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Abstract This paper presents an approach to the implementation of
the abstract interpretation style of program analysis by first construct-
ing a logic for representing the process of abstract analysis, and then
embedding this logic in the theorem prover HOL. Programs to be anal-
ysed undergo a two-phase process, first being mechanically transformed
to an analysis model, and then this being used to test or verify program
properties. A specific advantage of this approach is that it allows abstract
interpretation to be used in a consistent framework with other analysis
methods, such as Hoare Logic or exhaustive state space analysis.

1 Introduction

Software developments are often so complex that program developers are unsure
of the behaviour of code they have constructed. Testing, though useful, cannot
guarantee the behaviour of developed code unless the testing is exhaustive, and
this is generally not possible for large software developments.

An alternative strategy is to attempt to confirm behaviours of code by anal-
ysis using representations of the semantics of the code components. In one ap-
proach, the operation of the program is represented in an abstract manner, and
mathematical techniques are used to derive properties of the code. These proper-
ties may be considered to be partial specifications of the code. Examples of this
approach include Hoare reasoning [8], and abstract interpretation, elaborated by
Cousot and Halbwachs in [3]. Graf and Saidi have presented a method in [10]
which automatically constructs abstract state graphs suitable for checking with
a model checker.

This paper explores a transformational approach to analysis within a unified
program development environment, by constructing a logic for analysis, coding
this logic as a shallow embedding in the theorem prover HOL [5], and then using
this to derive an efficient analysis model from a program. This model has a
functional form and may be used to test and verify properties of a program.

This paper has the following structure: Sections 2 and 3 briefly introduce ab-
stract interpretation and the mechanical theorem prover HOL. Section 4 presents
elements of a logic for abstract interpretation analysis, showing a sample analysis
of a program within the logic. Section 5 shows sample codings of logic elements
in HOL, and section 6 is the conclusion.



2 Abstract Interpretation

The technique of abstract interpretation approximates the ezact analysis of pro-
grams, by reasoning on some abstract semantics of the program. An example of
abstract interpretation is found in the analysis of the semantics of a program
restricted over a representation of program state given as a set of linear inequal-
ities or equalities between the variables of the program. For example, consider
two unsigned integer variables z > 2 and y and the assignments:

y:=(z*z)+1;

T =2+

An ezxact static analysis of the state of the program variables after these assign-
ments may involve keeping track of a series of (z,y) pairs: {(4,5),(8,17),...}
(depending on other program elements). However, it may also be given as a set
of linear inequalities, written as:

{y >z+1}

Note that this assertion is always true, but it tells us less about the behaviour of
the assignment statements. The reason for doing this sort of software approxi-
mation is that further analysis on the machine state may be less computationally
expensive.

Linear programming functions such as convez-hull and projection are also
useful in this context. Consider the analysis of program state { @} at the begin-
ning of this do-loop!:

{y>1Anz=2}

do {Q}B —
y:=(z*xz)+1;
T =2+ 2

od

If we were to consider the case of an ezact representation of this state, {Q}
would either be (initially) {y > 1 A z = 2} or (on successive iterations) the values
(4,5),(8,17), ..., which may be represented by the inequality y > z + 1.

In the case of the approximate abstract interpretation of this state, the convex
hull of the equations y > 1Az =2 and y > z+ 1 may be used instead. We
interpret this graphically in Figure 1, where the spaces represented by the two
sets of equations are shown, and an enclosing (convex hull) half-space.

The convex hull for a larger set of inequalities involving large numbers of vari-
ables may be efficiently calculated using a linear programming software library
such as the cddlib package found in Fukuda [4].

! Note that here we switch between predicate and set representations of the linear
inequalities when the meaning is clear, writing {y > 1 A z = 2} for the two linear
equations {y > 1,z = 2}.



Convex hull
y>=x-1

Figure 1. The convex hull of y > 1Az =2 and y > z + 1 is the half-space y >z — 1

There is also a graphical interpretation of projection, where equations in
an “n”-dimensional space are projected onto an “n — 1’-dimensional space. For
example, the projection of y > 1Az =2 onto y (y = z*, the orthogonal com-
plement of z) is y > 1.

In this paper, the particular abstract interpretation style described and im-
plemented in HOL is the one just outlined, with the program state represented as
sets of linear inequalities, and transformations using convex hull and projection.

