
The Hierarchical Degree-of-Visibility Tree
Lidan Shou, Zhiyong Huang, Member, IEEE, and Kian-Lee Tan, Member, IEEE Computer Society

Abstract—In this paper, we present a novel structure called the Hierarchical Degree-of-Visibility Tree (HDoV-tree) for visibility query

processing in visualization systems. The HDoV-tree builds on and extends the R-tree such that 1) the search space is pruned based on

the degree of visibility of objects and 2) internal nodes store level-of-details (LoDs) that represent a collection of objects in a coarser

form. We propose two tree traversal algorithms that balance performance and visual fidelity, explore three storage structures for the

HDoV-tree, and develop novel caching techniques for disk-based HDoV-tree. We implemented the HDoV-tree in a prototype

walkthrough system called VISUAL. Our experimental study shows that VISUAL can lead to high frame rates without compromising

visual fidelity.

Index Terms—Degree of visibility, HDoV-tree, level-of-details, performance and visual fidelity, virtual environment.

�

1 INTRODUCTION

INTERACTIVE visualization systems are widely used in
various applications in industry, academics, and enter-

tainments. The models required are getting increasingly
complex and may involve tens of thousands of objects each
consisting of thousands of polygons. Moreover, each object
typically has multiresolution representations called level-of-
details (LoDs). Thus, conventional systems that assume
models fit into the main memory are no longer affordable.
This calls for novel techniques to handle models that are
stored on disk.

In visualization systems, one of the most frequently used
operations is the viewpoint query that returns all objects that
are visible from the query viewpoint. By modeling the
movement of a viewpoint, we will have a walkthrough
application that continuously refreshes the set of visible
objects as the viewpoint moves. To support these queries for
large models, one straightforward solution is to partition the
user viewpoint space into disjoint cells. For each cell, we
associate a list of objects that are visible from any point within
the cell. Thus, based on the cell corresponding to the
viewpoint, only the visible objects need to be accessed. In
practice, for performance reason, objects that are nearer to the
viewpoint are shown in greater details while those that are
further away may be approximated by their coarser repre-
sentations. However, there are some limitations with this
simple strategy. First, the decision on the appropriate LoDs to
be used is ad hoc and static, and cannot be changed at
runtime. Second, the amount of data representing objects to
be loaded may be unnecessarily high. Finally, since the list is a
single-dimensional representation of the objects, there is no
way to determine the spatial properties of these objects
relative to one another without examining the entire list.

In this paper, we propose a novel data structure called
Hierarchical Degree-of-Visibility tree (HDoV-tree) to support

visibility queries. The HDoV-tree has the topology of a
hierarchical spatial subdivision and captures the geometric
and material data as well as the visibility data in the nodes.
Moreover, it is distinguished from spatial datastructures such
as R-tree in several ways. First, the HDoV-tree is view-variant.
In other words, at different viewpoint positions, the tree
“captures” different visible objects. Second, traversing the
HDoV-tree is based on the visibility data rather than spatial
proximity. A branch along a path may be pruned if the objects
along the branch are hardly visible. Third, the HDoV-tree is
tunable. Depending on the users’ needs and the computing
power of the machines, different users may see visible objects
with different degree of fidelity.

We propose two algorithms that traverse the HDoV-tree
to balance visual fidelity and performance. We also propose
three storage organizations of the HDoV-tree on secondary
storage, and develop novel cache replacement policies to
expedite the accesses to the nodes of the HDoV-tree. We
have implemented the proposed structure in a prototype
walkthrough system called VISUAL, and conducted experi-
ments to study its effectiveness. Our results show that the
proposed scheme is efficient and provides excellent visual
fidelity.

A preliminary version of this paper appears in [10].
There, we only present the disk-based version HDoV-tree.
We have extended the paper to consider cache replacement
policies, and proposed a novel performance guaranteed
traversal scheme. We also report a more comprehensive
performance study on the VISUAL system and look at how
the HDoV tree performs in a memory-based system.

The rest of this paper is organized as follows: In the next
section, we review some related work on managing large
virtual environments. We present the HDoV-tree structure
and the traversal algorithms in Section 3, and several
storage schemes in Section 4. In Section 5, we discuss two
cache replacement policies that are based on the degree-of-
visibility values. Section 6 reports the results of our
experimental study and, finally, we conclude in Section 7.

2 RELATED WORK

Most of the earlier works have assumed that virtual
environments are memory resident. More recent works on
managing large virtual environments [6], [9] used spatial

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 11, NOVEMBER 2004 1357

. L. Shou is with the Handsome International Software Co. Ltd, 9F, Tower 1,
Chang Di Torch Mansion, #259 Wen San Rd., Hangzhou, P.R. China
310012. E-mail: should@handsome.com.cn.

. Z. Huang and K.-L. Tan are with the Department of Computer Science,
National University of Singapore, 3 Science Drive 2, Singapore 117543.
E-mail: {huangzy, tankl}@comp.nus.edu.sg.

Manuscript received 7 Apr. 2003; revised 3 Nov. 2003; accepted 10 Feb. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0029-0403.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

indexes to organize, manipulate, and retrieve the data. Kofler
et al. proposed the LoD-R-tree [6] that combines the R-tree
index with a hierarchy of multirepresentations of the three-
dimensional data. This data structure considers only the
spatial proximity of objects and does not incorporate any
visibility data. To minimize the amount of data to be fetched
from disk, the search method converts the viewing-frustum
into a few rectangular query boxes (instead of one single large
query box that bounds the view frustum). Thus, the structure
leads to high frame rates as long as the user’s viewing-frustum
stays within the query region. However, its performance
degenerates significantly as the user view changes.

In [9], Shou et al. proposed the REVIEW walkthrough
system. REVIEW also exploits spatial proximity for retriev-
ing visible objects. It employs R-tree as the underlying
spatial data structure, but extended the R-tree search
scheme such that data that have been retrieved in earlier
operations do not need to be accessed again. It also supports
a semantic-based cache replacement strategy based on
spatial distance between the viewer and the nodes.
Prefetching and in-memory optimization are some other
optimization strategies that have been deployed to improve
the system performance.

