? 2005
 Springer-Verlag 2005

H. Yu (�) · E.-C. Chang ·
Z. Huang · Z. Zheng
School of Computing, National University
of Singapore
{yuhang, changec, huangzy,
zhengzhi}@comp.nus.edu.sg

Abstract A foveated volume can
be viewed as a blending of multiple
regions, each with a different level
of resolution. It can be efficiently
represented in the wavelet domain by
retaining a small number of wavelet
coefficients. We exploit the arrange-
ment of those wavelet coefficients to
achieve fast volume rendering. The
running time is O(n2 +m), where n
is the width of the rendered image,
and m is the number of wavelet
coefficients retained for the foveated
volume. Our algorithm consists
of two phases. The first phase is
a fast reconstruction of the super-
voxels from the wavelet coefficients,

and the second phase renders the
super-voxels by carefully tracking
rays with different thickness in the
super-voxels. Excluding the forward
wavelet transformation on the ori-
ginal volume, no other preprocessing
on the coefficients is required. Hence,
it is possible to interactively modify
different viewing parameters like
the transfer functions. A potential
application of our algorithm is in
remote visualization of large volume
data-sets.

Keywords Volume rendering ·
Wavelet foveation · Focus plus
context visualization

1 Introduction

Volume TS
a visualization inherently consumes a huge

amount of computing resources due to the large data
size. Although there have been significant advances in
volume rendering techniques and graphics hardware, real-
time rendering of large volume data-sets, for example,
a data-set with 512 ×512 ×512 voxels, is still infeasible
in current general purpose desktop PCs. The size of the
data also poses a technical challenge in remote visualiza-
tion, where a viewer can interactively visualize a volume
data-set stored in a remote server. In the context of re-
mote visualization, there are two strategies of rendering,
render local and render remote [4]. Under the first strat-
egy, the whole volume is sent to the client for rendering.
This strategy requires very high bandwidth and resources
at client-level, thus may not be available in many appli-

cations. Alternatively, the volume can be rendered at the
server and only the rendered result is sent to the client
(render remote). Although a relatively lower bandwidth is
required, the inevitable network latency will degrade the
overall performance.

An approach to sidestep the hurdle caused by the data
size is to consider region-of-interests (ROI) or focus plus
context visualization. Despite the large data size, interest-
ing features are typically localized and appear in a small
ROI. Thus, it is acceptable to display objects in the ROI
in full resolution, and omit details for objects outside the
ROI. This leads to a reduction in information and thus,
potentially, lowers the computation and communication
requirements. Several research works have studied this
multi-levels ROI rendering. Levoy et al. [9] gave a real-
time volume rendering system that rendered volumes in
two different levels of resolution. These two rendered im-
ages were then blended to obtain the final rendered image.

TS
a Please provide a short biography and a good quality photo-

graph of each author.



2 H. Yu et al.

Fig. 1. a A full resolution data-set with 512× 512× 426 voxels. b Rendered image of a foveated volume. The fovea is at the red dot.
A total of 5 435 144 coefficients are required to represent this foveated volume, which is a reduction to 5% with respect to the original
volume

Piccand et al. [11] described a method to perform X-ray
projection in the wavelet domain, such that the ROI was
projected in full resolution, while other voxels were pro-
jected in reduced resolution. Along a viewing ray that en-
tered the ROI, voxels lying before or after the ROI were
omitted in the projection. The main technique employed
by Piccand et al. was wavelet splatting [8], which pre-
computed a 2D projected footprint for each sub-band.

>From another perspective, an interactive visualization
session can be more effective if the objects in the ROI are
highlighted and information outside the ROI is filtered or
reduced. Hence, even if the whole data-set is available, or
there are sufficient computing resources, focus plus con-
text visualization can still be useful. This leads to the issue
of how to effectively visualize a volume with a point of
focus. Zhou et al. [14] proposed using distance as a fac-
tor to adjust objects’ opacity. Viola et al. [12] presented
a technique that suppressed less important information in
volume rendering by cutting away objects occluding the
interesting objects.

