
Calculating Polynomial Runtime Properties

Hugh Anderson, Siau-Cheng Khoo, Stefan Andrei and Beatrice Luca

Department of Computer Science
School of Computing

National University of Singapore
{hugh,khoosc,andrei,lucabeat}@comp.nus.edu.sg

Abstract. Affine size-change analysis has been used for termination
analysis of eager functional programming languages. The same style of
analysis is also capable of compactly recording and calculating other
properties of programs, including their runtime, maximum stack depth,
and (relative) path time costs. In this paper we show how precise poly-
nomial bounds on such costs may be calculated on programs, by a char-
acterization as a problem in quantifier elimination. The technique is de-
cidable, and complete for a class of size-change terminating programs
with limited-degree polynomial costs. An extension to the technique al-
lows the calculation of some classes of exponential-cost programs. We
demonstrate the new technique by recording the calculation in numbers-
of-function (or procedure) calls for a simple definition language, but it
can also be applied to functional and imperative languages. The tech-
nique is automated within the reduce computer algebra system.

1 Introduction

Polynomial runtime properties are considered essential in many applications.
The ability to calculate such properties statically and precisely will contribute
significantly to the analysis of complex systems. In real-time systems, the time-
cost of a function or procedure may be critical for the correct operation of a
system, and may need to be calculated for validation of the correct operation of
the system. For example, a device-driver may need to respond to some device
state change within a specified amount of time.

In other applications, the maximum stack usage may also be critical in (for
example) embedded systems. In these systems, the memory available to a process
may have severe limitations, and if these limits are exceeded the behaviour of
the embedded system may be unpredictable. An analysis which identifies the
maximum depth of nesting of function or procedure calls can solve this problem,
as the system developer can make just this amount of stack available.

A third motivation for calculating polynomial runtime properties is to calculate
more precise relative costs of the individual calls. For example in a flow analysis
of a program we may be interested in which calls are used most often, with
a view to restructuring a program for efficiency. In this scenario, the relative
costs between the individual calls is of interest. In the gcc compiler, a static
branch predictor [2] uses heuristics to restructure the program code, optimizing
the location of code for a branch more likely to occur. The approach described
here can calculate more precise relative costs to improve these heuristics.

In this paper we explore the automatic calculation of each of these costs through
static analysis of the source of programs which are known to be affine size-change
terminating [1, 13], where the focus is on recording parameter size-changes only.
The overall approach has three steps:

1. Assume a (degree k) polynomial upper bound related to the runtime or space
cost. The polynomial variables are the parameter sizes.

2. Derive from the source a set of equations constrained by this upper bound.
3. Solve the equations to derive the precise runtime.

If the equations reduce to a vacuous result, then the original assumption of the
degree of the polynomial must have been incorrect, and we repeat the process
with a degree k + 1 assumption. This technique is surprisingly useful, and it is
possible to derive precise runtime bounds on non-trivial programs.

We can also calculate the time or space costs for a subclass of exponential costs,
in particular those of the form φ1 · Kφ2 + φ3 where φ1, φ2 and φ3 are each a
limited-degree polynomial in the parameter sizes, and K ∈ < is a constant.

There has been some research into run-time analysis for functional programs.
For example, [16] explores a technique to evaluate a program’s execution costs
through the construction of recurrences which compute the time-complexity of
expressions in functional languages. It focuses on developing a calculus for costs,
and does not provide automated calculations. In [7], Grobauer explores the use
of recurrences to evaluate a DML program’s execution costs. Our focus is more
with decidability aspects and precise time-costs than either of these approaches.

An alternative approach is to limit the language in some way to ensure a certain
run-time complexity. For example, in [8], Hofmann proposes a restricted type
system which ensures that all definable functions may be computed in polynomial
time. The system uses inductive datatypes and recursion operators. In our work,
we generate time and stack costs of arbitrary functions or procedures, through
analysis of the derived size-change information. A compact summary of a general
technique for the calculation of time and space efficiency is found in the book [15]
by Van Roy and Haridi, where recurrence relations are used to model the costs
of the language elements of the programming language. There is unfortunately
no general solution for an arbitrary set of recurrence relations, and in practice
components of the costs are ignored, capturing at each stage only the most costly
recurrence, and leading to big-O analysis.

2

Our paper improves the technique for a specific class of functions, calculating
more precise bounds than those derived from big-O analysis. By exploiting a-
priori knowledge that a particular function terminates, and that the (polynomial)
degree of the particular function is bounded, we can derive a decidable formula,
the solution of which gives the time or space cost of the program.

In the approach presented here, we measure runtime in terms of the number of
calls to each procedure in a simple definition language. This is an appropriate
measure, as the language does not support iteration constructs, and recursive
application of procedures is the only way to construct iteration. Note that this
approach does not restrict the applicability of the technique. Any iteration con-
struct can be expressed as a recursion with some simple source transformation.

In Section 2, preliminary concepts and definitions are introduced. In Section
3, the framework used for constructing the equations is introduced, along with
practical techniques that may be used to solve the equations. In Section 4, we
show examples of relative time costs for compiler optimization, and calculation
of stack depth. In Section 5, we use recurrence relations to indicate how to
classify costs into polynomial or exponential forms. In Section 6, exponential
cost calculations are explored. We conclude in Section 7.