Although spatial access methods offer a neat solution to
real-time visualization, they suffer from two problems.
First, they may miss some visible objects that are far from
the viewpoint. This is because a typical spatial query only
retrieves objects that are within (or overlap) the query box,
and visible objects that are out of the query box will not be
retrieved. Thus, the visual fidelity is poor. Second, they may
waste I/O and memory resources by retrieving objects that
are “hidden.” These are objects that are located within the
spatial query box, but are not visible because they are
blocked by other larger objects.

We believe a better solution to the aforementioned two
problems is to compute the visibility of objects with respect
to a viewpoint or cell. Many visibility algorithms that
compute objects that are visible from a given viewpoint or a
viewing cell have been proposed by the computer graphics
community [1], [2], [3], [4], [7], [8], [12]. However,
computing visibility at runtime is expensive. Moreover,
how the data sets and visibility data are managed at
runtime has not been studied and reported.

3 THE HDOV-TREE

In this paper, we adopt the (cell, list-of-objects)-based
method to manage visibility in large virtual environments,
i.e., the viewpoint space is partitioned into disjoint cells,
and each cell has its associated list of visible objects. We
present the proposed HDoV tree structure and the two
proposed traversal algorithms in this section. Before that,
we shall introduce the novel concept of degree-of-visibility.

3.1 Degree-of-Visibility

In computer graphics, existing visibility algorithms usually
recognize an object as visible or invisible. We observe that
such a Boolean representation is too “conservative” as it
marks an object as visible even if only a very small part of it
can be seen.

We introduce degree-of-visibility (DoV) to measure visibi-
lity more precisely. First, we define the 3D shadow set of
viewpoint p generated by an occluder O � R3 to be Sðp;OÞ,
which, in mathematical language, is the set of points s,
whose interconnecting line with p, sp, intersects O, while s
is not in O [8]. Therefore, we have

Sðp;OÞ ¼ fsjs 2 R3; sp \O 6¼ � ^ s =2 Og:

For a given viewpoint p, the visible part of a point set
X � R3 can be defined as:

Xvisible ¼ X �
[
i

Sðp;OiÞ:

We define the Degree of Visibility (DoV) of a point set X
with regard to a number of occluders Oi to be the ratio of
the area of the projection of Xvisible onto a unit sphere
(where R ¼ 1) centered at p and the spherical area of the
sphere. If we use SProjpð�Þ to denote the spherical
projection of � on the unit sphere centered at p, the point
DoV of set X can be defined as

DoV ðp;XÞ ¼
R
s2Sphere Fpðs;XvisibleÞdA

4�R2
;

where

Fpðs; �Þ ¼
1 if s 2 SProjpð�Þ
0 otherwise:

�

The DoV provides an indication on how visually im-
portant an object is, considering all possible viewing
directions. The geometric meaning of DoV is the solid angle
of the “visible” part of the point set. Thus, the DoV of an object
takes on values between 0 and 1. An object with DoV value of
0 is unimportant since it is hidden from the viewpoint and,
therefore, should not be accessed. On the other hand, an object
that is visible (withDoV > 0) should be retrieved. Intuitively,
the larger the DoV value of an object, the more likely it will be
noticed and so it is more critical for it to be shown in greater
detail. On the contrary, an object that has very small DoV
value with respect to a viewpoint may not be noticeable, and
hence can be represented by a coarse LoD.

The concept of DoV can also be extended to a group of
objects, where the DoV of a group is defined as if the
aggregation of the group of objects is an individual point
set. Since the spherical projection of a group of objects (with
occlusion) is equal to the aggregation of those of the
individual objects, the degree-of-visibility information of
the aggregated object can be computed by adding up all the
DoVs of the objects to be aggregated. As an example, given
a number of objects, A, B1, B2, . . . , and Bk, if Bi

(i ¼ 1; 2; . . . ; k) are aggregated into object A, then we have

DoV ðp;AÞ ¼
Xk
i¼1

DoV ðp;BiÞ: ð1Þ

For a viewing region (cell), the DoV of an object viewed
from region R can be defined conservatively as

DoV ðR; XÞ ¼ maxðDoV ðp;XÞÞ; 8p 2 R:

In this paper, we use region-based DoV because it is
valid for a longer period than point DoV when a viewpoint
moves. It is only invalid if the viewpoint enters another
region.

3.2 The Logical Structure of the HDoV-Tree

We combine LoD, spatial index structure, and degree-of-
visibility (DoV) into a Hierarchical Degree-of-Visibility
(HDoV) tree structure. The backbone of the HDoV-tree is
a spatial data structure that also stores the level-of-details
(LoDs) and degree-of-visibility (DoV) information. The

1358 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 11, NOVEMBER 2004

spatial data structure essentially captures the spatial
distribution of the objects in the virtual environment.
However, there are several features that distinguish the
HDoV-tree from a spatial structure. First, the traversal of
the HDoV-tree is based on the DoV values instead of the
spatial content. Second, while the structure captures the
static spatial distribution of objects, the visibility of these
static objects is dynamic, i.e., object visibility depends on the
positions of the viewpoints. In some sense, we can consider
the HDoV-tree as a “template” that is dynamically
instantiated with the visibility data of the corresponding
cell of the viewpoint. Fig. 1 illustrates this.

For simplicity as well as because we are dealing with
3D objects only, we employ the R-tree [5] as the spatial
structure in our implementation. Fig. 2 shows the logical
structure of the HDoV-tree. By logical, we refer to an
instance of the structure that corresponds to a particular
cell. In the HDoV-tree, entries in the leaf nodes are of the
form ðVD;MBR;PtrÞ, where VD contains the DoV value of
an object, MBR is the minimum bounding box of the object,
and Ptr indicates the address of the object LoDs. Each leaf
node also contains internal LoDs. These internal LoDs are
coarse representations of the aggregation of objects indexed
by the node. Entries in internal nodes are also of the form
ðVD;MBR;PtrÞ. However, VD now contains the aggre-
gated DoV values of the objects that MBR bounds, and Ptr
points to the child node that leads to these objects. Each
internal node also contains a pointer to levels of internal
LoDs that are even coarser representations of all objects
bound by the node. A node is said to be visible if any of its
entries contains a DoV value greater than zero. We note that
the DoV value of an entry E in an internal node equals to
the summation of all the DoV values in the node that E

points to (see (1)). Moreover, if node N is visible, at least one
child node (or object) of N is also visible.