In this paper, we employ the notion of foveation [5] to
achieve different levels-of-detail for rendering. A foveated
volume can be viewed as a non-uniform sampled volume,
where the density of the samples is highest at a point
(fovea). Figures 1(a) and 1(b) show examples on the ren-
dered images of a full resolution volume (512×512×426
voxels) and a foveated volume. An ideal foveated volume
has a smooth transition from the highest to the lowest
resolution. However, in practice, only a small number of
levels is presented. In Fig. 1(b), there are four different
levels of resolution. The overall information in a foveated
image/volume is significantly reduced, compared to the
original data. Such reduction in information has been ex-
ploited in image transmission, video conferencing and
computer vision systems [2, 3, 5, 6].

We give an algorithm that renders a foveated volume
from its wavelet coefficients efficiently, such that the ren-
dering time depends on the number of wavelet coeffi-

cients. Specifically, if the foveated volume is represented
in m wavelet coefficients, the algorithm runs in O(n2 +
m), where n is the width in number of pixels of the
rendered image. For simplicity, we consider one ray per
voxel, hence n is also the width of the volume.

Note that previously known fast rendering algorithms
do not fully exploit the reduction in information in the
sense that voxels that appear before or after the ROI are ei-
ther omitted or rendered in high resolution. Our algorithm
achieves speedup by tracking the “thickness” of the rays
during rendering. The algorithm does not require prepro-
cessing on the data (the forward wavelet transformation
on the full volume is not considered as preprocessing).
Hence, various viewing parameters, such as the transfer
functions, can be interactively modified. To further exploit
the characteristic of foveated rendering, we also propose
two ways to visualize foveated volumes.

Outline. We first give an overview of foveation in Sect. 2.1
and some notations in Sect. 2.2. In Sect. 2.3, we describe
the rendering equation used in this paper. In Sect. 3 we
present our algorithm. Sect. 4 describes two ways to vi-
sualize foveated volume. Sect. 5 discusses a method to re-
duce staircase artifacts of the rendered results. In Sect. 6,
we present our experimental results. Sect. 7 gives some
potential applications of our algorithm. Sect. 8 concludes
the paper.

2 Background and notations

2.1 Foveation

A foveated image can be viewed as a non-uniform sam-
pled image, where the density of samples is the highest
at the fovea, but falls off as the distance from the fovea
increases. The human visual system has a similar distribu-
tion of resolution. Chang et al. [5] describe a formulation



Fast rendering of foveated volumes in wavelet-based representation 3

Fig. 2a,b. Wavelet foveation. a x0 = (10, 4), r0 = 3 in the wavelet domain. b x0 = (10, 4), r0 = 3 in the spatial domain

of the “ideal” foveated image. Such notion can be eas-
ily extended to three dimensions. A foveated volume is
obtained from a full resolution volume by a foveation pro-
cess. This process depends on two parameters, the fovea
x0, which is a point in the 3D space, and the rate r0, a non-
negative number. Given a volume V , foveation applies
a space-variant smoothing function on V . At locations
nearer to the fovea, the width of the smoothing function is
smaller. The rate r0 determines how fast the width of the
smoothing function grows.

One approach to approximate a foveated image while
keeping data size small is by retaining some coefficients
in the wavelet domain. Let us describe the approximation
using a 16×16 pixels image. A similar idea can be applied
to volume. Figure 2(a) shows the retained coefficients for
a foveated image. Coefficients in the shaded squares of
Fig. 2(a) are retained. If the image is represented using a
Haar wavelet, the foveated image is as shown in Fig. 2(b),
where pixels in each box have the same value. Note that
the widths of the shaded squares are the same except
for those that touch the boundary. The location of each
square with respect to the co-ordinate of the sub-band de-
pends on the fovea location x0. The common width of the
squares depends on the rate r0. For convenience, we sim-
ply refer to the width as rate. A better approximation can
be achieved by using circles instead of squares, applying
a weighting function on the coefficients, and having cir-
cles with slightly different size in different sub-bands [5].

2.2 Notations

Co-ordinate system. Our volume data-set V is stored in a
n ×n ×n array. The indices of the array (starting from 0
to n −1) also serve as the locations of the voxels in the 3D
space. Same as in images, a wavelet coefficient of the three
dimensional V is labeled by its sub-band and location.
Unlike images, in three dimensions, there are seven high
frequency sub-bands at each level. We use the conven-
tion that sub-bands with the coarsest resolution are defined

to be at the 0-th level. Thus, performing forward wavelet
transformation on the i-th level sub-band LLLi gives an
(i −1)-th level sub-bandLLLi−1, and seven other high fre-
quency sub-bands. We also assume that each sub-band is
stored in a 3D array and use its index to serve as the loca-
tion of the wavelet coefficient. Hence, the spatial location
(x, y, z) corresponds to (x/4, y/4, z/4) in the sub-band
LLLlog2 n−2.