2 Preliminaries

v ∈ Var 〈Variables 〉
f, g, h ∈ PName 〈Procedure names 〉
n ∈ Z 〈 Integer constants 〉
β ∈ Guard 〈Boolean expressions 〉

β ::= δ | ¬β | β1 ∨ β2 | β1 ∧ β2

δ ::= True | False | e1 = e2 | e1 6= e2 | e1 < e2 | e1 > e2 | e1 ≤ e2 | e1 ≥ e2
e ∈ AExp 〈Expressions 〉

e ::= n | v | n ? e | e1 + e2 | −e
s ∈ Stat 〈Statements 〉

s ::= if β then s1 else s2 | s1;s2 | f(e1, . . . , en) | ~

d ∈ Decl 〈Definitions 〉
d ::= f (x1, . . . , xn) = s;

Table 1. The language syntax

The language is a simple procedural language, defined in Table 1. This language
is in some sense an abstract language, omitting any parts not relevant to the
runtime. In addition, the expressions are given as if they were all integer values,
when in fact they refer to expressions based on the size of the data types of
the language. For example, a list may be represented here by a size integer
representing the length of the list, and list concatenation represented by addition
of the size values. Finally, an important point is that the language only admits
affine relations between the program variables and expressions.

3

2.1 Runtime analysis

In the process of performing size-change termination analysis described in [14],
arbitrary sets of functions are processed, constructing a finite set of idempo-
tent SCGs (Size-Change Graphs). These SCGs characterize the function, and
detail all the ways in which a particular function entry point may be re-entered.
In the following description, the functions are all derived from an affine SCT
(Size-Change Termination) analysis [1, 13], and hence are known to terminate.
A subclass of these functions in which argument size-changes are linear, termed
LA-SCT (Linear-affine SCT programs) define the class of programs analysed
here. Limiting our analysis to this class of functions is not a severe restriction,
as most useful size-change parameter changes would be linear.

We begin by formally defining the runtime of such functions. The term ȳ refers
to the vector (y1, . . . , yn). For the sake of notational brevity, we use a contextual
notation to represent an expression containing at most one function call. For an
expression containing a function call f(ȳ), the corresponding contextual notation
is C[f(ȳ)]. For an expression containing no call, the corresponding contextual
notation is C[].

Definition 1. Given an LA-SCT program p with program parameters x̄ and
body ep and input arguments n̄, the runtime of p, B(p)[n̄/x̄], is defined by the
runtime of ep inductively as follows:

B(s1; s2)[n̄/x̄]
def
= B(s1)[n̄/x̄] +B(s2)[n̄/x̄]

B(if g then s1 else s2)[n̄/x̄]
def
= if g[n̄/x̄] thenB(s1)[n̄/x̄] elseB(s2)[n̄/x̄]

B(C[])[n̄/x̄]
def
= 0

B(C[f(m̄)])[n̄/x̄]
def
= B(ef)[m̄/ȳ] + 1 (where ef is the body of f(ȳ))

In practical terms, this indicates that we are counting function calls as a measure
of runtime. Such calls are the only difficult part of a runtime calculation, as other
program constructs add constant time delays. To clarify this presentation, we
choose to limit the definition to the analysis of function calls as a measure of
runtime.

In the case of a function f(x̄) containing only a direct call h(ȳ), where ȳ = x̄[ψ],
[ψ] = [y1 7→ δ1(x1, x2, . . .), y2 7→ δ2(x1, x2, . . .), . . .] and δ1, δ2 represent affine
relations over the input parameters, we have:

B(f(x̄)) = B(h(x̄[ψ])) + 1

We are primarily interested in runtimes that can be expressed as a polynomial
in the parameter variables.

Definition 2. The degree-k polynomial runtime Bk(p) of an LA-SCT program
p with m parameters x = x1, . . . , xm is a multivariate degree-k polynomial ex-
pression:

Bk(p)
def
= c1x

k
1 + c2x

k
2 + . . .+ cmx

k
m + cm+1x

k−1
1 x2 + . . .+ cn

where c1 . . . cn ∈ Q, and Bk(p) is the runtime of the program.

4

An example of such a degree-2 polynomial runtime for a program p(x, y) is

B2(p) = x+
1

2
y2 +

3

2
y

Lastly, we differentiate between an assumption A(p) of the runtime of a program
p, and the actual runtime B(p).

Definition 3. An assumption A(p) of a polynomial runtime of an LA-SCT pro-
gram p with m parameters x = x1, . . . , xm is a multivariate polynomial expres-
sion:

A(p)
def
= c1x

k
1 + c2x

k
2 + . . .+ cmx

k
m + cm+1x

k−1
1 x2 + . . .+ cn

where c1 . . . cn are unknown. A(p) contains all possible terms of degree at most
k formed by the product of parameters of p. Note that in this presentation, we
search for an assignment [θ] to the constants c1 . . . cn such that B(p) = A(p)[θ].