3 The HOL Theorem Prover

HOL is a theorem prover assistant written by Mike Gordon in the mid 1980s, and
derived from Milner’s LCF [6]. HOL is implemented in the language ML, and it is
common to develop HOL systems in a blend of HOL and ML, here called HOL/ML.
HOL provides tools which only allow the construction of theorems which follow
from original axioms and definitions. The core of HOL consists of 8 inference
rules and 5 axioms, and all later proofs and theories are derived from these.

HOL supports both a forward proof style, in which we construct new theorems
from existing ones by constructing functions in HOL/ML with existing theorems
and axioms as parameters, and a backward proof style, in which we set up a
goal, and then break it into (separately proved) subgoals. In HOL, the steps
made during this backward reasoning process are called tactics.

3.1 Extending Theories in HOL

HOL operates in two modes, draft and proof mode. In draft mode it is possible
to introduce (possibly) inconsistent axioms. In proof mode, this is not possible.
Theories are extended through the addition of types, constants and inference
rules, and this may lead to inconsistent theories. Back and Wright [2] discuss
the use of conservative extensions to a theory to ensure consistency:

“The advantage of a conservative extension is that it has a standard
model whenever the original theory has one. This means that a conser-
vative extension can never introduce inconsistency.”



The approach taken here is a mix; we include underived elements into the theory
to access external efficient libraries, but after each use, a check is done of the
derived result, to see if it is still consistent with the original.

4 A Logic for Analysis

In the logic presented here, programs may be represented in both a conventional
specification style using pre and postcondition state representations, and in an
ezecutable style with a simple imperative language, along the lines given in [9].
For example the Morgan notation
v: [true , v > 10]

specifies that in the frame? v, for any precondition, the postcondition should
be v > 10. This style of specification is commonly used in the context of the
Refinement Calculus to construct code from specifications. For example, we may
refine this specification using an assignment introduction refinement rule:

C Assignment introduction
v:=11

The C symbol in S C C indicates that C is a refinement of S. The refinement
relation ordering is defined in weakest precondition terms by the requirement
for post(C) = post(S) for initial states satisfying pre(S).

We introduce a similar logic for analysis, adopting similar notation, although
our rules operate in a reverse manner, tending to derive (more abstract) speci-
fications from code. The O symbol in C O S indicates that S is an abstraction
of C. The abstraction relation ordering is the converse of refinement. If C J S
and C C S, then C = S.

As an example, the previous code segment might be transformed for the
purpose of program analysis, using one of many possible rules, as follows:

= Equivalent assignment postcondition introduction
ve [P , 3v': Plv' o] Av= 11[1}'/1}]]

The meaning attached to the notation P[v'/v] is that of substitution, replac-
ing each free occurrence of the variable v in an arbitrary formula P with the
expression v'. Our example may be simplified to:

= Simplification
vi[P, 30 : P[v'/v] Av=11]

This may not seem all that interesting, however, it may be used in the context
of program analysis by unifying P with true to get
3 Unification - strengthen precondition/weaken postcondition
v [true , U= 11]

2 A frame indicates those variables or state elements that may change.



That is - an assertion that the code segment v := 11 has a property matched
by the specification v: [true , v = 11]. This analysis is one of many that might
be performed on assignment code, and reflects a strongest postcondition style of
program analysis. In this paper, two sample types of analysis rules are described:

1. Equivalence analysis rules - = - In this sort of transformation rule, the
program state is represented by predicates over the program variables, and
program statements are transformed in relation to the way in which they
transform these predicates.

2. Abstraction analysis rules - J - In this sort of transformation rule, an
abstraction of the program state is represented by a set of linear inequalities
reflecting the relationships between the variables in the program. Program
statements are transformed in relation to the way they transform these linear
inequalities.

The O abstraction transformations are used to transform either a code segment,
or a specification, to some form more amenable to analysis. For example, we may
only be interested in the relative values of variables in a program, and not their
absolute values, or we may be only interested in a subset of the variables.

The = equivalence transformation rules are used to transform the resultant
abstract specifications to a final specification form. This final specification is an
analysis of the original program - what it specifies is a (weaker) true assertion
about the original specification.

