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Abstract

Users expect high and constant rendering
frame rates when they interactively navigate
in a Virtual Environment (VE). However,
when the VE is too large to �t into the main
memory, the frame rates can become unac-
ceptable. In this paper, we combine walk-
through semantics and database techniques,
such as indexing, caching and prefetching, to
improve the performance of walkthrough of a
very large VE. We implemented a prototype
walkthrough system called REVIEW (REal-
time VIrtual Environment Walkthrough) and
evaluated its performance on a 1 GB syn-
thetic data-set generated to simulate a large
cityscape. Our results show that the pro-
posed techniques are e�ective for generating
constant frame rate and improving the visual
e�ects.

1 Introduction

Many of today's applications exploit Virtual Reality
(VR) to meet users' information needs. For exam-
ple, in the construction sector, a Virtual Environment
(VE) of the to-be-constructed building may be de-
signed to allow interested buyers to \view" the apart-
ments (in order for them to make better choices and
decisions). As another example, a virtual museum can
be built to attract more electronic visitors to \tour"
the place. For such VE to be accepted by users, a VR
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system that supports interactive walkthrough must
provide high and constant rendering frame rates [3].

Most of the earlier work has assumed that the VE
can �t into the main memory. However, this assump-
tion is no longer reasonable. First, a realistic VE typ-
ically consists of thousands of virtual objects, each
of which is represented by hundreds of polygons, and
may take up thousands of megabytes of storage space.
Second, as users' expectation increases, we can expect
more complicated models that capture �ne details of
the actual environment as closely as possible to be de-
signed. This will lead to an explosion in the size of
the model, even if it is a simple environment. Clearly,
when the VE is too large to �t into the main memory, it
becomes crucial to manage the main memory space ef-
fectively, otherwise, the frame rates can become unac-
ceptable. Similarly, for the memory-resident objects,
we need to restrict the amount of objects fed into the
graphics engine to guarantee good performance.

In this paper, we present our approach to realize
quality visual e�ects (i.e., constant and high frame
rates) in the interactive walkthrough of a very large
VE. In our solution, there are two distinct data rep-
resentations of the VE. In the secondary storage, data
are organized based on their spatial location in an R-
tree index. In the main memory, loaded data are trans-
formed into a scene graph that are fed into the graphics
engine. During a walkthrough session, each user view-
point is associated with two convex cells. The �rst
cell, called frustum cell, bounds the view frustum and
is used to control the amount of objects that should
be passed to the graphics engine for rendering. The
second cell, called disk cell, is used to determine the
objects that should be loaded into memory. For sim-
plicity, both cell types are axis-aligned boxes. The
disk cell contains the frustum cell and is larger than
it. Whenever the user moves such that its frustum cell
falls out of the corresponding disk cell, objects belong-
ing to a new disk cell will have to be fetched. Clearly,
two consecutive disk cells often have signi�cant over-
laps. To minimize I/O cost, we employ three optimiza-



tion strategies. First, we propose a complement search
algorithm that retrieves only the non-overlapped re-
gions. Second, we exploit the access patterns of a
walkthrough to design a novel cache replacement pol-
icy for the R-tree nodes, namely distance-priority-LRU
policy. Essentially, the policy keeps those nodes that
are close to the current viewpoint in memory, while re-
placing those nodes whose bounding boxes are distant
from the current viewpoint. Finally, we also deployed
a prefetching technique to predict the position of the
view cell that the user will be in.

For the memory-resident object data, we have also
designed a novel view frustum search algorithm. The
algorithm �lters out data objects that do not overlap
the current view frustum before the rendering phase.
The scheme also guarantees that only potentially vis-
ible objects are sent to the graphics engine.

We have implemented a prototype walkthrough sys-
tem called REVIEW (REal-time VIrtual Environment
Walkthrough) [9]. We have also evaluated its perfor-
mance on a 1 GB synthetic data-set generated to simu-
late a large cityscape. Our extensive study shows that
the proposed techniques are e�ective, and REVIEW
can provide constant frame rate and quality visual ef-
fects.

There are several related research works in the liter-
ature. In [4], techniques for managing large amounts of
data during an interactive walkthrough of an architec-
tural model are proposed. However, for a very large en-
vironment whose objects are sparsely distributed, the
organization of data discussed in the paper is costly
and will have little advantage.