Initially, assume a polynomial upper bound of degree k on the running time of
such a program p(x, y, . . .). This upper bound for the particular program p will
be denoted by Ak(p). If a program p had two parameters x and y, then

A1(p) = c1x+ c2y + c3

A2(p) = c1x
2 + c2y

2 + c3xy + c4x+ c5y + c6

A3(p) = c1x
3 + c2y

3 + c3x
2y + c4xy

2 + c5x
2 + c6y

2 + c7xy + c8x+ c9y + c10

In this presentation, we capture runtime behaviour by deriving sets of equations
of the form Ak(p(x̄)) =

∑
(Ak(fi(x̄[ψi]))+1) for each of the sets of calls fi which

are calls isolated and identified by the same guard. The substitution ψi relates
the values of the input parameters to p to the values of the input parameters on
the call fi. Note that with this formulation, each substitution is linear, and thus
cannot change the degree of the equation.

3 Characterization as a quantifier-elimination problem

The sets of assumptions and runtimes presented in the previous section are
universally quantified over the parameter variables, and this leads to the idea
of formulating this problem as a QE (quantifier-elimination) one. Consider the
following program p1 operating over the naturals with parameters x, y ∈ N:

p1(x, y) = if (x = 0 ∧ y ≥ 1) then
p1a(y, y − 1)

else
if (x ≥ 1) then

p1b(x− 1, y)
else

~ ; // ... exit ...

We can represent the runtime properties for each path through the program p1

with the three equations:

A2(p1)[x 7→ y, y 7→ y − 1]−A2(p1) + 1 = 0
A2(p1)[x 7→ x− 1]−A2(p1) + 1 = 0

A2(p1) = 0

5

which reduce to:

−c1x2 + (c1 + c3)y
2 − c3xy − c4x+ (c4 − c3 − 2c2)y + c2 − c5 + 1 = 0

c1 − 2c1x− c3y − c4 + 1 = 0
c1x

2 + c2y
2 + c3xy + c4x+ c5y + c6 = 0

We wish to find suitable values for the (real-valued) coefficients c1 . . . c6. That
is, we want to eliminate the universally quantified elements of the equalities.

There are several advantages of this QE formulation of the problem. Firstly,
there is an automatic technique for solving sets of polynomial equalities and
inequalities of this form, developed by Alfred Tarski in the 1930’s, but first
fully described in 1951 [18]. Tarski gives a decision procedure for a theory of
elementary algebra of real numbers. Quantifier elimination is part of this theory,
and after eliminating the quantifiers x and y in the above expressions, what
remains are constraints over the values of the coefficients. However, the algorithm
is not particularly efficient, although more recent methods are usable.

Secondly, precise analysis may be performed by including in the guards for each
of the paths. For example, we can express our QE problem as the single formula1:

∀x, y :

(
x = 0

∧ y ≥ 1

)
⇒ A2(p1)[x 7→ y, y 7→ y − 1]−A2(p1) + 1 = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 7→ x− 1]−A2(p1) + 1 = 0

∧
(

x = 0
∧ y = 0

)
⇒ A2(p1) = 0

In [11], the author clearly shows how quantifier elimination may be used to
generate program invariants using either a theory of Presburger arithmetic, a
theory involving parametric Gröbner bases, or Tarski’s theory of real closed
fields. This last theory is the most expressive, and a claim is made that the
approach is more widely applicable, and generates stronger invariants than the
Gröbner basis approach in [17].

Our construction is different, and in a different field (program running time
rather than program invariants). We construct expressions characterizing the
program run time as a constraint quantified over the program parameters. The
constraint constants are then solved by QE, and algebraic reduction.

3.1 Quantifier elimination

In 1973, Tarski’s method was improved dramatically by the technique of Cylin-
drical Algebraic Decomposition (CAD) first described in [4]. The book [3] has a
good introduction to the method, which leads to a quantifier free formula for a
first order theory of real closed fields. In this theory, atomic formulæ may be of
1 The derivation of this particular form will be explained in the next subsection.

6

the form φ1 = φ2 or φ1 > φ2, where φ1 and φ2 are arbitrary polynomials with
integer coefficients. They may be combined with the boolean connectives ⇒, ∧,
∨ and ¬, and variables may be quantified (∀ and ∃).

Definition 4. A Tarski formula T is any valid sentence in the first order theory
of real closed fields. Note that quantifier elimination is decidable in this theory.

Our approach is to construct a particular subset of Tarski formulæ, T [A(p)],
where A(p) is an assumption of the polynomial runtime of an LA-SCT program.
This subset is of the form

T [A(p)] =

∀x, y, . . . g1 ⇒ F1

∧ g2 ⇒ F2

∧


where g1, g2, . . . identify different paths from p(a) to enclosed function calls
fi(b)2. F1, F 2, . . . are formulæ derived from the program p source such that

∀x : gj ⇒ (Fj ⇔ (Ak(p(x̄)) =
∑

i

Ak(fi(x̄[ψi])) + 1))

The following inference rules can be used to automatically generate these“Tarski”
formulæ from an arbitrary input program. They are presented in a form much
like typing rules, where the type for a statement s is replaced by the runtime cost
A(s). The context (or environment) Γ is a list which specifies the parameters in
the enclosing function.

Γ ` g(x̄[ψ]) : A(g)[ψ] + 1 B-call
Γ ` s1 : A(s1) Γ ` s2 : A(s2)

Γ ` if c then s1 else s2 :

{
c : A(s1)

∧ ¬c : A(s2)

B-if

` ˜ : 0 B-nocall
Γ ` s1 : A(s1) Γ ` s2 : A(s2)

Γ ` s1; s2 : A(s1) + A(s2)
B-seq

Γ, 〈x̄〉f ` s : A(s)

Γ ` f(x̄)
def
= s : A(s)

B-def
Γ, 〈x̄〉f ` s : A(s)

Γ ` p1 ; f(x̄)
def
= s : A(s)

B-defs

Note that each application of a rule preserves the runtime of the statement.
In addition, a substitution ψ is applied in context, and is dependent on both
the enclosing functions parameter names, and the (fresh) names for any other
parameters.