Intermediate transformations of an original source program are considered to
be models of the program at different levels of abstraction, and the goal of the
transformation phase of the analysis process is to produce a functional abstract
specification of the program. This specification is then executed to test properties
of the program.

In the following section of the paper, sample rules for equivalence and ab-
straction are given, and then an example analysis uses these two sorts of rules
to transform a small program. The resultant functional specification reveals an
unexpected property of the code.

4.1 Equivalence Rules

In the equivalence rules, an attempt is made to capture all relevant behaviour
of the program. The refinement calculus textbooks give detailed descriptions of
rules suitable for program development which are not repeated here, however,
here are two sample rules with specific application in the area of analysis of
assignment statements.

1. An equivalence rule for the assignment v := e using strongest postconditions:

= Equivalent assignment postcondition introduction
vi[P, 30 : P[v'/v] Av=e[v//v]]



2. An equivalence rule for the assignment v := e using weakest preconditions:

= Equivalent assignment precondition introduction
V3 [P[e/v] , P:|

There are other rules for loops, if statements and so on.

4.2 Abstraction Rules

As discussed in Section 2, the program state is represented here as a set of
linear inequalities, and the transforming operations on these are standard linear
programming ones such as convex hull or projection operations. The resultant
expressions are computationally easy to evaluate, but may tell us less about our
programs.

1. A rule for abstract interpretation style analysis of assignments of the form
v := e that are not invertible, such as v := 0:

 Abstract ni-assignment postcondition introduction
UH [P , proj,. (P)Av = e]

In this expression, the notation proj,.(P) represents the projection of the
expression P onto the orthogonal complement of v.

2. A rule for assignments which are invertible, such as v := v + 1. We may
generalize such assignments as v := f(v), where f is an invertible function:

= Abstract i-assignment postcondition introduction

vi [P, P[f~(v)/]]

In this expression, the notation f~! represents the inverse of f. This rule
may only be applied if 3f~ ' Vz: f(f~'(z)) = z.
3. A rule for projecting a specification f: [true , Q] onto the orthogonal com-

plement of (say) z. This sort of abstraction is used to perform analysis on
a subset of the variables in a frame, while retaining as much information as
possible about the frame:

J Abstract projection onto z+

'Y [true , projzl(Q)]

In this expression g is defined by gUz =f Agnz ={} (i.e. the frame f
without the variable z).



4. A rule for the do-loop do B — f: [P, Q] od introduces the conv(R) oper-
ator which returns the convex hull of R:

T Abstract iteration postcondition introduction
fi[R, R];
do f:[conv(RU Q) A B, Q] od;
f: [conv(R UQ)A-B, conv(RU Q) A ﬂB]

The f: [R , R] component of the refinement is an artifact to introduce a
state variable name. The last component of the refinement retains informa-
tion about the do-loop.

Note that we cannot mix refinement and abstraction rules and expect the resul-
tant expression to still be a refinement of the original expression.

4.3 Example Analysis

In this section, a small example is analysed, demonstrating the two phases of
analysis used in this approach. In the first transformation phase, a code imple-
mentation is given, and then transformed according to abstract analysis rules.
In the second execution phase, the resultant specification is used to derive some-
thing possibly bad about the particular implementation - specifically that the
result might be wrong in some circumstances.

In public key encryption schemes, large integer computations often have to
be performed. For example, the evaluation of modulo(P®, N) where P, Q and
N are all large numbers. A simple implementation might involve calculating first
P@, and then performing a mod() (modulo) machine operation®. However, the
calculation of P may involve very large numbers, difficult to manipulate on
a computer. The following code is another implementation of this specification,
and calculates modulo(P?, N), leaving the result in variable c. A quality of
this particular implementation is that the code never has to calculate P? - the
largest calculation is always less than N x P:

|[ var z,d : Ne
¢, z,d:=1,0,0
doz# Q —z,d:=zx+1,¢c* P;
¢:=mod(d, N)
od

J

3 Note that the mathematical expression modulo(z,y) = « if y = 0. This is different
from the standard programmer’s experience with the mod() operation which is that
mod(x,y) is always less than y.