In [6], a GIS system that allows users to \y" over
a large area was reported. A Level-Of-Detail-R-tree
and progressive rendering techniques were deployed to
speed up the interactive ying. To access objects over-
lapping the view frustum, the system needs to issue
several queries to the database. In our system, how-
ever, the problem is solved with complement search
and view frustum search algorithms.

Chim et al.[2] proposed a multi-resolution caching
mechanism and investigated its e�ectiveness in sup-
porting Internet based VR. Unfortunately, these
schemes are tested in a simulation, instead of a real
walkthrough system. In this paper, we will present
prefetching results based on a real system and real
user walkthrough sessions.

In [7], a desktop virtual reality interface to a ge-
ographic information system was reported. Only re-
sults of network transfer and database accesses were
reported. No results of visual e�ect and rendering were
included.

The rest of this paper is organized as follows. In
Section 2, we shall present an overview of the system
architecture, and discuss the issues to be addressed.
Section 3 present the three optimization techniques
to optimize I/O accesses. In Section 4, we present

the view frustum search algorithm to optimize the
graphics engine performance. Experimental results ob-
tained from user walkthrough sessions in a desktop
walkthrough system, are presented in Section 5, and
�nally, we conclude in Section 6 with directions for
future work.

2 System Architecture and Issues

In traditional database applications, data stored in
secondary storage can be manipulated directly once
they are loaded into memory. This is not the case for
a walkthrough system for a large VE. Data in a walk-
through system for a large VE have two di�erent rep-
resentations - one for external storage, and the other
for internal (main memory) manipulation. This is nec-
essary in order to optimize performance. On one hand,
virtual objects are organized in the secondary storage
based on their spatial locality so that objects that are
near to one another can be loaded into memory with
minimal I/O cost. On the other hand, existing graph-
ics engine are optimized to manipulate virtual objects
in memory in certain format (e.g., scene graph in our
case). These formats are typically not based on spatial
locality. The overhead incurred is the transformation
between the two representations. Traditionally, spatial
objects that overlap the view frustum can be retrieved
from the disk and be sent to the graphics pipeline. It
is, however, not eÆcient to retrieve all objects over-
lapping the view frustum from disk in every rendering
frame. Therefore, there are three potential bottlenecks
in the system:

1. I/O bottleneck: loading the data (index and vir-
tual objects) into memory.

2. CPU bottleneck: transforming the data from
disk-based format to in-memory format.

3. GPU (Graphics Processing Unit) bottleneck:
loading the graphics pipeline with data to be ren-
dered and viewed.

In this paper, we focus on the �rst and last problems.
Our current solution to the second problem is straight-
forward: we only transform those disk-based data that
are most likely to be accessed.

Figure 1 shows an overview architecture of the pro-
posed walkthrough system. In our system, virtual ob-
jects are stored in �les, and an R-tree index [5] is used
to organize the virtual objects based on their spatial
locality. In an R-tree index, the leaf nodes contain en-
tries of the form (MBR; ptr) where MBR is the mini-
mum bounding box of the virtual object being indexed,
and ptr is a pointer to the object being indexed. Note
that ptr is an address when the node and objects are
in memory, or a �le name when the node and objects
are stored in a �le or on disk. The non-leaf nodes con-
tain entries of the form (MBR; ptr) where MBR is the
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Figure 1: Architecture of proposed system.

bounding box of all the bounding boxes of the entries
of the lower level nodes and ptr is the pointer to the
lower level node in the R-tree. In our implementation,
we have also optimized the R-tree using the linear node
splitting algorithm proposed in [1].

The data retrieved from the secondary storage are
transformed into a scene graph [8] (using the Trans-
formation Engine). The scene graph is a hierarchical
structure that captures the virtual objects and their
features such as locality, colors, textures and lightings.
To better manage the main memory, it is also orga-
nized into two distinct pools - one for manipulating
the data loaded from external storage, and the other
for the scene graph. The scene graph is fed into the
graphics engine for display.

Our basic strategy to the �rst and last problems
is to associate the user's viewpoint with two di�erent
cells. The �rst cell, frustum cell, is a suÆciently small
one that contains the view frustum. It serves as a
search region to determine the in-memory objects that
should be sent to the graphics engine. In this way,
irrelevant data in the memory can be pruned away
and only the visible data are passed to the graphics
engine. This is realized by the View Frustum Search
Engine.