This set of rules produces a guarded expression form for the assumed runtime
A(p). This is then transformed to a normal form, by first flattening the expression
(distributing the guards outwards), and then distributing A(p) in.

2 Note that they must cover the parameter space of interest and be distinct.

7

For example, for the program p1 the above rules generate

A2(p1) =

 (x = 0 ∧ y = 0) : 0
∧ (x = 0 ∧ y ≥ 1) : A2(p1)[x 7→ y, y 7→ y − 1] + 1
∧ (x ≥ 1) : A2(p1)[x 7→ x− 1] + 1


and the equation T [A2(p1)] derived is thus:

T [A2(p1)] =



∀x, y :

(
x = 0

∧ y = 0

)
⇒ A2(p1) = 0

∧
(

x = 0
∧ y ≥ 1

)
⇒ A2(p1)[x 7→ y, y 7→ y − 1]−A2(p1) + 1 = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 7→ x− 1]−A2(p1) + 1 = 0


and our task now is to reduce this to an expression without the quantifiers x
and y, and then find any example of c1 . . . c6 satisfying the resultant expression.

The following theorem asserts that the solution of the formula T [Ak(p)] cor-
rectly represents the runtime Bk(p) of any LA-SCT program p with a degree-k
polynomial runtime.

Theorem 1. If Bk(p) is the degree-k polynomial runtime of affine SCT pro-
gram p with parameters x̄, and Ak(p) is a degree-k polynomial assumption of the
runtime of LA-SCT program p, and [θ] is the assignment derived from T [Ak(p)],
then

∀n̄ : Ak(p)[θ][n̄/x̄] ≡ Bk(p)[n̄/x̄]

Proof. By structural induction over the form of the definition for Bk(p)[n̄/x̄].

3.2 Tool support

There exists a range of tools capable of solving this sort of reduction. The tool
QEPCAD [6] is an implementation of quantifier elimination by partial CAD devel-
oped by Hoon Hong and his team over many years.

Another system is the redlog package [5] which can be added to the computer
algebra system reduce, and may be used to eliminate quantifiers giving com-
pletely automatic results. The following sequence shows redlog commands that
specify the runtime for program p1:

1: A2p1 := c1*x^2+c2*y^2+c3*x*y+c4*x+c5*y+c6;

2: path1 := sub(x=y,y=y-1,A2p1)-A2p1+1;

3: path2 := sub(x=x-1,A2p1)-A2p1+1;

8

In line 1 of the above sequence, we define the A2p1 assumption of the runtime
bounds B2 of the program. In lines 2 and 3, A2(p1)[x 7→ y, y 7→ y−1]−A2(p1)+1
and A2(p1)[x 7→ x − 1] − A2(p1) + 1 (The sub command in reduce performs a
series of substitutions in the expression A2p1).

The following sequence shows the redlog commands to solve the problem:

4: TA2p1 := rlqea ex({c1,c2,c3,c4,c5,c6},

rlqe all({x,y},

((x=0 and y=0) impl A2p1=0) and

((x=0 and y>=1) impl path1=0) and

((x>=1) impl path2=0)));

5: B2p1 := sub(part(part(TA2p1,1),2),A2p1);

In line 4 of the above sequence, the inner rlqe function performs quantifier
elimination on the equation T [A2(p1)], returning the following relations between
the constants c1 . . . c6:

c4 = 1 ∧ 2c2 − c4 = 0 ∧ c2 − c5 = −1 ∧ c1, c3, c6 = 0

In this example, c1 . . . c6 are uniquely determined, and can be found easily with a
few simple reductions, but in the general case, the constraints over the constants
may lead to many solutions. The redlog package can also be used to find an
instance of a solution to an existentially quantified expression, and hence the
outer rlqea function above, which returns an instance of a solution to the above
relations existentially quantified over c1 . . . c6: ∃c1 . . . c6 : T [A2(p1)].

The solution returned by redlog is

TA2p1 := {{true,{c1=0, c2=1/2, c3=0, c4=1, c5=3/2, c6=0}}}

Finally, in line 5, we substitute the solution instance back in the original as-
sumption A2(p1) = c1x

2 + c2y
2 + c3xy + c4x+ c5y + c6, giving

B2(p1) = A2(p1)[c1 7→ 0, c2 7→
1

2
, c3 7→ 0, c4 7→ 1, c5 7→

3

2
, c6 7→ 0]

= x+
1

2
y2 +

3

2
y

The example given above appears to lead more naturally to a constraint pro-
gramming based solution to these sort of problems, but most such systems can
only handle linear equations, not the polynomial ones used here.

There are constraint solving systems, for example RISC-CLP(Real) [9], which use
(internally) CAD quantifier elimination to solve polynomial constraints, however
here we prefer to restrict ourselves to just the underlying techniques, and not
clutter up the discussion with other, perhaps confusing, properties of constraint
solving systems.