Applying abstraction rules to the assignments inside the do-loop results in this:

1 Abstract assignment postcondition introduction
var z,d : N e
¢, z,d:=1,0,0;
dow#Q—)x,d,c:[M, E];
z,d, et [E , Proj.i (L) A e < N]
od

where L is proj . (M[z — 1/z]) A d = ¢ * P. Note also that the specification state

variable M can stand for anything, awaiting later unification with some concrete
state. The first assignment in the do-loop requires a mix of both invertible and
non-invertible assignment rules. The second assignment uses the mod() operator,
and information is lost here, as we only represent state using linear inequalities.
As aresult, the only retained effect of ¢ := mod(d, N) is that ¢ < N. Application
of the do-loop abstraction rule leads to:

O Abstract iteration postcondition introduction
var z,d:Ne
c,z,d:=1,0,0;
z,d,c: [R, R];
do z,d,c: [H/\x;é Q, IC];
z,d,ct [IC , proj.a(K)Ae< N]
od;
z,d,ct ['H/\a:: Q,HANz = Q]

Where H is shorthand for conv(R U proj,. (d = ¢ * P) A ¢ < N), and K is short-
hand for HAz —1# Q Ad = c* P. After further simplification and abstrac-

tions including the projection onto z*d+, many of the terms disappear, resulting
in this derivation of the original code:

= Simplification
var z,d :Ne
a:,d,c:[R, S/\c=1];
do:c,d,c:[T, 'T];
m,d,c:[T,T/\c<N]
od;
:c,d,c:[T, T]

Where 7 is shorthand for conv((SAc¢=1)Uc < N) and § is shorthand for
proj..(R). In the prototype software, the order of application of rules can be



modified by the user of the system, but the transformations are done automati-
cally. If we now only consider the first and last conditions, a derived specification
of the whole code segment is:

= Simplification
z,d,ct [R , T]

The view here is that an analysis model has been produced by the transforma-
tion rules. This model specifies true properties of the original program. In the
practical application of the logic, input programs are encoded according to the
transformation rules into linked HOL/ML functions representing the relationship
between pre and postconditions of the derived specification. The functions then
comprise an engine for abstract modeling of the behaviour of the program. This
completes the transformation phase of this example.

In the execution phase, the model is executed to test the behaviour of the pro-
gram in the specified abstract domain. For example, if R is unified with N <1,
the analysis reduces to:

3 Unification
z,d,c:[N<1, c<N+1]

This reveals a property of the implementation that was not apparent before,
specifically that if N < 1, then ¢ has a possibly incorrect value - it should always
be less than N. The analysis process has pinpointed a problem with our code®.
If R is unified with N > 1, then we verify that ¢ will always be less than N:

3  Unification
z,d,c:[N>1, c<N:|

At this stage a choice may be made to either accept the behaviour of the code
or change/correct it.

Note that the end result of the transformation phase of analysis is a model of
the functional behaviour of the original program with respect to the particular
abstraction used. In this case, the relationship between ¢ and N was of particular
interest, and the penultimate analysis model was able to confirm that our desired
property (¢ < N) was guaranteed for N > 1.

5 On Using HOL

HOL is used in this development in two ways. Firstly as an expressive language
in which to encode and simplify the transformations, and secondly to prove as-
sertions made about pre or postconditions. The coding of the logic in HOL/ML
is straightforward, often reducing to a simple translation from the mathemat-
ical representation of the element to a HOL/ML function. Some representative
HOL/ML transforms are given in the next section to demonstrate the approach.

“If N =0 and Q = 0, then the code returns ¢ = 1, which is correct according to the
mathematical definition of modulo(P?, 0), but is counter to an (unstated) assumption
about the program that the resultant values will always be less than N.