The second cell, called disk cell, is larger than
and contains the frustum cell. It is used to retrieve
data from the secondary storage. This approach has
two main advantages. First, in an interactive walk-
through process, query frustums in consecutive ren-
dering frames usually have signi�cant overlaps, as the
user's viewpoint moves smoothly. Motions of the user
are usually combinations of translations and rotations.
By using a cell whose size is larger than the view frus-
tum, we can store the previous results in memory and
retrieve data merely for non-overlapped areas in the
next rendering frames. Second, if the frustums of the
next frames are totally bounded in the original box,
there is no need to access data from secondary stor-
age. This can also lead to higher frame rate. The disk
cell is used by the Retrieval Engine when data from
secondary storage are accessed.

To further improve performance, several other com-
ponents have also been incorporated. We have a
Prefetching Engine that predicts the future positions
of the user viewpoint, and prefetches from the sec-
ondary storage those virtual objects. We have also de-
signed a Bu�er Manager that manages the main mem-
ory allocated to the R-tree index.

Designing e�ective and eÆcient methods for the
various components is the main research focus of this
paper. We shall look at the novel algorithms that we
have proposed for the various components in the rest
of this paper.

3 Optimizing I/O Performance

In this section, we shall examine several techniques
that we have deployed to overcome the I/O bottle-
neck, namely an eÆcient search algorithm, an e�ec-
tive replacement policy and an intelligent prefetching
scheme.

3.1 Complement Search Algorithm

As mentioned, a user's viewpoint is associated with a
disk cell, Whenever the user moves out of its current
disk cell, objects belonging to a new cell will have to
be accessed. Figure 2 illustrates an example. Here, the
user's frustum cell is initially within cell C1. When the
user's frustum cell moves out of C1, data belonging
to cell C2 have to be loaded. Intuitively, it doesn't
make sense to load all objects belonging to cell C2 into
memory, since there is a signi�cant amount of overlap
between cell C1 and C2. In fact, ideally, we should only
load objects in the shaded region of C2. Similarly, if
C3 becomes the current cell, then only objects in the
shaded region of C3 need to be accessed.

Unfortunately, the non-overlapped areas of cells are
usually concave geometries, so it is diÆcult to describe
such a region in each retrieval operation. It is also dif-
�cult to search for objects overlapping such a concave
area in R-tree as the original search algorithm employs
only box-shaped regions.
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Figure 2: An example to motivate complement search.

In this section, we shall propose a novel search
method for R-tree that retrieves only objects in the
non-overlapped regions. We refer to the proposed
search algorithm as the CSearch(Complement Search)
algorithm. Essentially, the algorithm requires us to
maintain a history of cells H = fC1; C2; : : : ; Cig. Given
that we want to load objects belonging to a new cell C,
the problem becomes one of retrieving objects whose
bounding boxes overlap C but do not overlap any of
the cells in H. Referring to Figure 2 again, if C3 is the
current cell whose objects we want to retrieve, then
objects that overlap C3 but not C1 and C2 are the
ones that we are interested in.

Figure 4 gives the algorithmic description for the
complement search. One of the main operations is the
COverlap (Complement Overlap) operation between
two regions. We de�ne the complement overlap be-
tween these two regions as follows: given a cell A, the
space not contained in A is the complement of A, which
is denoted as �A. If a bounding box BB (of a virtual
object or a group of objects) overlaps (or intersects) �A,
then we say that BB complement overlaps A. In Fig-
ure 3, the bounding boxes of (a) and (b) complement
overlap A, but that of (c) does not. In Figure 4, we
use T to denote an R-tree node, and use E to denote
an entry of the R-tree node.

AComplement of A

(a) BB complement overlaps A (b) BB complement overlaps A (c) BB does not complement overlap A

BB

Figure 3: Complement overlap relations.

The algorithm CSearch is conservative when access-
ing non-leaf nodes to guarantee that no objects in the
new cell would potentially be lost. As the pseudo-code
shows, it is obvious that complement-overlap checking
will only happen when the bounding box overlaps the
current cell C, thus CSearch will not access more R-
tree nodes than the original algorithm. The algorithm
will terminate the recursive search at the R-tree nodes
with bounding boxes which are completely contained
in all the i + 1 cells (i history cells + current cell).
When the size of the cell is large enough as compared

Algorithm CSearch (T, C, H)

if T is not a leaf node /* search subtrees */
for each entry E of node T do
if (BB(E) Overlaps C)
if BB(E) COverlaps all of C1; : : : ; Ci in H
Invoke CSearch on the sub-tree
associated with entry E

else /* search leaf node */
for each entry E of node T do
if (BB(E) Overlaps C)
if BB(E) Overlaps none of C1; : : : ; Ci in H
E is a qualifying record

Figure 4: The CSearch algorithm.

to the average size of scene objects, and the overlap-
ping between two cells of consecutive query operations
is also large, CSearch can stop searching at high level
nodes in the R-tree, saving a large percentage of disk
accesses. At the same time, CSearch retrieves all data
objects inside the current cell in one traversal of the
R-tree, without accessing those that already have been
retrieved in the past frames, minimizing the result set
of objects that have not been accessed.