We call a coefficient in a low frequency sub-band LLL�

a super-voxel at level �. Each super-voxel can be viewed
as a cube in the spatial domain. An�-th level coefficient
at the location (x, y, z) (with respect to the co-ordinate
in the sub-band) corresponds to a cube of width n/2� at
(n/2�x, n/2�y, n/2�z) in the spatial domain.

Wavelet foveation and super voxels. For convenience, we
simply call the approximation of the “ideal” foveated vol-
ume the foveated volume. Recall that the approximation
is done by selectively retaining some coefficients, and is
parameterized by the location of fovea x0, and the rate
r0. We denote the foveated volume data as Vf (x0, r0). Let
C(�, x0, r0) be the set of wavelet coefficients in the �-th
level high frequency sub-bands, and be contained in the
cubes whose two opposite corners (with respect to the co-
ordinate in the respective sub-band) are at

(n/2�)x0 − r′, (n/2�)x0 + r′ (1)

where

r′ =



r0
2 −1
r0
2 −1
r0
2 −1


 and (r0 >= 2).

The C(�, x0, r0) is in fact the �-th level of wavelet co-
efficients retained for the foveated volume V f (x0, r0). Let
C(x0, r0) = C(0, x0, r0)∪C(1, x0, r0), . . . , C(log2 n −1,
x0, r0)∪{w0} where w0 is the only coefficient in LLL0.
Hence, from C(x0, r0), we can obtain V f (x0, r0) using in-
verse wavelet transformation.



4 H. Yu et al.

Consider the coefficients in the sub-band LLL�, and
that they are within the cube with the two corners given
by (1). Each coefficient is a super-voxel, and let us denote
these coefficients as R(�, x0, r0). The foveated volume
V f (x0, r0) can be obtained by merging the super-voxels in
R(0, x0, r0), R(1, x0, r0), . . . , R(log2 n −1, x0, r0). Note
that the total number of super-voxels is same as the num-
ber of wavelet coefficients in C(x0, r0).

2.3 Volume rendering equations

An important volume data visualization technique is direct
volume rendering. As light traverses through the volume
it is emitted and absorbed. According to the optical model
for direct volume rendering [10], the resulting intensity for
the light along viewing rays to the viewer is given by

I(t1, t2) =
t2∫

t1

V(t)e
− ∫ t

t1
α(s)ds

dt (2)

where t1 and t2 are the start and end points on the viewing
ray, V(t) is the intensity value at location t, and α(s) is the
opacity at s.

In the discrete case, each sample in the volume is
called a voxel. Equation 2 can be reduced to a finite sum
over the accumulated opacity with the assumption that the
intensity function and opacity function for a certain seg-
ment i are constants vi and αi . We have

I =
n∑

k=1

vkαk

k−1∏
i=0

(1−αi) (3)

3 Proposed algorithm

Given the rate r0, the location of fovea x0, the wavelet co-
efficients C(x0, r0) of the foveated volume, and the view-
ing parameters including the viewing direction θ and the
transfer functions, we want to compute the rendered image
of Vf (x0, r0).

A straightforward algorithm solves the problem by
first reconstructing the foveated volume V f (x0, r0) from
C(x0, r0) using inverse wavelet transformation, and next
applying direct rendering on V f (x0, r0). This method is
costly since representing V f (x0, r0) in the spatial domain
already requires Ω(n3) storage space. We give an algo-
rithm that avoids reconstructing Vf (x0, r0).

Our algorithm consists of two phases, the reconstruc-
tion phase and the rendering phase. In the first phase,
given m wavelet coefficients of the foveated volume, the
super-voxels R(�, x0, r0) are reconstructed. The recon-
struction can be done in O(m) time. In the second phase,
the displayed image is rendered from the super-voxels.

The rendering time is O(m +n2). These two phases can be
combined to further reduce memory usage.