5.1 Transforms in HOL

In the HOL/ML transform functions for an analysis tool, assertions about pro-
gram state are manipulated as HOL terms. As an example of the techniques for
constructing transform functions in HOL/ML, here are implementations of some
of the transforms:

1. The first equivalence rule given for the assignment v := e was:

= Equivalent assignment postcondition introduction
vi[P, 30 : P[v'/v] Av=e[v//v]]

This may be interpreted as a transforming function which translates a pre-
condition P to some postcondition. HOL has an embedded parser which can
express this for us succinctly, and the following HOL/ML code is used for
processing assignments of this form. The code defines a function with three
parameters (P, e and v), and returns the required postcondition:

fun FpAssign (P:Term.term) (e:Term.term) (v:Term.term) =

--¢?v0. ((\(C"v). "P)v0) /\ ("v=(\("v). ~e)v0)‘--;

2. The second equivalence rule for the assignment v := e was:

= Equivalence assignment precondition introduction
V3 [P[e/u] , P]

This may be interpreted as a transforming function which translates a post-
condition P to some precondition. The HOL/ML implementation is:

fun RpAssign (P:Term.term) (e:Term.term) (v:Term.term) =
-—-(\(Cv). “P)"e‘--;

In the chosen abstraction scheme, assertion state is represented by a linear set of
inequalities. HOL has no native linear programming theory, but external libraries
may be used, while still retaining high assurance that only true theorems may be
proved. In this work, functions translate HOL terms to and from a structure rep-
resenting a set of linear inequalities. Following this, various LP-based functions
may be used to calculate the convex-hull or projection operations.

When using abstract interpretation analysis, the transform for assignment is
optimized for various different types of expression. For example, an assignment
like z := z 4+ 1 is invertible, and involves no loss of state information, whereas
an assignment like z := a + b results in the loss of any relationships dependent
on z', the previous value of z. Since our assertion state is represented by a linear
set of inequalities we may remove the variable z' using projection. The code for
projection is implemented separately from the HOL theory definitions, and may
be subject to (programmer) error or inconsistency. For this reason, these external
functions are called from HOL, and then tested afterwards for correctness within
the HOL theory.




3. The first abstraction rule for non-invertible assignments was:

J Abstract ni-assignment postcondition introduction
UH [P , proj,. (P)Av = e]

The following HOL/ML code is used for processing assignments of this form:

fun FpAbsNI (P:Term.term) (e:Term.term) (v:Term.term) =
--‘proj("v,"P) /\ (“v="e)‘--;

5.2 Proof in HOL

The emphasis in the previous section was in the use of HOL/ML as an expressive
and efficient language for encoding the analysis model. However this is only part
of the usefulness of HOL in this application. During the process of analysis, it
may be useful to prove programmer-supplied assertions about the program.

For example, in program code for sorting an array, an assertion about a
partition of an array may be used to confirm that the sort program is working
correctly. For example - we might know that the array is divided into a sorted
left-part from A[0] to A[P — 1] and a semi-sorted right-part in which the leftmost
element A[P] is the least element of the right-part, and that all elements in the
left-part are less than or equal to all elements in the right-part. Given this, HOL
may be used to prove that the array is now sorted from A[0] to A[P]. The
assertion to be proved is quite complex:

F psorted A[0..P — 1]
A pminindex A[P..N — 1] P
AVzy.z€e{0.P-1}Ay e {P.N -1} = A[z] < Aly])
= psorted A[0..P]

A HOL proof script for this is as follows:

val assertionB = prove
((--“(psorted A (0..P-1)
/\ pminindex A (P..N-1) P
/\ (tx y. (0..P-1)x /\ (P..N-1)y ==> A[xI<=A[y]))
==>psorted A (0..P)‘--),
ARW_TAC[index_min partition DEF,inrange_def,sorted DEF]
THEN (‘A[P-1]<=A[P]¢ by ZAP_TAC(arith ss)[1)
THEN Cases_on ‘j<P¢
THEN REPEAT (ZAP_TAC(arith ss)[1));

A more complete explanation of this process of proof of assertions, and a HOL
theory-of-arrays is found in [1].



6 Conclusion

This work is a part of a larger body of research into program analysis derived
from Heintze, Jaffar and Voicu’s [7] Conditional Hoare Logic reasoning frame-
work. Various approaches to the management of a process of program analysis
are being explored, and this paper reports on the notation and techniques used
for representing abstract interpretation within the framework.

The end result of the analysis process is a model of the functional behaviour of
the original program with respect to the particular abstraction used. This anal-
ysis model is used to confirm specific properties of the code under investigation
through a testing process. In addition, the models may be directly manipulated
in a program proof context, providing confirmation of user-supplied assertions.

The process takes place within a formal logic for analysis modeled on the
refinement calculus, and the particular notation and methodology is of particular
use when combined with other program analysis systems.
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