9

4 Calculating other program costs

So far we have limited the presentation to examples which calculate polynomial
runtimes for programs. However, the technique is also useful for deriving other
invariant properties of programs, such as the maximum stack depth and the
relative runtime costs.

4.1 Stack depth calculation

Consider program p2:

p2(x, y) = if (x = 0 ∧ y ≥ 1) then
p2a(y, y − 1);
p2b(0, y − 1)

else
if (x ≥ 1) then

p2c(x− 1, y)
else

~ ; // ... exit ...

Note that in this program, we have the sequential composition of two function
calls, and this program has an exponential runtime cost. An interesting question
for this program is to calculate its maximum stack depth. The depth D of our
class of programs is calculated in precisely the same way as the runtime B, with
only a minor change. In the event of sequential composition, we record not the
sum of the two functions composed, but the maximum value of the two functions:

Γ ` s1 : A(s1) Γ ` s2 : A(s2)

Γ ` s1; s2 : max(A(s1), A(s2))
B-seq

This corresponds with a Tarski formula for a polynomial solution like this:∀x, y : (x = 0 ∧ y ≥ 1 ∧D[ψ2a] ≥ D[ψ2b]) ⇒ (D[ψ2a]−D + 1 = 0)
∧ (x = 0 ∧ y ≥ 1 ∧D[ψ2a] < D[ψ2b]) ⇒ (D[ψ2b]−D + 1 = 0)
∧ (x ≥ 1) ⇒ (D[ψ2c]−D + 1 = 0)


Given the formula, redlog immediately finds the stack depth cost:

D(p2) = x+
1

2
y2 +

3

2
y

4.2 Relative runtime costs

The third motivation for this approach was to derive relative costs for the dif-
ferent possible paths through a program. For example in program p1, which
function is called more often, and what are the relative costs for each call? This
could be used in compiler optimization, improving the efficiency of the code by
re-ordering and placing more commonly used functions nearby.

10

The same approach may be used, calculating B for each path. The equation
T [A(p1a)] for the program choosing the first function call may be written as:

T [A(p1a)] =



∀x, y :

(
x = 0

∧ y = 0

)
⇒ A2(p1) = 0

∧
(

x = 0
∧ y ≥ 1

)
⇒ A2(p1)[x 7→ y, y 7→ y − 1]−A2(p1) + 1 = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 7→ x− 1]−A2(p1) = 0


⇒ B2(p1a) = y

The equation T [A(p1b)] for the program choosing the second function call may
be written as:

T [A(p1b)] =



∀x, y :

(
x = 0

∧ y = 0

)
⇒ A2(p1) = 0

∧
(

x = 0
∧ y ≥ 1

)
⇒ A2(p1)[x 7→ y, y 7→ y − 1]−A2(p1) = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 7→ x− 1]−A2(p1) + 1 = 0


⇒ B2(p1b) = x+

1

2
(y2 + y)

Note that the sum of B2(p1a) and B2(p1b) is exactly B2(p1) derived for the whole
program.

5 Towards a classification of program costs

The presentation so far has concentrated on LA-SCT programs with costs that
may be expressed as polynomials over the program variables. However many such
programs have costs that are exponential rather than polynomial. For example,
the following program:

p3(x, y, n) = if (x 6= 0 ∧ n ≥ 1) then
p3a(x− 1, y, n)

else
if (x = 0 ∧ n > 1) then

p3b(2y + n, 2y, n− 1)
else

~ ; // ... exit ...

This program has a runtime of B(p3) = y2n + 1
2n

2 + 3
2n + x − 2y − 2, not

immediately apparent by observation. The technique such as just described relies
on repeatedly trying ever higher degree polynomial time costs, and would never
discover this runtime.

We have an approach to solving programs of this form, but it requires us to find
some way of classifying program costs into either polynomial or exponential.

11

In this section we present a characterization of the problem as a recurrence,
explaining the choice of the particular class of exponential cost programs that
can be solved.

The previous discussion employs a simple translation from program source to a
decidable Tarski formula. However this approach gives no indication of the run-
time cost for a function. For example, if we started assuming the program was
polynomial, the algorithm indicates that we should try a degree-2 assumption,
followed by a degree-3 assumption and so on. There is no indication as to when
we should give up. Towards this, we consider a flattened version of the original
program source, in which an arbitrary collection of functions is flattened into a
single function which calls itself. This new flattened source can be easily char-
acterized as a recurrence relation, and the solutions to the recurrence relations
give indications of the maximum polynomial degree.

In addition this presentation highlights a particular class of exponential programs
that can be solved.

A flattened version of an arbitrary program is easily derived in the absence of
mutual recursion. However, in the case of mutually recursive functions, it is
not as clear how a program may be transformed. The papers [19, 12] contain
necessary and sufficient conditions to transform all mutual recursion to direct or
self-recursion.

Supposing that our programs are transformed into equivalent programs which
are using only self-recursion, we can define a self-recursive normal form over a
representation of the state of the program variables at any time. Consider an
m-dimensional array a, indexed by the values of parameters n1 . . . nm to the
self-recursive program p(n1 . . . nm):

Definition 5. The array an1,...,nm
is in linear self-recursive normal form iff it

is defined as:

an1,...,nm = af1(n1,...,nm),...,fm(n1,...,nm) + g(n1, ..., nm) (1)

where fi(n1, ..., nm) = ki,1·n1+. . .+ki,m·nm+ki,m+1, ∀ki,j ∈ <, ∀i ∈ {1, . . . ,m},
∀j ∈ {1, . . . ,m+ 1}, and g(n1, ..., nm) = k1 · n1 + . . .+ km · nm + km+1.