3.1 Main idea

Rendering. Let us first describe the second phase, which
is more interesting. We will explain the rendering using
a 2D example. We want to trace rays in a foveated image
along the x-axis as shown in Fig. 2(b), giving a 1D sig-
nal as output. In Fig. 2(b), a lower resolution sample is
depicted as a bigger square, which we call a super-pixel
(the analogoue of super-voxel). Consider a set of rays trac-
ing through a big super-pixel. If the intensities of the rays
are the same before hitting the square, then they are also
the same upon leaving the square. Thus, from a compu-
tational aspect, all these rays can be emulated altogether
in one step. Since they are the same, we group these rays
into a thick ray, where the thickness is the width of the re-
gion it covers. A key observation is that we can always
split a thick ray, but not mix two rays. Consider the situ-
ation where a thick ray leaves a square and enters into two
smaller squares. In this situation, the ray has to be split
into two thinner rays. On the other hand, consider the situ-
ation where two adjacent thin rays leave their respective
squares and enter into a common bigger square. In this
situation, the two rays may be different in intensity, when
entering into the bigger square. Hence, no computation
can be shared.

The darker arrows in Fig. 3(a) show how the rays trace
half-way through a foveated image. Due to the structure
of foveation, we only need to split the rays. The problem
arises in the second half of the foveated image if the rays
continue to trace toward the right. Since rays can not be
mixed, in the second half, they have to remain thin. This
is not optimal since, intuitively, some computation could
be shared in the second half. To overcome this, we trace
the rays along x-axis in two directions, forward and back-
ward as shown in Fig. 3(b). The final rendered 1D signal
is the composition of these two sets of rays. We do not set
the line where the two sets of rays meet as a straight line,
otherwise it may cut across a whole square.

Fig. 3. Thick rays rendering



Fast rendering of foveated volumes in wavelet-based representation 5

For arbitrary viewing directions, we first apply shear-
warp [7] on the super-voxels, and perform geometric cor-
rection on the rendered image.

Reconstructing super-voxels. Given the wavelet coeffi-
cients C(x0, r0) of the foveated volume (the shaded
squares in Fig. 2(a)), we want to reconstruct the super-
voxels. A full inverse wavelet transform will be costly.
Fortunately, due to the special arrangement of those coef-
ficients, the reconstruction can be restricted within a cube
of width (r0 + s), where s is the wavelet support size. Thus
the running time is of the same order as the number of
selected coefficients. Such a technique of achieving fast
inverse transformation on foveated volumes is essentially
the same as that proposed by Yu et al. [13] for image ro-
tation in the wavelet domain. To further speedup, we can
restrict reconstruction in the width of r0. However, there
will be a minor loss in accuracy. Note that it is possible to
use wavelets with larger support, for example Daubechies
7/9 biorthogonal wavelets.

Total running time. The reconstruction phase takes O(m)
time, where m is the number of wavelet coefficients. Also
recall that the number of super-voxels is also in O(m).
For rendering, observe that the computation required is
directly proportional to the number of rays, which is the
number of super-voxels. Hence, the running time will be
O(m +n2), where m is the total number of wavelet coef-
ficients required, and n is the width of the rendered image.

Combining reconstruction and rendering. If the volume is
represented using a Haar wavelet, it is possible to com-
bine the reconstruction phase and rendering phase, so that
the super-voxels are computed as and when required and
are not explicitly stored. In this way, additional memory
space required can be reduced. In our implementation, we
combine these two phases. However, there are drawbacks
in combining the two phases. The implementation would
not be easy, especially when shear-warping is involved.
Furthermore, it also removes some flexibilities. For in-
stance, it is not clear how to extend it to wavelets with
larger support when both phases are combined. In add-
ition, in applications where the volume has to be rendered
many times with the same coefficients but different view-
ing parameters, the reconstruction will be unnecessaryily
repeatedly performed if the reconstruction and rendering
phases are closely coupled.

4 Visualizing foveated volume

A foveated volume implicitly indicates that the interesting
features are near the fovea. Hence, for effective visualiza-
tion, it is desirable to give priority to the fovea, and to have
the means to direct the viewer’s attention to the fovea. This

can be achieved by multiplying the original opacity with
a space-variant weighting function. Specifically, the opac-
ity at location (x, y, z) is Tα(V(x, y, z))Dx0(x, y, z), where
V(x, y, z) is the voxel intensity, Tα(·) is the opacity trans-
fer function, x0 = (x0, y0, z0) is the fovea, and Dx0(·) is
the weighting function. Hence, the opacity of a voxel de-
pends on both its location and its intensity. We experiment
with two weighting functions.

– The weighting function chops off all the voxels before
the fovea along the viewing direction. If the viewing
direction is along the x-axis, the function is:

Dx0(x, y, z) =
{

1 if x > x0,

0 otherwise

Figures 6(g) and 6(h) show the effect of this weighting
function.