Since the DoV values stored in the tree depend on the
viewing region that the viewer is in, the VD fields stored in
each entry in the nodes are view-variant, i.e., for different
viewing region, the VD values are different. In contrast, the
Ptr fields which determine the topology of the HDoV-tree,
the internal LoDs, and the object LoDs are not dependent on
the viewer; they are therefore view-invariant. Similarly, the
MBR field is view-invariant.

We note that the HDoV-tree has several advantages over
the simple (cell, list-of-objects)-based method. First, a
threshold DoV value, say �, can be used to balance the
visual fidelity and performance. � can be used to control the
LoDs to be fetched—objects with DoV values larger than �
can be loaded in greater detail, while those that are smaller
can be represented by coarser LoDs. Second, we can
potentially terminate the search at internal nodes if the
aggregated DoV value of a node is small, which follows the
same logic as the first. Both of the above points translate to
minimizing the amount of data to be loaded and, hence,
improving the performance of the system. By picking an
optimal threshold value, the visual fidelity will not be
compromised significantly. Third, the spatial structure
being used facilitates the design of a traversal algorithm
that prioritizes the nodes to be searched. In other words,
regions that are closer to the current view frustum can be
traversed first, while regions that are further away to the
view frustum can be delayed. This can further improve the
search performance significantly.

3.3 The Search Algorithms

In a virtual environment, the main query type is the
visibility query that asks for all objects (at their correspond-
ing representations) that are visible from a query point q.
More complex queries such as those involving the move-
ment of a point in walkthrough applications can be seen as
a sequence of point queries (with optimizations to exploit
temporal coherency). As such, in this section, we shall focus
on just point visibility query.

To provide a balance between performance and visual
fidelity, we use a threshold DoV value � to control the
granularity (or LoDs) of objects to be loaded. Essentially,
objects (or object groups) with DoV values smaller than �
can be retrieved with relatively low detail (internal/coarse
LoD); otherwise, a finer LoD should be considered. We note
that for larger � values, the restriction on the visual quality
will be looser, and lower details are allowed. As such, fewer

SHOU ET AL.: THE HIERARCHICAL DEGREE-OF-VISIBILITY TREE 1359

Fig. 1. Dynamic instantiation of HDoV-tree. (As the user viewpoint

moves from cell i to cell j, the HDoV-tree is reinstantiated.)

Fig. 2. A hierarchical degree-of-visibility tree.

disk I/Os are required to retrieve the results, and this leads
to higher frame rate. On the contrary, for smaller � values,
more detailed LoDs will be loaded giving rise to better
visual fidelity at the expense of lower frame rate.

Following the above discussion, it is clear that �
determines the levels in which the traversal can terminate.
When a traversal operation accesses a node entry, if the
DoV value is smaller than �, the traversal can terminate on
this branch; otherwise, the traversal needs to proceed to the
child nodes. By pruning branches with zero or small DoV
values, disk I/Os can be saved. Here, we shall present two
traversal algorithms that are based on this.

3.3.1 Threshold-Based Traversal Algorithm

The first proposed traversal algorithm adopts the basic idea
of pruning the search space using a threshold DoV value.
We refer to this scheme as the threshold-based traversal
algorithm. The scheme essentially controls the maximum
allowable screen areas which could be replaced by lower
internal LoDs, while achieving fast rendering speed.

Fig. 3 shows the algorithmic description of the algorithm.
Given a query point and an instantiated HDoV-tree, the
traversal starts from the root node (line 1). For objects/nodes
that are completely hidden, i.e., whose entries have DoV = 0,
the entire branches pointed to by these entries are completely
invisible. Therefore, the recursion will terminate at this
branch without adding anything to the query result, and the
search continues with the next entry. If the DoV is greater than
0, then it is either a visible leaf node or a visible internal node.
For the former, we include the object LoDs into the answer set
(lines 3-4), and the recursion will also terminate. For an
internal node, the traversal algorithm will decide whether to
proceed to the child node based on the DoV value (line 6). If
the DoV value of the entry is smaller than the threshold �, the
branch under this entry is hardly visible, so we may want to
retrieve a low-level internal LoD and terminate the recursion
(line 7). We will discuss the second condition shortly. For
entries with DoV values greater than �, we proceed to search
their child nodes (line 9).

One issue with the above method is that for a node with

small DoV, its LoD may contain more polygons than the sum

of its visible descendants. Thus, terminating at this node

may incur higher retrieval cost. To solve this problem, we

can store the number of visible objects (NVO) in each VD

entry. So, VD has two view-variant fields, i.e., VD ¼ ðDoV ;

NVOÞ. Now, we can apply a heuristic to determine whether

to terminate the search at a node or to traverse down to the

next level. This corresponds to the second condition in line 7

of the traversal algorithm. Suppose node N has m leaf

descendants, if the fan-out of the internal nodes is M, the

subtree on N has an estimated height of h ¼ logMm. If there

are n leaf nodes visible in the subtree, and these leaf nodes

have equal DoV values, then the DoV of these leaf nodes is
DoV ðNÞ

n . Suppose each visible object in the leaf nodes has f

polygons, and the ratio of the number of polygons in parent

nodes over the sum of those in child nodes is s, or

s ¼ npolyðnodeÞP
i npolyðchildiÞ

;

then the estimated number of polygons in node N is
m � f � sh. On the other hand, the number of polygons in the
visible leaf nodes sum up to f � n. So, the condition to
terminate the traversal is m � f � sh < f � n, which implies
h � ð1þ logMsÞ < logMn. LoD of an active internal node can
be selected as

LoDinternal ¼
DoV

�
LoDhighest þ 1�DoV

�

� �
LoDlowest;

where LoDlowest and LoDhighest are integer values denoting
the lowest and highest LoD of an (aggregated) object at a
level, respectively, and 0 < DoV

� � 1 (because of the second
condition at line 7). LoD of an active leaf node, meanwhile,
can be selected as

LoDleaf ¼ k � LoDhighest þ 1� kð ÞLoDlowest;

where k ¼ minð DoV
MAXDOV ; 1Þ. Since the spherical projection of

an object will not exceed 0.5 if the viewpoint is outside the
bounding box of the object, we set MAXDOV ¼ 0:5.

