
Appears in IEEE Micro§

† Most of this work was done while the authors were at EPFL.

* The work was partially funded by the NanoTera project “YINS.”

§ Copyright © 2016 IEEE. This is the author’s preprint version of the work. The final version of the work will appear in IEEE Micro, 2016.

Fat Caches for Scale-Out Servers*

Stavros Volos† Djordje Jevdjic† Babak Falsafi Boris Grot

Microsoft Research University of Washington EcoCloud, EPFL University of Edinburgh

Abstract

Emerging scale-out servers are characterized by massive memory

footprints and bandwidth requirements. On-chip stacked DRAM

caches have been proposed to provide the required bandwidth for

manycore servers through caching of secondary data working sets.

However, the disparity between provided capacity and working set

sizes precludes their effective deployment in servers, calling for

high-capacity cache architectures. High-capacity caches—enabled

by the emergence of high-bandwidth memory technologies—exhibit

high spatio-temporal locality due to coarse-grained access

patterns and long cache residency periods stemming from skewed

dataset access distributions. The observed spatio-temporal

behavior favors a page-based organization that naturally exploits

spatial locality while minimizing tag storage requirements and

enabling a practical in-SRAM tag array architecture. By storing

tags in SRAM, caches avoid the complexity of in-DRAM metadata

found in state-of-the-art DRAM caches.

1. Introduction
Scale-out datacenters host a variety of data-intensive

services, such as search and social connectivity. To

concurrently support billions of users, latency-sensitive

online services and analytic engines creating user-specific

content (e.g., advertisements and recommendations) rely on

large amounts of memory to minimize dataset access

latency. The ever-growing popularity of the in-memory

computing paradigm—which will be further broadened by

the emergence of non-volatile memory—leads to datacenter

deployments in which memory accounts for a big share of

the datacenter's total cost of ownership (TCO) [1].

Optimizing for datacenter's TCO calls for customized

architectures that maximize compute density. Following a

considerable amount of research, identifying the

requirements of scale-out workloads, and indicating that

these workloads benefit from thread-level parallelism and

fast access to multi-megabyte instruction footprints [2] [3],

industry has started employing specialized manycore

processors with modestly-sized last-level caches (e.g.,

Cavium ThunderX, EZchip Tile-MX) due to the substantial

performance and TCO advantages offered by specialization.

Memory systems in scale-out servers are of paramount

importance as they need to sustain the vast bandwidth

demands of manycore CMPs [3] [4]. Recent advances in on-

chip stacked DRAM technology [5] eliminate the bandwidth

bottleneck that plagues conventional DRAM. As this

technology is capacity-limited due to thermal constraints,

prior research advocates for using it as a cache to provide

access to secondary data working sets [4] [6] [7] [8].

Our analysis shows that on-chip stacked DRAM caches are

unattractive for scale-out servers. We find that memory

accesses follow power-law distributions so that a hot portion

of memory (~10%) accounts for the majority of accesses

(65–95%). Thus, while the vast working sets of scale-out

workloads are amenable to caching, high-capacity caches

(10s of GB) are required given main memory sizes trending

toward 100s of GB. The required cache capacities greatly

exceed those of low-capacity caches, including on-chip

stacked DRAM caches.

This work seeks to develop a scalable, high-capacity, and

high-bandwidth memory system for scale-out servers by

leveraging emerging high-bandwidth memory modules as a

high-capacity cache. High-bandwidth interconnect

technologies allow for connecting the processor to multiple

high-bandwidth memory modules via a silicon interposer

(e.g., Hynix HBM) forming an on-package cache, or high-

speed serial links (e.g., Micron HMC) forming an off-

package cache.

In contrast to prior stacked DRAM cache proposals, which

advocate for block-based [7] [8] and sector-based

organizations [4] [6], we find that page-based organizations

are favored in scale-out servers. High-capacity caches—

effective in capturing the secondary data working sets of

scale-out workloads—uncover significant spatio-temporal

locality across dataset objects due to long cache residency

periods. The improved spatio-temporal locality allows for

employing a page-based cache organization, thereby

minimizing tag storage requirements and enabling a

practical in-SRAM tag array architecture, which can be

implemented in the logic die of the high-bandwidth memory

modules. This design offers fundamental complexity

advantages over state-of-the-art DRAM caches, which

suffer from high tag/metadata overheads that mandate in-

DRAM storage.