– The weighting function varies across the 3D space. It
is higher near the fovea, and its reciprocal increases
linearly as the distance from the fovea increases. Spe-
cifically,

Dx0(x, y, z) = (1+a‖x0 − (x, y, z)‖2)
−1

where ‖ ·‖2 is the usual 2-norm and a is a constant that
can be interactively adjusted by the viewer. When a is
small, the variation across the space is smaller.
Figure 5(b) shows the effect before applying the
weighting function, while Fig. 6(a) shows the effect
after it is applied.

5 Reducing staircase artifacts

The staircase artifacts (that is, the “blockish” effect) in
the rendered image are due to the notion of thick rays
in sharing computation. A way to reduce the artifacts is
by post-processing. We can view the output of the ren-
dering as a collection of non-uniformly spaced samples
of thick rays, and the rendered image is the interpolation
of these samples. The staircase artifacts appear when the
sampling function is a step function. Alternatively, we can
use a smoother sampling function to reduce the artifacts.
This can be done by performing a space-variant smoothing
process on the original rendered image, where the width of
the smoothing function is larger for thicker rays. Interest-
ingly, the space-variant smoothing process is essentially
a foveation operation, which can be accurately and effi-
ciently approximated using wavelet foveation (Sect. 2.1).

6 Experimental results

Rendering results. To evaluate the visual effect of our pro-
posed algorithm, we applied our method on the CT scan



6 H. Yu et al.

of a visible man’s torso with 512×512×426 voxels. Fig-
ure 4 shows the rendering on the full resolution volume
as the ground truth. The rendering results of foveated vol-
umes are given in Fig. 5, all at a viewing angle of 30 de-
gree. Figures 5(a), 5(b) and 5(c) show the rendering with
fovea parameters x0 = (155, 353, 300) and rate r0=100,
50 and 25. The fovea is marked as a red dot. Note there
are staircase artifacts around the peripheral. The artifacts
are reduced after a space-variant smoothing is applied, as
shown in Figs. 5(d), 5(e) and 5(f).

Figures 5(g), 5(h) and 5(i) show rendering results on
the same data set as Figs. Fig. 5(a), 5(b) and 5(c), except
that the fovea is moved to a new location.

Comparing Figs. 4 and 5, it is noted that no informa-
tion is lost at the fovea, while a large amount of coeffi-
cients are omitted for rendering foveated volumes.

Figure 6 shows the rendering results of applying the
weighting function mentioned in Sect. 4. After apply-
ing the second weighting function on Fig. 5(b), we have
Fig. 6(a). Compared to the one without weighting func-
tion, the peripheral region appears darker. This is because
the weighting function further suppresses information far
from the fovea. Figure 6(b) employs a larger weighting pa-
rameter a than Fig. 6(a). By this adjustment, the informa-
tion about the peripheral region is much more suppressed.
Figure 6(c) gives result when the rate r0 = 25. To reduce
staircase artifacts, Figs. 6(d), 6(e) and 6(f) apply smooth-
ing on Figs. 6(a), 6(b) and 6(c).

Figures 6(g) and 6(h) show the chopping off effect;
the first weighting function mentioned in Sect. 4. The full
resolution volume for Figs. 6(g) and 6(h) is 256 ×256 ×
225 voxels and the rate r0 is 40. Note that each of these
images is not simply an image of a plane slicing through
the volume. This can be observed in Fig. 6(h), where the
surface of the ear is vaguely visible.

Computational performance. To evaluate the performance
of our algorithm, we tested our method on three data-sets:
an MRI scan of a head with 128×128×84 voxels, a CT
scan of an engine with 256×256×110 voxels, a CT scan
of a human head with 256 ×256 ×225 voxels. These are

Fig. 4. Rendering of a full resolution volume having 512× 512×
426 voxels with viewing angle θ = 30 degrees

described as “brain”, “engine” and “head” in Table 1. All
experiments were conducted on a 3GHz Pentium IV PC
with 1GB DDR RAM. We compared our proposed algo-
rithm with the VolPack volume rendering library [1], and
a straightforward direct volume rendering. Table 1 gives
the frame rate (in Hz) and rendering time (in seconds) on
the test data-sets by different rendering methods. Note that
the large 512 ×512 ×426 voxels volume is not tested on
VolPack, since VolPack is unable to process the large vol-
ume under our machine configuration.