The above recurrence (1) is supposed to iterate for an arbitrary finite number
of times, say `. We shall explore the expression obtained from (1) after applying
the substitution ni → fi(n1, . . . , nm), ∀i ∈ {1, . . . ,m} for ` times.

Theorem 2. All linear self-recursive normal forms have a solution.

Proof. (By construction). Denoting by n the vector (n1, . . . , nm), the first iter-
ation of (1) leads to:

af1(n),...,fm(n) = af1(f1(n),...,fm(n)),...,fm(f1(n),...,fm(n))) + g(f1(n), ..., fm(n)) (2)

12

In order to write this more compactly, let us inductively define the notations〈
f

(1)
1,m(n)

〉
def
= (f1(n), ..., fm(n))〈

f
(`)
1,m(n)

〉
def
=

(
f1

(〈
f

(`−1)
1,m (n)

〉)
, . . . , fm

(〈
f

(`−1)
1,m (n)

〉))
for ` ≥ 2

where
〈
f

(1)
1,m(n)

〉
is a compressed form of 〈f1,m ◦ ... ◦ f1,m(n)〉, and “◦” stands

for the function composition. In this way, the recurrence (2) can be re-written
as:

a〈
f
(1)
1,m(n)

〉 = a〈
f
(2)
1,m(n)

〉 + g
(〈
f

(1)
1,m(n)

〉)
(2a)

The given substitution can be further applied `− 1 times, to obtain:

a〈
f
(`−1)
1,m (n)

〉 = a〈
f
(`)
1,m(n)

〉 + g
(〈
f

(`−1)
1,m (n)

〉)
(`)

By combining the recurrences (1) . . . (`), we obtain an expression for an:

an = a〈
f
(`)
1,m(n)

〉 + g
(〈
f

(1)
1,m(n)

〉)
+ . . .+ g

(〈
f

(`−1)
1,m (n)

〉)
(I)

By replacing fi(n1, ..., nm) with ki,1 ·n1+. . .+ki,m ·nm+ki,m+1, ∀i ∈ {1, . . . ,m},
we get the general form: 〈

f
(l)
1,m(n)

〉
= (E1,`, . . . , Em,`)

where Ei,l is:

m∑
il=1

...

m∑
i1=1

ki,i1 ·. . .·kil−1,il ·nil+

m∑
il−1=1

...

m∑
i1=1

ki,i1 ·. . .·kil−1,m+1+. . .+

m∑
i1=1

ki,i1 ·. . .·ki1,m+1

We have established a solution for all recurrences of the self-recursive normal
form defined before, and this confirms the completeness for this class of recursive
programs. �

For ease of presentation, and in order to see the complexity of an from (I), let
us highlight only the last (dominant) term. It is:

g
(〈
f

(`−1)
1,m (n)

〉)
= k1 · E1,l−1 + . . .+ km · Em,l−1 + km+1

Looking at the general form of the dominant term, namely

ki ·
m∑

il−1=1

...

m∑
i1=1

ki,i1 · . . . · ki`−1,m+1 + . . .+

m∑
i1=1

ki,i1 · . . . · ki1,m+1

we observe that very few cases correspond to a polynomial as an expression for
an. Because of the large number of coefficients in the expression of an, it is almost
impossible to provide a precise boundary between the cases when an is a poly-
nomial and when it is an exponential. However, the formula does immediately
give the following classifications:

13

1. if ∀i ∈ {1, . . . ,m}, we have ki = 0, then an = ` · km+1 is a polynomial in `
of degree 1;

2. if m = 1 then

(a) if k1,1 = 1 then an is a polynomial of degree 2;
(b) if k1,1 6= 1 then an is an exponential of base k1,1.

3. if ∃i ∈ {1, . . . ,m} such that ki 6= 0 and ∃u, v ∈ {1, . . . ,m} such that ku,v /∈
{0, 1} then an contains at least one exponential of base ku,v.

The third classification above covers a considerable number of situations when
an is an exponential.

A useful slight generalization of recurrence (1) can be done by taking g as a
non-linear polynomial. It is easy to see that if m = 1, and k1,1 = 1, then for a
polynomial g of degree k, the solution of an is a polynomial of degree k + 1. In
this way, we enlarge the class of self-recursive normal form equations.

5.1 A case-study

Let us take a useful example which corresponds to particular values for m, fol-
lowed by a practical application of its use in computing the runtime of a given
program.

When trying to compute the runtime cost of p3, we get the following identities,
formed by a guard and a recurrence relation:

x 6= 0 ∧ n ≥ 1 implies B(x, y, n) = B(x− 1, y, n) + 1

x = 0 ∧ n > 1 implies B(x, y, n) = B(2y + n, 2y, n− 1) + 1

By inspection of the first identity, and by iterating x → x − 1 for x times,
we get B(x, y, n) = B(0, y, n) + x. By applying the second identity, we have
B(0, y, n) = B(2y + n, 2y, n− 1) + 1 = B(0, 2y, n− 1) + 2y + n+ 1. We rewrite
this latter identity, omitting the first argument (without loss of generality), to
the equivalent recurrence relation:

ay,n = a2y,n−1 + 2y + n+ 1

This is a particular instance of recurrence (1), where m is replaced by y, and
f(n,m) = 2m, g(n,m) = 2m + n + 1. Since k1 = 2, the solution of ay,n is an
exponential (case 2(b)). This implies that our automated tool should be fed with
an input having a generic form like this:

B(p3) = φ1 ·Kφ2 + φ3

This allows for a runtime with quite a complex exponential form.