3.3.2 Polygon Budget Traversal Algorithm

While the threshold-based scheme can be used to control
the visual fidelity, there is no performance guarantee for
this algorithm. If the threshold specified by user is too
small, the system may retrieve too many polygons, making
the walkthrough perform poorly. In contrast, if the thresh-
old is too large, the system may retrieve too many coarse
LoDs and, therefore, generate unacceptable visual quality.
To address this problem, we propose the Polygon Budget
(PB) traversal strategy that aims at performance-guaranteed
walkthrough.

The PB mode restricts the maximum number of poly-
gons, namely, polygon budget, sent to the graphics engine
based on the DoV values and the position of the viewpoint.
By setting different polygon budgets, the system can
optimize the visual quality with guaranteed frame rates. If
the budget becomes infinity, the system will degrade to
conventional rendering strategy.

With HDoV-tree, we can easily allocate the polygon
budget, with an initial value of I, to nodes based on their
DoV values. Starting from the root node, we refine the child
nodes with the DoV values in descending order. The
polygon budget allocated to each child node is proportional
to its DoV value and is propagated recursively top-down.
Suppose node N , with DoV of D and budget of B, has m
child nodes, c1; � � � ; cm, with descending DoV values,
d1 � � � � � dm. The budget allocated to child ci with DoV
value of di is

BðciÞ ¼ B � di
D

� k;

1360 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 11, NOVEMBER 2004

Fig. 3. The threshold-based traversal algorithm.

where

k ¼ remain budget

I
:

The LoD of an active node is determined by its DoV and
the current budget Bi as

LoD ¼ minð� � LoDhighest þ ð1� �ÞLoDlowest; BiÞ;

where � ¼ minð DoV
MAXDOV ; 1Þ.

The remaining budget is calculated by deducting the
polygon cost of the selected LoD. Before each refinement,
we check if the remaining polygon budget will be less than
zero if the operation was carried out. If so, the refinement is
dropped, and attempt of selecting LoD is made on the
parent node. Otherwise, the refinement will proceed to
other nodes with DoV values in descending order. If all the
attempts fail, the recursive refinement process will termi-
nate, and all the current active LoDs are rendered.

The polygon budget strategy gives nodes with larger
DoV values more privilege when allocating polygon
budget. Objects that are visually more important are
allocated more polygon budgets. It also sets relatively
higher LoDs to those with larger DoV values, therefore, it is
more “visually optimized” as compared to conventional
view-dependent rendering algorithms which sets LoDs
only based on the distance metric.

The refinement algorithm used in the PB strategy is
listed in Fig. 4.

4 STORAGE SCHEMES FOR HDOV-TREE

Recall that the HDoV-tree is essentially a view-variant
structure: Depending on the user’s viewing region of the
current viewpoint, the visibility data of the tree may be
different. In this section, we examine three storage schemes
for the HDoV-tree that capture the information for all cells,
so that if the viewpoint is in cell i, then the content of cell i is
accessed.

4.1 The Horizontal Storage Scheme

The most straightforward scheme is to store a pointer in each
node pointing to a list of visibility data, which is indexed by
the cell ID number. Fig. 5 shows the data structure of the
scheme, which we call a horizontal scheme. In this scheme, the

DoV values of a node N respective to cell C are stored in a
fixed-size page, called the V-page (denoted as V PageC;N in
Fig. 5). The V-page contains V-entries, one for each entry in a
tree node, i.e., each MBR has a corresponding V-entry. The
nth V-entry contains the visibility data of the nth entry in the
corresponding tree node. In the horizontal scheme, internal
nodes point to V-pages containing visibility data of the nodes,
while leaf nodes point to V-pages containing object DoVs. A
visibility query to a node costs one V-page access only.
Unfortunately, the storage cost of the horizontal scheme is
very expensive—it reserves the storage space of a V-page
even if the node and objects are not visible in the cell at all.

4.2 The Vertical Storage Scheme

Another scheme, which requires less storage space, is the
vertical scheme. As Fig. 6 shows, this scheme deploys an
intermediate index structure, named V-page-index, between
the nodes and the V-pages. Let Nnode denote the number of
nodes in the HDoV-tree. The V-page-index is segmented by
the cells so that each segment contains as many as Nnode

SHOU ET AL.: THE HIERARCHICAL DEGREE-OF-VISIBILITY TREE 1361

Fig. 4. The refinement algorithm in polygon budget traversal algorithm.

Fig. 5. Horizontal Storage Scheme. VPage i,j represents the V-page of node j in cell i.

pointers. Each of the pointers, which are called V-page
pointers, points to a V-page or to nil. Each tree node stores
an offset starting from the beginning of the segment of the
V-page-index. These offset values do not change by cells,
therefore, they do not require any update. When the
visibility query traverses to node N , the offset value is
used to locate the V-page pointer in the V-page-index. If the
V-page pointer is nil, it means the branch is not visible in
the current cell, so the branch below node N can be pruned;
otherwise, the V-page of node N is retrieved from the
V-page table. When the cell of the visibility query changes,
the old segment of V-page-index is simply “flipped” to a
new one by retrieving a new segment, which contains Nnode

pointers.
To expedite the V-page access, we also store the V-pages

of the same cell together. The V-pages of a cell are sorted in
the order of the tree nodes accessed in the depth-first
traversal, so that all V-pages accessed during a visibility
query can be retrieved in a sequential scan.

4.3 The Indexed-Vertical Storage Scheme

In the Vertical Storage scheme, “flipping” the V-page-index

can be costly. To reduce the I/O cost during the segment

flipping of V-page-index and the space of V-page-index, we

can deploy another simple one-to-one index for the V-page-

index file, as Fig. 7 shows (we have omitted the tree nodes as

they are the same as those in Fig. 6). Only the offset numbers

and the V-page pointers of the visible nodes are saved in the

V-page-index file. As a result, only a visible node has a pointer

stored in the V-page-index file, i.e., only nonnil pointers are

stored in V-page-index. Therefore, the size of the segments

can be reduced dramatically (from O(number of nodes) in the

horizontal scheme to O(number of visible nodes) [11]). Note

that the segments stored in the V-page-index file may have

variable lengths. This scheme is named indexed vertical scheme.