In direct volume rendering, the rendering equation is
applied to the full resolution volume using the straight-
forward for-loops, with the viewing direction along the
x-axis.

There are three rendering algorithms provided by
VolPack. The fastest algorithm relies on a special data
structure containing run-length encoded, classified vol-
ume data. Preprocessing is required to obtain this data
structure. Hence, it is suitable for rendering the same vol-
ume without changing classification. MV, MO and CV
represent the following three preprocessing steps:

– Make volume (MV): Create an unclassified volume
from the raw volume data. This unclassified volume in-
cludes precomputed information for shading and clas-
sification.

– Make octree (MO): Create a min-max octree from the
unclassified volume.

– Classify volume (CV): Create a classified volume in-
cluding an opacity with each voxel along with shading
information.

VolPack provides accurate classification. Even if we just
consider MO, which deals with the octree and the struc-
ture of resolution, the preprocessing time is still non-
negligible.

If the volume is already represented by its wavelet
coefficients, no preprocessing is required for our

Table 1. Comparison of frame rates on different data-sets. The
viewing direction is along x-axis for direct volume rendering. Note
that VolPack requires large preprocessing time. Due to the mem-
ory limit of our machine, we only compare these three methods
on these small size data-sets. In Fig. 7(c), we give the performance
analysis of our algorithm on larger data-sets

Direct volume VolPack Our alg.
Data- rendering (Frame rate/MV (Frame rate)

set (Frame rate) MO/CV)

brain 32.3 106.4/0.91 43.5
0.03/0.16

engine 6.4 45.9/4.66 42.6
0.19/0.69

head 3.2 16.0/9.09 25.6
0.33/1.67



Fast rendering of foveated volumes in wavelet-based representation 7

Fig. 5. This set of images demonstrates the effect of fovea rate and location on the foveated volume. The rate is indicated below each
image. Each image in the second and fourth rows is the smoothed version of the image above it. The number of coefficients retained
for the foveated volume with rates 100, 50 and 25 is approximately 23.7× 106, 5.6× 106 and 0.9× 106, respectively. This amounts to
a reduction to 21.3%, 5% and 1% of the original volume. The first two rows and the last two rows have different fovea location. The
fovea is marked as a red dot in each image

algorithm. Hence, if the viewer wishes to inter-
actively change the transfer functions for the inten-
sity and opacity, our algorithm is still able to give
real time feedback for large data-sets. The fove-

ation parameters used in Table 1 are r0 = 25, θ =
45 degrees.

Figure 7 gives the rendering time for different viewing
parameters and data width.



8 H. Yu et al.

Fig. 6a–h. This set of images illustrates the effect of the weighting function in visualizing the foveated volume. a Rendering with varying
opacity with fovea rate r0 = 50. b Rendering with varying opacity with a larger constant a, compared to the rendering in (a). c Rendering
with varying opacity with fovea rate r0 = 25. d Smoothed version of (a). e Smoothed version of (b). f Smoothed version of (c). g The
effect of chopping off the region before the fovea with viewing angle at 0 degrees. h Same effect as (g) with viewing angle at 30 degrees

Fig. 7a–c. Rendering time. a Rendering time versus the rate r0. b Rendering time versus viewing angle. The original volume for (a) and
(b) has 512×512×426 voxels. Observe that more computation is required for larger angles. The worst case performance occurred at 45
degree. Here the rate is 40. c Rendering time versus data width. More time is required for a viewing angle at 45 degree



Fast rendering of foveated volumes in wavelet-based representation 9

Figure 7(a) shows that the rendering time increases as
the fovea rate r0 increases. This is because as r0 increases,
more wavelet coefficients are selected for rendering. For
the same r0, the time for rendering with the viewing angle
at 45 degrees is larger than that at 0 degree since there
are more data to be processed in the shear-warp operation.
The reason is also true for Fig. 7(b), which shows that the
rendering time increases with the viewing angle.

Figure 7(c) shows that the rendering time increases as
the data width increases. When n is large, the time is pro-
portional to n2 as m is small. When the width increases
from n = 1024 to 4096, although the data size increases by
a factor of 43 = 64, the rendering time only increases by
approximately a factor of 6.86 when the viewing angle θ
is 45 degrees.