14

6 Exponential cost calculations

Having established a classification of program costs, we now revert to the original
approach, where we assume an exponential runtime A for the program, initially
for a base of K, and using polynomials of (say) degree 2. The assumed runtime
is A(p3) = φ1 ·Kφ2 + φ3, where φ1, φ2 and φ3 are three polynomials of degree 2.

The three polynomials bear a peculiar relationship to each other due to the
linearity of the parameter relationships. For example, for any single recursive
call path, since the changes in the parameters are linear, then the runtime for
this call path cannot be exponential. As a result of this, for any single recursive
call path, φ3[ψ]−φ3+1 = 0, and in the case of a base of K, the following relation
holds:

(φ1[ψ] = φ1 ∧ φ2[ψ] = φ2)
∨ (φ1[ψ] = Kφ1 ∧ φ2[ψ] = φ2 − 1)
∨ (Kφ1[ψ] = φ1 ∧ φ2[ψ] = φ2 + 1)

This relationship between the polynomials may be exploited by constructing the
equations in a similar form to the previous presentation, solving them in a similar
manner, and finally deriving a sample solution. The redlog package is used to
define

φ1 = c1x
2 + c2y

2 + c3n
2 + c4xy + c5xn+ c6yn+ c7x+ c8y + c9n+ c10

φ2 = c11x
2 + c12y

2 + c13n
2 + c14xy + c15xn+ c16yn+ c17x+ c18y + c19n

φ3 = c21x
2 + c22y

2 + c23n
2 + c24xy + c25xn+ c26yn+ c27x+ c28y + c29n+ c30

A = φ1 ·Kφ2 + φ3

The substitutions [ψ3a] = [x 7→ x−1] and [ψ3b] = [x 7→ 2y+n, y 7→ 2y, n 7→ n−1]
for the two paths are applied to φ1, φ2 and φ3, yielding the primed polynomials,
and the equation T [A(p3)] for program p3 may be written as:

∀x, y, n :

(
x, y > 0

∧ n ≥ 0

)
⇒


φ3[ψ3a]− φ3 + 1 = 0

∧ (φ1[ψ3a] = φ1 ∧ φ2[ψ3a] = φ2)
∨ (φ1[ψ3a] = Kφ1 ∧ φ2[ψ3a] = φ2 − 1)
∨ (Kφ1[ψ3a] = φ1 ∧ φ2[ψ3a] = φ2 + 1)




∧

 x = 0
∧ y > 0
∧ n ≥ 0

 ⇒


(φ3[ψ3b]− φ3 + 1 = 0)

∧ (φ1[ψ3b] = φ1 ∧ φ2[ψ3b] = φ2)
∨ (φ1[ψ3b] = Kφ1 ∧ φ2[ψ3b] = φ2 − 1)
∨ (Kφ1[ψ3b] = φ1 ∧ φ2[ψ3b] = φ2 + 1)





T [A(p3)] is easily reduced by redlog, giving a family of solutions for the bounds:

A(p3) = αy2n +
1

2
n2 +

3

2
n+ x− 2y + c30

where α indicates that any value here might be a solution, and c30 is unknown.
To constrain the solution further, we add in boundary cases for the system, for
example A(p3(0, 1, 1)) = 0, A(p3(0, 2, 1)) = 0, giving:

B(p3) = y2n +
1

2
n2 +

3

2
n+ x− 2y − 2

15

6.1 Another example

Despite the simplicity of program p2 introduced in subsection 4.1, a translation to
a single-term recurrence is not obvious. The function would have to be flattened,
generating extra guards and program parameters. However, the QE formulation
is still automatic and simple, deriving the equation for the runtime cost T [A(p2)]:

∀x, y : (x = 0 ∧ y ≥ 1) ⇒ (φ2[ψ2a] + φ3[ψ2b]− φ3 + 2 = 0)

∧ (x ≥ 10 ∧ y ≥ 0) ⇒


(φ3[ψ2c]− φ3 + 1 = 0)

∧ (φ1[ψ2c] = φ1 ∧ φ2[ψ2c] = φ2)
∨ (φ1[ψ2c] = Kφ1 ∧ φ2[ψ2c] = φ2 − 1)
∨ (Kφ1[ψ2c] = φ1 ∧ φ2[ψ2c] = φ2 + 1)





Given two independent base cases, redlog immediately finds the runtime cost:

B(p2) = 4 ∗ 2y + x− y − 4

We have found it relatively easy to automatically derive exponential runtimes
for programs like these, with polynomials of small degree.

7 Conclusion

In this paper, we have shown a technique for calculating precise bounds on the
runtime of a class of programs, which are known to terminate. The technique
begins with an assumption of the form and degree of the runtime, and is complete
in the sense that if the program p is LA-SCT, and if the runtime is of the form
Bk(p), then a solution will be found.