1362 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 11, NOVEMBER 2004

Fig. 6. Vertical storage scheme.

Fig. 7. Indexed vertical storage scheme.

5 CACHING THE HDOV-TREE NODES

When the search threshold � is small, many of the nodes in
the HDoV-tree need to be accessed. As such, traversal of the
tree can be further expedited by employing a cache
(memory buffer) for the nodes. Since the nodes in the
logical structure consist of the view-invariant and view-
variant components, in a single-user environment the view-
variant data buffered in memory may soon become invalid
if the user’s viewing cell changes. So, it is more beneficial to
cache the view-invariant parts (the spatial data) in this case,
as they do not change by the viewpoint. In this section, we
propose two schemes that employ the DoV value for cache
replacement.

The basic idea of the first scheme, DoV cache replace-
ment policy, is to retain the data of visually important
nodes in memory as long as possible. This is based on the
assumption that the data of visually important nodes are
likely to remain visible in the near future.

With the DoV cache replacement policy, the system keeps
a log on the DoV values for all the nodes cached in the
memory buffer. All the entries, which are ðnodeID; nodePtrÞ
pairs, are stored in a hash map, where the key is the nodeID. A
map list structure, which contains ðDoV ; nodeIDÞ pairs, is
maintained in memory, and is sorted by ascending DoV
values. Whenever there is a request for a node, we search the
ðnodeID; nodePtrÞ hash map to determine if it is currently
being cached. If it is, the node pointed to by the nodePtr field
is returned immediately; otherwise, the node is retrieved
from the disk file and the map list structure is updated. The
candidate to be replaced is always the first entry in the
ðDoV ; nodeIDÞ map list, since the first item always has the
smallest DoV value. And, the ðnodeID; nodePtrÞ hash map is
subsequently updated according to the replacement.

The advantage of the DoV cache is that if the cache size is
small, the DoV-based replacement policy helps to maintain
the data of visually more important nodes in the memory
buffer. As a comparison, for the Least-Recently-Used (LRU)
replacement policy, if the number of cache entries is smaller
than that of the nodes accessed in a round-up of the
recursive traversal, the cached nodes are very likely to be
swapped (replaced) before they could ever be reused (hit)
in subsequent queries.

While the DoV cache replacement policy may be efficient
in exploiting the visual coherence that exists between
consecutive visibility queries, the data of some of the nodes
with large DoV values may reside in the DoV cache for a
long time without being accessed. This is possible for nodes
that may be visible for earlier queries, but not in subsequent
ones. To avoid such “dead entries,” in the second scheme,
the DoV value stored in the cache is adjusted by a function
of time. To be more specific, we define a function f to be
fðDoV ; T Þ ¼ DoV þ � � T , where DoV is the DoV value of
the node, � is a predefined constant, and T is the latest time
at which the node was accessed. The function f describes
how the key values in the cache entries are to be updated as
the time goes on. We shall refer to this variant of the DoV
cache replacement policy as the DoV-Time (DT) policy. In
our experiments, we set � to 0.001.

6 PERFORMANCE STUDY

We have implemented the HDoV-tree as a component of a
prototype visualization system, VISUAL. VISUAL is a

virtual reality walkthrough system implemented on a
Pentium 4 PC running RedHat 7.2 that also facilitates
visibility queries on specific viewpoint. In this section, we
present representative results of an experimental study to
evaluate the performance of the HDoV-tree. Readers are
referred to [11] for the complete set of results including a
study on the storage overhead of the three storage schemes.

6.1 Experiment 1: Disk-Based System

In the first set of experiments, we study VISUAL for large
data sets that do not fit into the main memory. The data sets
we used are synthetic city models containing numerous
buildings and bunny models. The raw data sets excluding
the visibility data vary in sizes from 400 MB to 1.6 GB. The
default data set used has a raw size of approximately 1 GB.
The precomputation phase for the largest data set takes
about 1.02 seconds to compute the DoV values in one cell.
The time to reinstantiate the HDoV-tree in each cell will be
accounted for in the runtime searching. For this set of
experiments, we only evaluate the threshold-based search
algorithm since the polygon-budget scheme is expected to
access more nodes.

6.1.1 On Visibility Queries

In this experiment, we study the search performance of the
HDoV-tree. We shall look at all the three storage schemes.
We use the naı̈ve (cell, list-of-objects)-based algorithm for
comparison. In our implementation, this scheme accesses
the V-pages of visible leaf nodes only. Moreover, all the
models retrieved by the algorithm are from the object LoDs.
We note that the naı̈ve method outperforms a spatial-
query-based method, as it accesses visible objects only (see
Section 6.1.2 for a comparative study).

We tested 10,000 visibility queries at random viewpoint
positions obtained from the precomputed cells. Fig. 8 shows
the results of the search time as � (DoV threshold) varies
from 0 to 0.008. We observe that when � increases, the
search time for all HDoV-tree-based schemes decrease
significantly. This is expected as a large � value implies
that the traversal will terminate more often at internal
nodes. As a result, more coarser internal LoDs are allowed
in the result set. Since the coarser internal LoDs have fewer
details, the loading time of these objects is shorter. We also
observe that the search performance for � ¼ 0 is almost the
same as that of the naı̈ve method. This confirms our

SHOU ET AL.: THE HIERARCHICAL DEGREE-OF-VISIBILITY TREE 1363

Fig. 8. Search time with different � values.

expectation that the HDoV-tree degenerates to a (cell, list-
of-visibility)-based algorithm when � ¼ 0.

For the HDoV-tree-based schemes, we note that the
performance of the vertical scheme and the indexed-vertical
scheme is comparable. The performance of the indexed-
vertical scheme is marginally better as it loads fewer data
during the cell-flipping. The horizontal scheme performs
the worst. This is expected as more disk seek is required in
accessing the V-pages—all V-pages of a particular cell are
not consecutively stored.

In view of the above results, for the remaining experi-
ments, we shall present the results for the indexed-vertical
scheme only.