The algorithm of complement-overlap being applied
in the CSearch algorithm is simple. According to its
de�nition, complement-overlap equals to \NOT com-
pletely contained in". If two points P1 and P2 are
inside a cell, all points on the line segment between
P1 and P2 are also inside the cell. As the boxes and
cells are convex, if all vertices of a box are contained
in a cell, all the points in the box are also in it. If
there exists one vertex outside the cell, COverlap is
true, otherwise, it is false.

If we denote the cells that a user accesses as
C1; C2; C3; : : :, based on the CSearch algorithm, the
retrieval engine will issue the following queries to the
database (R-tree): C1, C2 � C1, C3 � (C1 [ C2),
C4�(C3[C2[C1), : : :, Ci+1�(Ci[: : :[C2[C1) and so
on. As a comparison, a traditional method would issue
queries C1; C2; C3, : : :, to the database. For a comple-
ment search like Ci+1 � (Ci [ : : : [ C2 [ C1), we can
remove any cells from fC1; C2; : : : ; Cig, if the bound-
ing boxes of all their objects do not overlap Ci+1. Such
cells have no e�ect on the query result because objects
overlapping them cannot overlap Ci+1. Thus, before
sending the query to the database, a �ltering opera-
tion can be conducted on the cell list, so those cells
not interfering the current cell do not need to be con-
sidered in the CSearch algorithm. In our prototype
walkthrough system, the number of cells in the his-
tory to be maintained is fewer than twenty in most
cases. With such short cell lists, the CPU cost on the
extra COverlap and Overlap testing is negligible.

As a user \steps" out of a cell boundary, a com-
plement search returns a new result set. The comple-



ment search algorithm guarantees that the result sets
will have no overlap. However, as the object bu�er
in the main memory gets �lled up, old objects should
be freed to make space for objects of new cells. Once
the bu�er is full, we need to remove the previous re-
sults and to keep only objects of the current cell in the
bu�er. That is, as shown in Figure 5, only objects in
Ci need to be retained in the bu�er. Unfortunately,
since C1; C2; : : : ; Ci�1 may overlap with Ci, to remove
the results of these cells may also remove objects in
the overlapped regions (shown as the shaded area in
the �gure). A direct method to deal with this prob-
lem is to delete from the bu�er the objects that do not
overlap the latest cell, while maintaining the objects
overlapping it. As shown in Figure 5, objects overlap-
ping the latest cell Ci are kept in memory. After this
operation, the object bu�er contains only the objects
of cell Ci, of which the user is currently walking out.

user path

cross point

C1

C2

C3

Ci

Figure 5: Objects to be kept in memory.

3.2 Distance-priority-based Replacement Pol-

icy

Because of the limited memory size (compared to the
large VE), index nodes that are cached in the memory
may have to be replaced. We propose a new priority-
based replacement policy that is based on walkthrough
semantics.

In the R-tree, since a search process starts from the
root node (at level 0), it is obviously bene�cial to keep
the root node in memory all the time. As to nodes on
lower levels, we assign an integer priority number P to
those being cached, according to the following rules:

� Lower-level nodes have larger P values

� Nodes at the same level in the R-tree have same
P values.

We note that a smaller P value means higher priority.
Our cache replacement policy is based on the

block-distance between two axis-aligned boxes, A =
f[Xa

min; X
a
max]; [Y

a
min; Y

a
max]; [Z

a
min; Z

a
max]g and B =

f[Xb
min; X

b
max]; [Y

b
min; Y

b
max]; [Z

b
min; Z

b
max]g, which is

de�ned as follows:

DIST(A, B) =

�
0; if A overlaps B

maxfdistx; disty; distzg; otherwise

where distx = minfjpa � pbj; pa 2 [Xa
min; X

a
max]; pb 2

[Xb
min; X

b
max]g, disty and distz are de�ned similarly.