The technique has application in the areas of precise runtime analysis, stack
depth analysis for embedded systems, and in calculations of the relative execution
path time (for compiler optimization).

We have shown that the technique is safe and complete for the particular class
of programs we have considered. In addition, we have presented an approach
to classifying the costs into either polynomial or exponential time costs using
a recurrence-relation complexity analysis. This outlined a particular form of
exponential time-costs that can be relatively easily solved. In the case of the
limited class of exponential time-costs, these solutions may still be expressed
in terms of some unknowns, but these unknowns are resolved immediately by
considering independent boundary cases for the function.

Acknowledgments: We thank Professor Neil Jones for initially proposing the
form of this challenging problem [10].

16

References

1. H. Anderson and S.C. Khoo. Affine-based Size-change Termination. In Atsushi
Ohori, editor, APLAS 03: Asian Symposium on Programming Languages and Sys-
tems, pages 122–140, Beijing, 2003. Springer Verlag.

2. T. Ball and J.R. Larus. Branch Prediction For Free. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 300–313, 1993.

3. B.F. Caviness and J.R. Johnson (eds.). Quantifier Elimination and Cylindrical
Algebraic Decomposition. Springer, 1998.

4. G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Al-
gebraic Decomposition. In H. Brakhage, editor, Automata Theory and Formal
Languages, volume 33, pages 134–183, Berlin, 1975.

5. A. Dolzmann and T. Sturm. REDLOG: Computer algebra meets computer logic.
SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manip-
ulation), 31(2):2–9, 1997.

6. H. Hong et al. http://www.cs.usna.edu/~qepcad/B/QEPCAD.html.
7. B. Grobauer. Cost Recurrences for DML Programs. In International Conference

on Functional Programming, pages 253–264, 2001.
8. M. Hofmann. Linear Types and Non-Size-Increasing Polynomial Time Computa-

tion. In Logic in Computer Science, pages 464–473, 1999.
9. H. Hong. RISC-CLP(Real): Constraint Logic Programming over Real Numbers. In

F. Benhamou and A. Colmerauer, editors, Constraint Logic Programming: Selected
Research. MIT Press, 1993.

10. N. Jones. Private communication. June 2003.
11. D. Kapur. Automatically Generating Loop Invariants Using Quantifier Elimina-

tion. In Proceedings of the 10th International Conference on Applications of Com-
puter Algebra. ACA and Lamar University, July 2004.

12. O. Kaser, C. R. Ramakrishnan, and S. Pawagi. On the Conversion of Indirect to
Direct Recursion. LOPLAS, 2(1-4):151–164, 1993.

13. S.C. Khoo and H. Anderson. Bounded Size-Change Termination. Technical Report
TRB6/05, National University of Singapore, June 2005.

14. C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The Size-Change Principle for Pro-
gram Termination. In Conference Record of the 28th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, volume 28, pages
81–92. ACM press, January 2001.

15. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-
gramming. The MIT Press, 2003.

16. D. Sands. Complexity Analysis for a Lazy Higher-Order Language. In Proceedings
of the Third European Symposium on Programming, number 432 in LNCS, pages
361–376. Springer-Verlag, May 1990.

17. S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loop invariant gener-
ation using Gröbner bases. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy,
January 14-16, 2004, pages 318–329, 2004.

18. A. Tarski. In A decision method for elementary algebra and geometry. Prepared
for publication by J.C.C. Mac Kinsey. Berkeley, 1951.

19. T. Yu and O. Kaser. A Note on“On the Conversion of Indirect to Direct Recursion”.
ACM Trans. Program. Lang. Syst., 19(6):1085–1087, 1997.

17

A More examples

The following extra examples illustrate a range of programs operating over nat-
urals, with their automatically generated runtime costs.

Program 4:

p4(x, y) = if (y ≤ 0) then
g(x, 0)

else
p4a(x+ 1, y − 1);

g(x, y) = if (x ≤ 0) then
~ // ... exit ...

else
g(x− 1, y + 1);

The solution returned by redlog is that B2(p4) = x+ 1
2y

2 + 3
2y + 1.

Program 5:

p5(x, y) = f(x, y, y + 1);
f(x, y, z) = if (y = z ∧ x > y − z) then

fa(x− 1, y, z)
else if (x = y − z ∧ y 6= 0) then

fb(−x, y − 1, z)
else if (x < y ∧ y 6= 0) then

fc(x+ 1, y, z)
else if (y < z ∧ x = y) then

fd(x, y, y)
else

~ ; // ... exit ...

The solution returned by redlog is that B2(p5) = y2 + 3y − x+ 1.

Program 6:

p6(x, y, z) = if (x 6= 0 ∧ z ≥ 1) then
p6a(x− 1, y + 1, z)

else if (x = 0 ∧ z ≥ 1) then
p6b(2y, 2y, z − 1)

else
~ // ... exit ...

The solution returned by redlog is that B2(p6) = 1
6 ((x+y)4z+6z+2x−4y−6).

Program 7:

With a refinement of our approach not explored in this paper, we can also derive
minimum values for costs, not just polynomial or restricted exponential costs.
For example:

p7(x, y) = if (x ≥ 1 ∧ y ≥ 1) then
p7a(x− 1, y − 1)

else
~ // ... exit ...

The solution returned by redlog is that B2(p7) = min(x, y).

18