To test the scalability of the search performance of the
proposed HDoV-tree, we built a series of data sets ranging
from 400 MB to 1.6 GB. In the precomputed cells, we chose
1,000 random viewpoints as the experimental query set, and
performed the same 1,000 visibility queries on the data sets.
The average search time and the average number of I/Os
are shown in Figs. 9a and 9b, respectively. We note that the
results show only the cost to traverse the HDoV-tree and
excludes the cost to retrieve the objects (since all visible
objects must be retrieved). As the figure shows, the average
response time and I/O cost increase only marginally with
increasing data set sizes. The I/O cost only increases in very
small amounts as the database size increases. The increase
in search time is almost negligible. We also note that the
variance of search time (in ms) changes little for different
data sets, as shown in Table 1. These results demonstrate
the scalability of the proposed scheme.

6.1.2 On Interactive Walkthrough

In this experiment, we evaluate the HDoV-tree’s perfor-
mance in interactive walkthrough applications. For a
continuously moving viewpoint, there is often some
spatiotemporal coherence to be exploited, i.e., two neigh-
boring cells often share a number of visible objects. The

search algorithm is extended to a “delta” search algorithm
that does not retrieve objects accessed in the previous
queries. We evaluated our walkthrough system, VISUAL,
that implements HDoV-tree, against the REVIEW system
[9]. Recall that REVIEW is a real-time walkthrough system
that indexes objects using R-tree and performs window
queries in accessing the objects during a walkthrough
session.

The main metrics that we use for comparing the
performance of interactive walkthrough are average frame
time and variance of frame time. We recorded a few
walkthrough sessions and played them back on the
interactive walkthrough application. Each session is played
back on both the VISUAL system and the REVIEW system.
None of the two systems caches the tree nodes in the
queries.

Fig. 10a shows the results of time spent on rendering
each frame between the spatial-query-based REVIEW
system and the VISUAL system. The size of the query box
in the REVIEW system is set to 400m. The visual quality of
the REVIEW system in this case is slightly worse, though
comparable to the VISUAL system. However, as shown in
the figure, the rendering frame time is very different. The
REVIEW system is not only slower than VISUAL, but also
“choppier,” as the delay (marked by the spikes in the
curves) caused by database queries are much longer. In
addition, REVIEW may retrieve objects that are within the
query box but not visible to the viewpoint, wasting the I/O
resources. On the contrary, the user of the VISUAL system
can experience smoother walkthrough.

Fig. 10b compares the results for VISUAL using two
different threshold values: � ¼ 0:001 and � ¼ 0:0003. As
shown, with � ¼ 0:001, the frame rate can be up to 20 percent
faster than that with � ¼ 0:0003. This is expected since a larger
� implies coarser representations are retrieved. However, as
shown in Fig. 11, the visual fidelity is not much compromised.
Comparing Figs. 11a and 11b, it is clear that REVIEW misses
some objects. These are objects that are more than 100m away
from the query box. Looking at Fig. 11c, it is clear that VISUAL
not only provides better visual fidelity than REVIEW, but the
loss in visual fidelity is not obvious. Comparing Figs. 11c and
11a, we note that a threshold size of 0.001 can provide good
visual fidelity.

To measure the visual fidelity quantitatively, we can
perform image segmentation on the images being rendered
and compare the number of objects with that in the ground
truth images, taking the visibility importance into con-

1364 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 11, NOVEMBER 2004

Fig. 9. Scalability of the visibility query (effect of data set size). (a) Average search time and (b) I/O cost.

TABLE 1
Variance of the Visibility Query

sideration as well. With such an approach, we define the
fidelity factor, Fid, as follows:

Fid ¼ 1P
i¼1 wi � ðNi

original �Ni
renderedÞ

;

where Ni
original and Ni

rendered denote the number of objects in

segment i of the ground truth image and the rendered image,

respectively, and wi is the weight to reflect the importance of

segment i to the user. Clearly,Fid 2 ð0;1Þ, and the larger the

Fid, the better the fidelity of the rendered image (compared to

the ground truth image). We have segmented the sample

scene in Fig. 11, and computed the Fid using a weight of 0.2

for the center of the image and 0.1 otherwise. As expected, the

VISUAL system (Fid ¼ 0:909) has a larger Fid value than the

REVIEW system (Fid ¼ 0:192).

We recorded a few walkthrough sessions with different
motion patterns. Session 1 is a normal walkthrough, session 2
turns left and right, and session 3 moves back and forward
frequently. These sessions are played back for both the
VISUAL system and the REVIEW system. Fig. 12a shows the
average search time in each query for different walkthrough
sessions. Fig. 12b shows the average number of I/O
operations in each walkthrough session. From these figures,
it is clear that the queries in the VISUAL walkthrough are
much faster than the spatial queries in the REVIEW system.

Table 2 shows the average frame time and the variance of
frame time at different threshold values of session 1.
Basically, as the threshold value increases, the average
frame time decreases, due to shorter search time and
coarser LoDs being rendered. The variance of the frame
time also decreases, therefore, the smoothness of the
walkthrough also improves as the threshold increases.

SHOU ET AL.: THE HIERARCHICAL DEGREE-OF-VISIBILITY TREE 1365

Fig. 10. Comparison of frame time. (a) VISUAL (� ¼ 0:001) versus REVIEW and (b) VISUAL (� ¼ 0:001) versus VISUAL (� ¼ 0:0003).

Fig. 11. Comparison of visual fidelity. (a) Original models, (b) REVIEW, and (c) VISUAL (� ¼ 0:001).

Fig. 12. Search performance in different walkthrough sessions. (a) Average query time of different sessions and (b) average number of I/Os of

different sessions.

The average frame time of the REVIEW system with
comparable visual fidelity (size of query boxes is 400m) is
much longer than that of VISUAL. So is the variance of
frame time. From this table, it is clear that the VISUAL-
based walkthrough performs smoother than the spatial
access method.

6.1.3 On Caching

In this experiment, we study the performance of the two
proposed replacement policies. We use the Least-Recently-
Used (LRU) policy as a reference. We note that the size of a
node of the HDoV-tree is relatively small compared to the
heavy-weighted object data. Therefore, the results show
only the cost to traverse the HDoV-tree, and excludes the
cost to retrieve the objects.