It is well known that the e�ectiveness of a cache
replacement policy depends largely on the access pat-
tern. In a walkthrough application, a user normally
walks across the whole scene and turns left, right or
backward sometimes. Since the R-tree index is orga-
nized to represent the spatial subdivision structure,
when a user walks out of a high-level bounding box at
some time and is already quite distant from it, he(she)
is not likely to access it or its descendants in the near
future. Based on this observation, the replacement can
be made based on the following information:

1. The QN value of each cache entry represents how
long the entry resides in the cache. After each
search process, increment by 1 the value QN of
each entry in the cache, which is available for re-
placement.

2. If there is a free entry in the cache, load the re-
quired node into the free entry, set its priority
value to be the priority number of its level, P and
set its entry QN value to 0.

3. If there is no free entry in the cache, �nd an
entry with the largest priority value. If multi-
ple entries of the same largest value exist, choose
the entry which is least recently used and whose
node's bounding box has greatest block-distance
away from the current query cell. Replace it with
the required node, then set this node's QN value
to 0 and priority value to be the priority number
of its level, P.

According to the above points, we de�ne a function

f = f(P;QN;DIST (Q;BB));

where P is the initial priority, QN is an integer number
representing how long the entry resides in the cache,
and DIST(Q, BB) is the block-distance of the current
query box (or cell) Q and the bounding box BB of
the node. The f value is computed for each entry in
the cache considered to be replaced. The function is
de�ned in such a way that an entry with the highest
f value will be replaced. There are many ways to
de�ne the function f to meet the above conditions. For
simplicity in our implementation, we use the following
de�nition:

f = � � pp+ � � pd+  � pl;

where pp, pd and pl are normalized values of priority
p, DIST(Q, BB), and QN respectively. �; �, and  are
weight factors and �+ � +  = 1.

This policy, namely distance-priority-LRU policy,
guarantees that:

1. High-level nodes have a higher tendency to remain
in the cache.



2. Nodes which have not been accessed for a long
time or distant from the current viewpoint will
have a higher preference to be replaced;1

3. For nodes on the same level, the more recent a
node is accessed, the more likely it is to reside in
memory.

Considering the walkthrough of a large virtual envi-
ronment, this distance-priority-LRU policy is expected
to be superior to the traditional LRU scheme since a
node that is currently distant from the user is not likely
to be accessed in the near future. On the contrary,
if a user takes a circular path and moves near to an
area which was accessed long time ago, the distance-
priority-LRU algorithm will detect that the node is
near to the user and should be kept in the cache. How-
ever, under the LRU policy, this node will be assigned
a low priority, since it has not been accessed for a long
time, and may be removed from the cache.

3.3 Prefetching Algorithm

When approaching the boundary of a cell, the user is
likely to move out of the cell soon. So before the user
goes out of the cell, we need to prefetch data of another
cell using a di�erent thread. As shown in Figure 6, Ci

is the current cell. C2 is the prefetched cell for C1

and C3 is the prefetched cell for C2. As C1 and C2

have large overlap, complement search algorithm can
be applied during the prefetching of C2. C3 can also
be prefetched complementing C1 and C2.

user path

C1

C2

C3

cross point

Ci

view frustum

point F

Figure 6: Prefetching objects.

The main challenge with prefetching is how to pre-
dict the position of the next cell, i.e. cell Ci+1, for Ci.
As the user interactively navigates in the virtual en-
vironment, turning left and right frequently, it is very
diÆcult, or even impossible to know where the user is
going to visit in the next moment. However, by obser-
vation, the user will more likely move in the direction
of the current view. So it is reasonable to set the cen-
tral point, F (x; y; z), of the far clip plane of the view
frustum as the center of the new cell. An inertial term
I = k � velocity is added to F to produce the �nal
result:

F 0 = F + I = F + k � velocity

1We note that this is in contrast with existing schemes that
typically give higher level nodes higher priority.

where velocity is the current velocity vector of the user
and k is an adjusting factor. If a user moves fast in
the direction of velocity, the predicted center is fur-
ther. Otherwise, if the velocity is slow, it is more
likely that the user may turn to other directions, so
the prediction should be more conservative and thus
nearer to the viewpoint. If the user turns away from
the predicted direction, the view frustum should still
be within the predicted cell. However, if the user's di-
rection is not correctly predicted, the user will move
out of the predicted cell in a short time. As a conse-
quence, the frequency of queries increases under such
circumstance. Fortunately, as the new cell has signif-
icant overlap with the current cell, with our proposed
CSearch algorithm, only a small number of objects
need to be retrieved. If the user walks back into the
old cells again, it is not necessary to issue a new query.