7 Applications

A potential application of our algorithm is in remote vol-
ume visualization. A viewer at the client-side indicates
the fovea, and the selected coefficients are sent across
(alternatively, we can let another viewer at the server-
side indicate the fovea). At the client-side, the viewer
applies our algorithm to render the obtained foveated vol-
ume. The server continues to send coefficients across,
achieving the effect that the fovea rate is increasing. What
the viewer sees is the rendering result that is getting
more and more accurate. Note that if direct rendering
method is used here, then the inverse wavelet transform-
ation has to be applied for every new coefficient arriv-
ing at the client-side. Our algorithm works efficiently

in the wavelet domain and hence overcomes this prob-
lem.

Another application is in the visualization of time-
varying volume data. If the time-varying volume data is
already represented in a foveated form, it is possible to
apply our idea to achieve fast rendering. For example, con-
sider time-varying volume data that are the output of a set
of sensors. The distribution of the sensors in the 3D space
resembles the structure of foveated volume, with higher
density around a fovea. The coverage of the sensors could
be wide and thus impossible to perform a full-resolution
real-time volume rendering. Our algorithm is a possible
solution.

8 Conclusion

In this paper, we presented an algorithm that renders
a foveated volume efficiently in the wavelet domain. The
required running time for rendering the foveated volume
is O(n2 +m), where n is the width of the rendered image,
and m is the number of retained wavelet coefficients. We
implemented the algorithm and analyzed its performance.
The experimental study also confirmed the efficiency of
the algorithm, even for very large n. Excluding the for-
ward wavelet transformation, no expensive preprocessing
is required on the original volume. Compared to the ren-
dering of the full resolution volume, our method produces
an image with the same quality at the fovea but lower reso-
lution further way. The method provides a good tradeoff
between rendering resolution and frame rate. It is suitable
to apply in scenarios where the rendering platform has low
computing resources and/or real time feedback is required.

References
1. The VolPack volume rendering library.

http://graphics.stanford.edu/
software/volpack/ (1995)

2. Basu, A., Sullivan, A., Wiebe, K.:
Variable-resolution teleconferencing. IEEE
System, Man, and Cybernetics (1993)

3. Basu, A., Wiebe, K.: Videoconferencing
using spatially varying sensing with
multiple and moving fovea. IEEE Trans. on
Systems, Man and Cybernetics (1998)

4. Bethel, W., Tierney, B., Lee, J., Gunter, D.,
Lau, S.: Using high-speed WANs and
network data caches to enable remote and
distributed visualization. In:
Supercomputing ’00: Proceedings of the
2000 ACM/IEEE conference on
Supercomputing (CDROM), pp. 59–59
(2000)

5. Chang, E.C., Mallat, S., Yap, C.:
Wavelet foveation. Journal of Applied

and Computational Harmonic Analysis
(2000)

6. Colombo, C., Rucci, M., Dario, P.:
Integrating selective attention and
space-variant sensing in machine vision.
Jorge L.C. Sanz, editor, Image Technology:
Advances in Image Processing, Multimedia
and Machine Vision pp. 109–128 (1996)

7. Lacroute, P., Levoy, M.: Fast volume
rendering using a shear-warp factorization
of the viewing transformation. Computer
Graphics (1994)

8. Laur, D., Hanrahan, P.: Hierarchical
splatting: a progressive refinement
algorithm for volume rendering.
SIGGRAPH Comput. Graph. 25(4),
285–288 (1991)

9. Levoy, M., Whitaker, R.: Gaze-directed
volume rendering. In: Computer Graphics
(1990)

10. Max, N.: Optical models for direct volume
rendering. IEEE Transactions on
Visualization and Computer Graphics 1(2),
99–108 (1995)

11. Piccand, S., Noumeir, R., Paquette, E.:
Efficient visualization of volume data sets
with region of interest and wavelets. In:
SPIE Medical Imaging (2005)

12. Viola, I., Kanitsar, A., Gröller, M.E.:
Importance-driven volume rendering. In:
Proceedings of IEEE Visualization’04, pp.
139–145 (2004)

13. Yu, H., Nguyen, V.T., Chang, E.C.:
Rotation of foveated image in the Wavelet
domain. IEEE International Conference on
Image Processing (2004)

14. Zhou, J., Döring, A., Tönnies, K.D.:
Distance based enhancement for focal
region based volume rendering. In:
Proceedings of Bildverarbeitung für die
Medizin 2004, pp. 199–203. Berlin (2004)