2

Table 1. Requirements of one scale-out server.

Year Processor Memory System

 Cores Bandwidth Bandwidth Capacity

2015 96 115 GB/s 288 GB/s 384 GB

2018 180 216 GB/s 540 GB/s 720 GB

2021 320 384 GB/s 960 GB/s 1280 GB

2. Emerging Scale-Out Servers and DRAM
Technologies
In this section, we examine the memory requirements of

emerging scale-out servers and also review the features of

emerging DRAM technologies.

2.1. Scale-Out Server Requirements
Processor and system vendors resort to manycore processors

(e.g., Cavium ThunderX) to boost server throughput and

rely on buffer-on-board chips (e.g., Cisco’s extended

memory technology [9]) to increase memory capacity. In

doing so, datacenter operators can deploy fewer servers for

the same throughput requirements and dataset size, thus

lowering TCO significantly [9] [10].

We quantify the memory bandwidth and capacity

requirements of emerging scale-out servers for various

manufacturing technologies in Table 1. Our configuration

maximizes throughput by integrating maximum number of

cores for a given die area and power budget of 250–280

mm2 and 95–115 Watt. The modeled organization resembles

that of manycore servers, such as Cavium ThunderX.

Bandwidth. We measure processor's off-chip bandwidth

demands by scaling per-core bandwidth consumption with

the total number of cores. We measure per-core bandwidth

by simulating a 16-core server finding that per-core

bandwidth ranges from 0.4GB/s to 1.2GB/s. Peak

bandwidth demands are 115GB/s (2015), 216GB/s (2018),

and 384GB/s (2021).

High bandwidth utilization levels can adversely impact end-

to-end memory latency due to heavy contention on memory

resources. As performance of scale-out services is

characterized by tail latencies, memory latency and queuing

delays must be minimized. Thus, system designers over-

provision memory bandwidth to ensure low utilization

(<40%) and avoid queuing [2]. As such, memory systems

need to supply 288GB/s (2015), 540GB/s (2018), and

960GB/s (2021). Such requirements exceed the capabilities

of conventional DRAM systems by 5.5–7.5x.

Capacity. We estimate required memory capacity by

examining various system deployments. Today, data

analytic engines are provisioned with 2–8GB per core

(Cloudera), web search engines deploy 64GB for 16 cores

(Microsoft Bing) while web and streaming servers require

1–2GB per core [2]. With the emergence of extended

memory technology and non-volatile memory, we anticipate

that datacenter operators will continue deploying 4GB of

per-core memory cost-effectively, resulting in deployment

of several 100s of GB of memory per server.

2.2. Emerging DRAM Technologies
Stacked DRAM can provide an order of magnitude higher

(memory core) bandwidth than conventional DRAM due to

dense through-silicon vias. It also offers low latency and

low DRAM energy due to reduced wire spans and smaller

page sizes. However, existing deployment options for

stacked DRAM fail to satisfy the joint capacity, bandwidth,

and power requirements mandated by scale-out servers.

Next, we review the deployment options for stacked DRAM

and their respective limitations.

On-Chip and On-Package Stacked DRAM. Through-silicon

vias provide high-bandwidth connectivity between the

processor and on-chip stacked DRAM. Thermal constraints,

however, limit the number of DRAM stacks that can be

integrated on top of the processor, confining On-Chip

Stacked DRAM to sizes that are two-to-three orders of

magnitude smaller than the memory capacity demands of

servers. Similarly, the high cost of big packages and area-

intensive silicon interposers limit the number of stacked

DRAM modules in On-Package Stacked DRAM systems.

When combined with the thermally-constrained capacity of

a few GB per module, an On-Package DRAM solution fails

to provide the requisite memory capacity for servers.