4 Optimizing GPU Performance

Object data returned from the disk cell are stored in an
object bu�er in the main memory. However, it is not
practical to send all these data to the GPU (Graph-
ics Processing Unit) or graphics pipeline, as the ob-
ject bu�er may contain a large number of objects that
are not visible in the current frame. Culling the ob-
ject bu�er using the view frustum (see Figure 7) will
improve the performance of the GPU because fewer
objects will be transmitted and rendered.

Viewpoint

Front Plane

Back Plane

Window

View Frustum

Figure 7: Culling the object bu�er using the view frus-
tum.

The culling process can take the advantage of using
the bounding boxes of the cells and the objects. If the
current view frustum does not overlap the bounding
box of the cell, the objects in this cell will not overlap
the frustum.

Let H be a frustum cell that bounds the view frus-
tum. Essentially, what we want is to send only objects
in H to the graphics pipeline. To determine whether a
3-dimensional box R overlaps H, we need to consider
the four possibilities shown below:

1. R \H = �

2. R � H



3. H � R

4. R \H 6= �;R 6� H;H 6� R

We need to check face-face intersection between H
and R. Since each face of H splits the whole 3D space
into two half spaces, we can �rst check whether all
vertices of R (H) are in the same positive half space

where the normal of the face points to. If they are, as
shown in Figure 8, R (H) does not intersect any face
of H (R). When the size of each object is much smaller
compared to the size of H, most bounding boxes in the
lower level of R-tree do not overlap H. So the algorithm
can be accelerated.

If all vertices of R (H) are not in any of the posi-
tive half spaces, then if there is one vertex of R (H)
inside H (R), corresponding to case (2) or (3), the two
volumes overlap. Otherwise, we need to check inter-
section face by face. If one intersection is found, it
means that the two overlap (case 4). Otherwise, there
is no overlapping (case 1).

R

H

plane f

vertices of R

N

All vertices are on the positive side of

the plane. N is the normal vector of f.

Figure 8: Intersection checking with vertices of R.

The culling algorithm is shown in Figure 9. The
input of the algorithm is as the following: A frustum
cell H having s polygons, denoted as p1, p2, : : :, ps, and
t vertices, denoted as v1, v2, : : :, vt; an n-dimensional
rectangle R, with vertices r1, r2,: : :, r8, and faces f1,
f2, : : :, f6.

This algorithm is applied repeatedly to check if the
bounding boxes of the objects overlap the frustum
cell. For object data stored in memory, we �rst check
whether the frustum cell overlaps the cell-level bound-
ing boxes. If it is true, the search process will go on
with all objects in the result set corresponding to that
cell. Otherwise, the whole cell does not need to be
rendered. As a result, a large portion of objects in
memory can be �ltered, saving a lot of burden on the
graphics engine.

5 Experimental Results

We implemented a prototype system called REVIEW
(Real-time VIrtual Environment Walkthrough) that

Algorithm ViewCulling

for (each face pi of H)
if (all vertices of R are on the positive side of pi)

Return FALSE
if (any vertices of R is inside H)

Return TRUE;
else if (any vertices of H is inside R)

Return TRUE;
else

for (each face pi of H)
if (pi intersects one of f1, f2, : : :, f6)

Return TRUE
return FALSE

Figure 9: The view culling algorithm.

employs the proposed techniques. The system was
built upon a Silicon Graphics Octane workstation run-
ning IRIX 6.5, with 400 megabytes of memory. Since
the memory size is large, we set an upper limit of mem-
ory size to 20MB for the system.

We generated a synthetic data-set to simulate a
large cityscape. There are about 900,000 virtual
objects/boxes, requiring about 200 MB of hard-disk
space (inclusive of R-tree index), and more than 1 GB
of memory space if fully loaded into main memory (in
scene graph format). The distance between objects is
10 to 30 meters long, which is quite similar to realistic
cases of a city.

The parameters of the view frustum include the fol-
lowing. The eyesight of a user, or the depth of the view
frustum, is set to be one kilometer long, consistent
with the real walkthrough. The horizontal and verti-
cal �eld-of-views are both set to 60 degrees, which is
a standard value in graphics applications.