We first evaluated the cache performance for spatially
continuous viewing cells. This is the case of a walkthrough
environment, as the cells can be cascaded into a chain of the
cells along the walking path. Fig. 13 shows the cache hit
rates in 4,000 queries for the three cache replacement
policies with various threshold values (� ¼ 0.00001, 0.0001,
0.0005). These threshold values are small enough for the
traversal algorithm to access a large number of nodes in the
HDoV-tree. For large threshold values, too few nodes are

being accessed and the three schemes perform equally well.
We observe that as the cache size increases, the hit rates of
all the three methods increase too. When the cache size is
relatively small, the hit rate of the LRU algorithm is almost
always equal to zero for different threshold values. This
phenomenon is expected because if the cache size is smaller
than the set of nodes to be accessed in a query, the nodes
being buffered in memory are replaced before they can be
reused in the next query (sequential flooding). In this case,
the LRU cache replacement policy is very wasteful in
buffering the nodes, as the cache cannot save disk accesses
at all! The DoV and DT replacement policies perform better
than the LRU under such circumstances. Also, we note that
the curves of the DoV and DT replacement policies are very
close to each other when the cache size is small.

When the cache size gets larger, the hit rate of the LRU
increases dramatically in all the figures, and is very close to
100 percent. The DT method (drawn in dashed lines in the
figures) increases slightly faster than the DoV method, and
has almost the same hit rate when cache size is large.
Therefore, the DT method outperforms the DoV method in
hit rate, and is comparable with the LRU scheme when the
cache size is relatively large. Hence, the DT cache replacement
policy is the best scheme among the three in terms of hit rate.
Note the maximum cache size used in our experiments is
muchsmaller than the total sizeof the tree nodes.Forexample,
when� ¼ 0:00001, themaximumcache size is400pages,while
the view-invariant part of the tree nodes occupies more than
7,500 pages.

We also studied how the replacement schemes perform
for visibility queries. Fig. 14 shows the results of the cache
hit rates for 4,000 random visibility queries in the viewing
regions. The threshold values are the same as those that are
used in the previous experiment.

As expected, the hit rates of the random queries are
slightly less than those in the previous experiment. But,
they display similar patterns with regard to the cache size.
The DT cache replacement policy also performs slightly
better than the DoV policy. Like the previous experiment,
the LRU policy also performs at either of its two

1366 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 11, NOVEMBER 2004

TABLE 2
Results of Frame Time

Fig. 13. Cache hit rate for Continuous Queries. (a) � ¼ 0:0001, (b) � ¼ 0:0001, and (c) � ¼ 0:0005.

Fig. 14. Cache hit rate for Random Queries. (a) � ¼ 0:0001, (b) � ¼ 0:0001, and (c) � ¼ 0:0005.

extremes—being 0 or very close to 100 percent. When the
cache size is relatively large, the curves of the DT policy is
very close to those of the LRU scheme.

6.2 Experiment 2: On Memory-Based HDoV-tree

In this section, we evaluate the performance of the HDoV-tree
when the data sets fit in the memory. The data set used to
evaluate the memory-based HDoV-tree is very similar to
those used in the disk-based experiments, and contains
4 million polygons. This allows us to see how HDoV-tree will
perform on existing virtual environments that typically
employ simpler models that fit in the memory. We evaluate
the memory-based HDoV-tree using the average frame time
and number of polygons being rendered. For comparison, we
use the naive (cell, list of objects) scheme (denoted CONV).
Our CONV scheme uses the same spatial subdivision as the
HDoV structure does. We also denote the threshold-based
search scheme running with a DoV threshold of � as V SCð�Þ,
and the polygon budget rendering scheme running with a
polygon budget of n as PBðnÞ.

We first compare V SCð�Þ with different � values to
CONV . We run the same walkthrough sessions as that used
in the disk-based experiments iteratively under a few
� values. The average frame time and number of polygons
rendered, as well as the average number of nodes accessed
in each traversal are listed in Table 3. As the table shows,
the average frame time of VSC is much smaller than that of
CONV. The number of polygons rendered and nodes
accessed are also much smaller compared to CONV. As �
increases, the frame time becomes shorter, and vice versa.
This is consistent with our goal in designing the VSC
algorithm.

SHOU ET AL.: THE HIERARCHICAL DEGREE-OF-VISIBILITY TREE 1367

TABLE 3
Runtime Performance of the Same Walkthrough Path

by Different DoV Thresholds

Fig. 15. Number of polygons rendered in each frame.

Fig. 16. Frame time of the same walkthrough (VSC mode versus CONV mode).

Fig. 17. Snapshots of VSC and CONV schemes. (a) Bird’s-eye view (VSC 0.001) and (b) bird’s-eye view (CONV).

Fig. 15 shows the number of polygons rendered in each
frame. The VSC scheme greatly reduces the number of
polygons being rendered. This is because the use of coarse
internal LoDs reduces the number of nodes accessed. Fig. 16
shows the rendering time of each frame for various modes.
The rendering time of the VSC mode is much smaller than
that of the CONV. And, the curves in rendering time
display patterns similar to Fig. 15.

Fig. 17 shows the bird’s eye view of a snapshot of the
walkthrough. Note the very low details of the internal
nodes in Fig. 17a. Although Fig. 17a appears to contain
more objects than Fig. 17b, there are actually fewer
geometries. We also observe that when the threshold
becomes larger, the visual quality will degrade, as LoDs
at higher level nodes will be retrieved. A threshold below
0.01 can achieve fairly good visual quality while keeping

high frame rates. For VSC(0.001), the system can gain a
speedup of 3.5 times as compared to the CONV.

For the PB rendering mode, the polygon budget is a loose
upper-bound for the total number of polygons to be sent to
the graphics engine. Different upper bounds can change the
LoDs being used for each node. Our polygon budget
rendering algorithm sets the LoDs for active nodes based on
the DoV values.