Off-Package Stacked DRAM. High-speed serial interfaces

can break the bandwidth wall by connecting the processor to

multiple Off-Package Stacked DRAM modules. The high

signal integrity of serial interfaces allows for achieving an

order of magnitude higher data rates than DDR with the

same number of pins.

Although off-package stacked DRAM systems deliver much

greater memory capacity than on-chip and on-package

stacked DRAM systems, there are two main factors that

prevent such systems from replacing conventional DRAM.

First, serial channels impose high idle power as keep-alive

packets must be sent at frequent intervals to maintain lane

alignment across the channel's lanes. Second, thermal

constraints limit the number of stacked layers per module

and necessitate a blade-level network of these modules for a

big-memory server. Such a network comes at the cost of

high idle power consumption due to the use of many serial

links resulting from a multi-hop chip-to-chip network.

2.3. State-of-the-art DRAM Caches
Given the disparity between memory capacity requirements

and the capacity provided by emerging DRAM

technologies, most proposals advocate employing stacked

3

DRAM as a cache to filter accesses to main memory. State-

of-the-art cache proposals leveraging mainly On-Chip

Stacked DRAM have to contend with relatively high miss

rates due to its limited capacity. As a result, they are

primarily optimized for low cache-memory bandwidth

utilization through block-based organizations [7] [8], sector-

based footprint-predicting organizations [4] [6], and

address-correlated filter-based caching mechanisms [11].

Unfortunately, such organizations come with high

tag/metadata overhead and high design complexity, making

such cache designs impractical. For instance, state-of-the-art

block-based and footprint-predicting caches require 4GB

and 200MB of tags, respectively, for a capacity of 32GB.

Due to the prohibitive tag array overhead, recent proposals

implement the tag array in DRAM [6] [7] [8]. In-DRAM tag

arrays, however, require substantial engineering effort,

making state-of-the-art caches less attractive. In addition,

footprint-predicting caches [4] [6] rely on instruction-based

prediction. However, the program counter of an instruction

is not available in the memory hierarchy, thus requiring the

core-to-cache transfer of the program counter for all

memory references, further increasing design complexity.

3. Memory Access Characterization of
Scale-Out Servers
High-bandwidth memory modules are an ideal building

block for a high-capacity high-bandwidth cache. However,

state-of-the-art DRAM caches are hindered by the need to

keep metadata in DRAM. In this section, we study the

application characteristics that enable architecting an

effective, practical, and scalable cache.

3.1. Temporal Characterization
We examine the memory access distribution of scale-out

applications by looking at the characteristics of the

dominant types of memory accesses.

Dataset accesses. We examine the dataset object popularity

(i.e., how frequent a dataset object is accessed) of search

query terms (AOL), tweets (Twitter), videos (Youtube), and

web pages (Wikipedia) based on publicly available data.

Figure 1 plots the probability for a dataset object to be

referenced as a function of popularity, showing that the

dataset object popularity is highly skewed with a small set

of dataset objects (10–20%) contributing to most of the

dataset object accesses (65–80%). For instance, a small

fraction of users and their pictures account for most of the

user traffic in picture sharing services, such as Flickr. Due

to power-law popularity distributions, dataset accesses in

data stores, object caching systems, streaming servers, web

search engines, and web servers exhibit power-law

distributions.

Accesses to dynamically allocated memory. Server

applications frequently access dynamically allocated

memory with high temporal reuse. Examples include:

¶ Server applications utilize software caches to keep a set

of hot objects—e.g., rows in data stores and compiled

script code in web servers. As they host dataset-

relevant data/metadata, the distributions of their

accesses will follow those of the datasets.

¶ Server applications and operating systems employ

various data structures per client/network connection,

such as buffers for media packets in streaming servers

and OS data structures storing TCP/IP state. The large

number of concurrent connections in manycore CMPs

results in a footprint that dwarfs on-chip cache

capacity. The reuse of these structures is high as they

are accessed multiple times during a connection.