To test the e�ectiveness of various techniques de-
picted in this paper, we ran experiments under di�er-
ent system con�gurations. For clarity of the descrip-
tion, we will use the following abbreviations:

Optimal A full-edged REVIEW system con�gura-
tion, in which complement search, index caching,
and prefetching techniques are applied.

NC A REVIEW system con�guration without index
caching, in which only complement search and
prefetching are applied.

NP A REVIEW system con�guration without
prefetching, in which only complement search and
index caching are applied.

As reference, we also implemented a version that
makes use of traditional R-tree query search, i.e., the
search is based on box-shaped queries without any op-
timization. We shall refer to this scheme as BOX.

In REVIEW, the disk retrieval cell is larger than
the frustum cell. We represent this by the concept of



a scale factor (SF). If the frustum cell size is S, then
disk cell is set to SF�S.

The experiments were conducted in two groups.
The �rst group of experiments allows us to �ne-tune
our con�gurations to �nd the optimal prefetch factor,
cache size and cache policy. The second group illus-
trates the performance improvements of REVIEW to
the traditional system. The systems are tested with
the following default settings, unless stated otherwise:

1. The default prefetching factor k, except NP, is 0.8

2. The default index cache size is 1MB

3. The default index cache replacement policy is
distance-priority-LRU, with the weight factors set
to � = � =  = 0:333 .

5.1 Tuning The Parameters in REVIEW

We note that there are several parameters in REVIEW
that has to be tuned. First, in the prefetching algo-
rithm, its e�ectiveness depends largely on the seman-
tics of the user walkthrough and the algorithm itself.
To �ne-tune the prefetching factor k in the prefetching
algorithm, we used several user sessions to �nd an op-
timal k value. Figure 10 shows the results. These user
sessions have di�erent motion patterns. The fast, slow,
turning, backward, and normal patterns were tested in
the �ve sessions respectively. In the �gure, each curve
represents an individual walkthrough session.

Frame time is de�ned as the cycle time between
two consecutive rendering operations. The time for
database query, memory data manipulation, render-
ing and other overheads are all included in frame
time. A real-time walkthrough requires the frame time
shorter than 50ms, i.e., the frame rate higher than 20
frames per second. In Figure 10(a), all sessions have
a minimal average frame time around the point where
k = 0:8. As di�erent sessions have quite di�erent mo-
tion patterns, the e�ect of k is also quite di�erent. In
session 1, since the user moves rapidly, it is crucial to
make an accurate prediction of the position of the new
cell. If k is too small, the user will move out of the
new cell more frequently, generating more prefetches.
On the contrary, if the prediction is too far away from
the current position, as less overlap can be obtained
between two consecutive cells, the query time will in-
crease and so will the frame time. As to the other
sessions, since the speeds of the user's motion are rela-
tively small, the curves of the average frame time and
query time display similar trends. The average query
times are shown in Figure 10(b). The query times also
have a minimum value around the point where k = 0:8.

Next, we need to tune the parameters used in the
replacement policy. Figure 11 illustrates the results
of index cache performance with di�erent cache re-
placement policies under various cache sizes. The �g-
ure shows that the distance-priority-LRU scheme per-
forms better than LRU when cache size is smaller
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Figure 10: The e�ect of the prefetching factor k to
system performance

than 20 Megabytes. For cache size between 5 to 15
Megabytes, the best setting is the DPLRU, where
� = � =  = 0:333. As the cache is implemented
with software, it takes more than O(1) time for �nd-
ing a cache entry, as opposed to hardware implementa-
tion. Therefore, the overhead caused by the software
implementation of the cache o�sets the performance
improvement at large cache sizes. This explains the
increase in query time at cache sizes larger than 15
Megabytes.
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Figure 11: Cache performance with various cache sizes

5.2 Performance Improvements of REVIEW

5.2.1 Results of rendering frames

The metrics of measuring the quality of a walkthrough
are the frame time and the smoothness of the walk-
through. The smoothness of the walkthrough can be
represented by how much each frame time varies from
the average frame time. A walkthrough with a small
average frame time and a small variance is considered
of good quality. Both the average frame time and



the frame time variance of the REVIEW system are
smaller than those of the BOX system. In addition,
the frame time of REVIEW meets the requirement of
real-time walkthrough.