Fig. 18 shows the number of polygons rendered under
various polygon budgets. As shown, the number of
polygons being rendered is well under the control of the
respective budget number for most of the frames. This
feature is very useful for rendering complex scenes at high
frame rate. As a comparison, the CONV mode can render
unlimited number of polygons in a frame. Therefore, by
changing the polygon budget, the PB mode provides a
method to control the rendering performance while produ-
cing good visual quality. In Fig. 18, the number of polygons
being rendered exceeds the budget somewhere around
frame number 160. This is because the coarsest LoD of a
complex model has occupied all the remaining budget. As
the upper-bound is loose, the PB algorithm makes a few
attempts to restrict the total number of polygons during the
traversal. If all the attempts fail, it will terminate the
traversal and render the current node. Our experiment also
showed that when the budget is very large, the number of
polygons rendered in each frame is very close to the CONV
system. This confirms our prediction that if the budget
becomes infinity, the system will degrade to conventional
rendering scheme.

Fig. 19 shows the screen shots at different polygon
budgets. Note the difference in visually unimportant objects
among the pictures (like the bunny and buildings around
the screen center). For the PB 20000 walkthrough, the

1368 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 11, NOVEMBER 2004

Fig. 18. Number of polygons rendered in Polygon Budget Mode.

Fig. 19. Snapshots of PB modes. Note the low detail of the building on the left in (a), the missing bunny and the missing building in the center of the

screen in (a) and (b). (a) PB 20000, (b) PB 40000, and (c) PB 80000.

TABLE 4
Comparison of VSC and PB Algorithms

system obtains a speedup of 2.7 times as compared to the
CONV walkthrough.

To summarize, the VSC algorithm and the PB algorithm
use different parameters to control the recursive traversal
paths. The former uses a screen-projection related DoV
threshold to control the maximum allowable screen-pro-
jected area that a coarse LoD can occupy. The latter uses an
integer value, the polygon budget, to restrict the number of
polygons that can be rendered. These two schemes can be
chosen depending on the specific requirements to the
application and the user’s preferences. Table 4 compares
the two approaches at a high level.

7 CONCLUSION

In this paper, we have addressed the problem of optimizing
performance and visual fidelity in visualization systems.
We have proposed a novel structure called HDoV-tree that
can be tuned to provide excellent performance and visual
fidelity. The HDoV-tree is essentially an R-tree that contains
visibility data and LoDs. We also examined two novel
search algorithms and proposed three storage structures for
the HDoV-tree. We have discussed two caching replace-
ment policies that are based on the DoV values. We have
implemented the HDoV tree in a prototype walkthrough
system called VISUAL, and conducted extensive experi-
ments to evaluate its performance. Our results show that
HDoV-tree can provide excellent visual fidelity efficiently.

REFERENCES

[1] P.K. Agarwal, S. Har-Peled, and Y. Wang, “Occlusion Culling for
Fast Walkthrough in Urban Areas,” Proc. Eurographics 2001 (short
presentation), Sept. 2001.

[2] D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erikson,
K. Hoff, and T. Hudson, “MMR: An Interactive Massive Model
Rendering System Using Geometric and Image-Based Accelera-
tion,” Proc. ACM Symp. Interactive 3D Graphics, pp. 199-206, 1999.

[3] J. Bittner, V. Havran, and P. Slavı́k, “Hierarchical Visibility
Culling with Occlusion Trees,” Proc. Computer Graphics Int’l Conf.
(CGI ’98), pp. 207-219, June 1998.

[4] T.A. Funkhouser, C.H. Sequin, and S.J. Teller, “Management of
Large Amounts of Data in Interactive Building Walkthroughs,”
Proc ACM SIGGRAPH Symp. Interactive 3D Graphics, pp. 11-20,
Mar. 1992.

[5] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. 1984 ACM SIGMOD Int’l Conf. Management of
Data, pp. 47-57, 1984.

[6] M. Kofler, M. Gervautz, and M. Gruber, “R-Trees for Organizing
and Visualizing 3D GIS Databases,” J. Visualization and Computer
Animation, vol. 11, pp. 129-143, 2000.

[7] V. Koltun, Y. Chrysanthou, and D. Cohen-Or, “Hardware Assisted
Culling Using a Dual Ray Space,” Proc. Eurographics Rendering
Workshop, pp. 204-213, 2001.

[8] C. Saona-Vázquez, I. Navazo, and P. Brunet, “The Visibility
Octree: A Data Structure for 3D Navigation,” Computers &
Graphics, vol. 23, pp. 635-643, 1999.

[9] L. Shou, C. Chionh, Y. Ruan, Z. Huang, and K.L. Tan, “Walking
through a Very Large Virtual Environment in Real-Time,” Proc.
27th Int’l Conf. Very Large Data Bases, pp. 401-410, 2001.

[10] L. Shou, Z. Huang, and K.L. Tan, “Hdov-Tree: The Structure, the
Storage, the Speed,” Proc. 19th Int’l Conf. Data Eng., 2003.

[11] L. Shou, “Querying Large Virtual Models for Interactive Walk-
through,” PhD thesis, Nat’l Univ. Singapore, 2002.

[12] S.J. Teller and C.H. Sequin, “Visibility Preprocessing for Inter-
active Walkthroughs,” Computer Graphics (Proc. SIGGRAPH ’91),
vol. 25, no. 4, pp. 61-69, 1991.

Lidan Shou received the PhD degree from the
School of Computing, National University of
Singapore, in 2002. He is now working as a
senior software architect at the Handsome
Electronics Corporation, China. His research
interests cover spatial database, computer
graphics, virtual reality, and real-time distributed
systems.

Zhiyong Huang received the BEng and MEng
degrees in computer science and engineering
from Tsinghua University of Beijing, China, in
1986 and 1988, respectively. He received the
PhD degree in computer science from EPFL,
Switzerland, in 1997. He is currently an assistant
professor in the Department of Computer
Science, National University of Singapore. His
research interests include visualization, compu-
ter graphics, and multimedia databases. He is a

member of the IEEE and ACM SIGGRAPH Singapore Chapter.

Kian-Lee Tan received the BSc (Hons) and PhD
degrees in computer science from the National
University of Singapore, in 1989 and 1994,
respectively. He is currently an associate pro-
fessor in the Department of Computer Science,
National University of Singapore. His major
research interests include query processing
and optimization, database security, and data-
base performance. He has published more than
100 conference/journal papers in international

conferences and journals. He has also coauthored three books. He is a
member of the ACM and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SHOU ET AL.: THE HIERARCHICAL DEGREE-OF-VISIBILITY TREE 1369