The skew in object popularity and temporal reuse of

dynamically allocated memory is expected to be mirrored in

the memory access distribution. To confirm this, we

examine the memory access distribution of a simulated 16-

core scale-out server. To estimate the hot memory footprint

Figure 1. Dataset object popularity exhibits power-law

distribution. Please note that power-law relationships show
linear trends in log-log scale.

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+0 1E+1 1E+2 1E+3 1E+4

A
c
c
e
s
s
 F

re
q

u
e

n
c
y

Dataset Object Rank

AOL Twitter

Youtube Wikipedia

10
 0

10
-1

10
-2

10
-3

10
-4

10
-5

10
 1
 10

 2
 10

 3
 10

 4
 10

 0

10
-6

0%

25%

50%

75%

100%

00.00781250.0156250.02343750.031250.03906250.0468750.05468750.06250.07031250.0781250.08593750.093750.10156250.1093750.11718750.125

C
a
c
h

e
 M

is
s
 R

a
ti

o

Cache-to-Memory Capacity Ratio

Data Analytics Data Serving

Media Streaming Online Analytics

Web Serving

1:128 1:64 1:32 1:16 1:8

Figure 2. Miss ratio for various Cache-to-Memory Capacity
Ratios. Lines denote x-shifted power-law fitting curves.

4

of scale-out applications, we employ a state-of-the-art

DRAM cache and measure its miss ratio for various

capacities [8].

Figure 2 plots the cache miss ratio for various Cache-to-

Memory Capacity Ratios. The markers denote

measurements while contiguous lines show x-shifted power-

law fitted curves. The figure shows that memory accesses

are skewed so that 6.25–12.5% of the memory footprint

accounts for 65–95% of total accesses. The figure confirms

that existing low-capacity caches (left points), such as on-

board SRAM caches (IBM Centaur), on-package eDRAM

caches, and on-chip stacked DRAM caches cannot exploit

temporal locality in scale-out servers. In extreme cases, such

as Data Serving and Online Analytics, on-chip stacked

DRAM caches are bandwidth-constrained with less than

40% of memory accesses filtered. We thus conclude that the

combination of poor cache performance and technological

complexity of die stacking limits the usefulness of on-chip

stacked DRAM caches in servers.

3.2. Spatial Characterization
Scale-out applications often operate on bulk objects (e.g.,

database rows), thus exhibiting a high incidence of coarse-

grained accesses [12]. To allow for retrieving an object in

sub-linear time, objects are pinpointed through pointer-

intensive indexing structures, such as hash tables and trees.

For instance, data stores and object caching systems use a

hash table to retrieve data objects. While objects are

accessed at coarse granularity, finding them requires

performing a sequence of pointer dereferences. Thus, a non-

negligible fraction of accesses are fine-grained [12].

We examine the granularity at which high-capacity (HC)

caches access memory by measuring the access density at

which page-sized lines are fetched from and written back to

memory in Figure 3. We define page access density as the

fraction of 64-byte blocks within a page accessed between

the page's first access and the page's eviction from the

cache. We use a page of 2KB as it reduces the tag array size

significantly with limited tolerance for overfetch. Thus,

fine-grained pages have low access density (up to 8 unique

cache blocks accessed) while coarse-grained pages have

high access density (at least 24 unique cache blocks

accessed). For comparison, we include a low-capacity

cache, labeled as Die-Stacked (DS).

We find that Die-Stacked exhibits bimodal memory access

behavior—i.e., fine-grained and coarse-grained accesses

account for 21% and 68% of accesses, respectively. While

coarse-grained accesses are prevalent, the frequent

incidence of fine-grained accesses must also be

accommodated effectively. Due to the limited capacity of

on-chip stacked DRAM caches, pointer-containing pages

show low temporal reuse and are frequently evicted. To

avoid massive bandwidth waste in accesses to such pages,

state-of-the-art DRAM caches rely on block-based or sector-

based footprint-predicting organizations that are bandwidth-

frugal, but carry a high metadata storage cost.