The user positions and orientations are recorded
during di�erent walkthrough sessions. In the exper-
iment, one recorded user session is used as the user
path for all systems.
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Figure 12: Comparison of average frame time

As shown in Figure 12(a), for di�erent cell sizes, the
average frame time of the traditional system is much
longer than the optimized system. For the traditional
system, as the cell size decreases, more queries have to
be issued to the database. Moreover, as the overlaps of
the cells used in the query are not considered, the av-
erage frame time increases as the cell size decreases. In
contrast, for the con�gurations which implement com-
plement query interface, i.e. Optimal, NC, and NP,
the queries will only return data in non-overlapped ar-
eas. Therefore, as cell size decreases, the average frame
time does not increase. This shows that the REVIEW
system is less sensitive to changes in cell size than the
BOX system. From the �gure, we can also see that the
rendering frame rate of REVIEW is higher than that of
the BOX. As the cell size increases, the average frame
time of the BOX system decreases. But this does not
mean that the walkthrough quality of the BOX system
increases. The reason for the decrease in frame time
is that fewer queries are issued to the database.

As the query boxes become larger, the search time
per query is also longer. User will experience a serious
\pause" during each query. Hence, the walkthrough
e�ect is not better. This is con�rmed in Figure 12(b).
In the �gure, the variance of the average frame time
of the BOX is larger than that of the Optimal con�g-
uration. This means that the frame time of the BOX
system varies more than that of the Optimal system,
giving a choppy visual e�ect. In contrast, the frame
time of the Optimal con�guration has lower variation
and gives a more constant frame rate. The results also

show that caching and prefetching have less e�ects on
the average frame time than the complement search
algorithm.

Figure 13 shows the results on the rendering time
for each frame when a user path is applied to an Op-
timal system and a BOX system. Both of them use
the same cache size of 1 Megabytes. The results show
that the Optimal system has shorter rendering time
and much smoother frame rate. Since the complement
search algorithm returns smaller result set, the Opti-
mal system also needs less time to transfer the result
set into the scene graph structure, so the change in
rendering frame time is much smaller for each query.
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Figure 13: Rendering time for each frame

5.2.2 Results of search cost

Figure 14 shows the arithmetic average search time
of each query in user walkthrough sessions in di�er-
ent sized databases. It is apparent that the Optimal
system outperforms the BOX system in databases of
di�erent sizes.

In Table 1, the average disk accesses per query are
shown for �ve di�erent walkthrough sessions. The disk
I/Os of the Optimal system varies from 9% to 21%
of those of the BOX system. Therefore, it is appar-
ent that the Optimal system performs better than the
BOX in disk I/Os.

Session # BOX Disk I/Os Per Query Optimal Disk I/Os Per Query

1 1877.75 410.95

2 1900.94 169.96

3 1963.73 265.88

4 2018.24 201.89

5 1934.57 212.48

Table 1: Disk I/Os Per Query
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5.2.3 Results of optimizing GPU performance

Table 2 shows the results of the view frustum culling
algorithm discussed in section 4. The Optimal sys-
tem runs this algorithm to remove irrelevant objects
before sending the rest to the graphics engine. There-
fore, the algorithm tries to remove as many objects as
possible to reduce the workload on graphics subsys-
tem. The left column of the table contains various cell
sizes, while the right one shows the respective average
percentage of objects that are culled away before the
rendering. The data in the table illustrate that a large
percentage of object data in memory can be �ltered
and need not to be sent to the graphics engine. The
percentage increases as the cell size increases. This is
because when the cell size increases, more irrelevant
data are retrieved into the memory, so the algorithm
can �nd more irrelevant objects in the memory bu�er.

Cell Size (SF) Avg. Objects Removed (%) Avg. Time Reduced (%)

1.0 91.34 34.93

1.2 92.26 46.13

1.5 92.93 50.53

2.1 93.99 61.02

2.5 94.86 65.16

3.1 95.33 90.77

Table 2: Results of view frustum culling

6 Conclusion

In this paper, we reexamined the issue of designing
e�ective walkthrough system for a very large virtual
environment that cannot �t into the memory. Our
solution is to address the various bottleneck individ-
ually. We implemented REVIEW, a prototype walk-
through system and evaluated its performance on a
very large virtual environment. With these techniques,

the system can sustain constant real-time frame rate
and achieve better visual e�ects.

As for the future work, we plan to extend
the REVIEW system to incorporate the Levels-of-
Details(LODs) in the virtual scene, as well as the vis-
ibility information.
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