In contrast, high-capacity caches exhibit coarse-grained

memory access behavior—i.e., 93% of all accesses. This

behavior is attributed to two phenomena. First, the lifetime

of pages in the cache is on the order of 10s to 100s of

milliseconds. Thus, pages containing a collection of fine-

grained objects (e.g., hash bucket headers) can enjoy spatial

locality uncovered through long cache residency times,

stemming from skewed access distributions. Second, low-

access-density pages containing pointer-intensive indexing

structures with good temporal reuse (e.g., intermediate tree

nodes) are preserved across accesses.

3.3. Summary
Our study demonstrates that high-capacity caches are

needed to capture the skewed memory access distributions

of servers. We also find that the improved spatio-temporal

behavior of high-capacity caches offers an opportunity to

use a simple page-based organization, thus avoiding the

storage and complexity overheads associated with state-of-

the-art stacked DRAM caches.

4. Memory System Architecture for Scale-
Out Servers
We present MeSSOS, a Memory System architecture for

Scale-out Servers that provides the required bandwidth and

capacity for a scale-out server. High bandwidth is delivered

through caching of data working sets in a high-capacity

Scale-Out Cache (soCache), which consists of multiple off-

package stacked DRAM modules. High memory capacity is

achieved through the deployment of multiple conventional

(DDR-based) DIMMs.

Figure 3. Granularity at which page-sized lines are fetched

(F) from and written back (WB) to DRAM for Die-Stacked
(DS) and high-capacity cache (HC) of 1:128 and 1:8
Cache-to-Memory Capacity Ratio, respectively.

0%

25%

50%

75%

100%
F

W
B F

W
B F

W
B F

W
B F

W
B F

W
B F

W
B F

W
B F

W
B F

W
B F

W
B F

W
B

DS HC DS HC DS HC DS HC DS HC DS HC

Data
Analytics

Data
Serving

Media
Streaming

Online
Analytics

Web
Search

Web
Serving

M
e

m
o

ry
 A

c
c

e
s

s
e

s fine (≤25%) other (25−75%) coarse (≥75%)

5

Figure 4 shows the design overview. In MeSSOS, an on-

board building block consists of an soCache slice fronting a

set of conventional DIMMs. The design of each building

block (e.g., serial link and DDR bandwidth, cache-to-

memory capacity ratio) is guided by our memory access

characterization. Capacity and bandwidth can be seamlessly

scaled by adjusting the number of building blocks. Next, we

examine the soCache architecture and its integration with

the rest of the system.

4.1. soCache Architecture
MeSSOS utilizes multiple off-package stacked DRAM

modules as a high-capacity cache. To avoid communication

between soCache slices, memory addresses are statically

interleaved across the slices. Figure 5a shows the

organization of an soCache slice. As shown in the figure,

stacked DRAM is internally organized as a set of vaults,

which are connected to the serial link via an interconnect.

Cache organization. soCache uses a page-based

organization leveraging the observation that high-capacity

caches uncover spatial locality that is beyond the temporal

reach of lower-capacity caches. The page-based design not

only naturally captures spatial locality, but also minimizes

metadata storage requirements over block-based and

footprint-predicting designs thanks to smaller tag entries

and/or fewer cache sets. The page-based design also reduces

dynamic DRAM energy by exploiting DRAM row buffer

locality and fetching the entire page with one DRAM row

activate, thus minimizing the number of DRAM row

activates, which dominate energy consumption in

conventional DRAM [12].

Based on page-size sensitivity analysis, we find that a page

size of 2KB offers a good trade-off between tag array size

and bandwidth overhead stemming from overfetch. We also

observe that low associativity (4-way in the preferred

design) is sufficient for minimizing the incidence of

conflicts while also reducing tag and LRU metadata costs.

Tag array. The page-level organization reduces the tag array

overhead significantly. For instance, a soCache of 32GB,

consisting of eight 4GB slices, requires 5MB of tags per

slice, or 20mm2 in 40nm technology (obtained using

CACTI).1 The small tag array size allows us to embed it in

the logic die of the modules comprising soCache. These

logic dies are under-utilized, typically housing per-vault

memory controllers, an on-chip interconnect, and off-chip

I/O interfaces and controllers. In our specialized HMC,

these components occupy ~70mm2 in 40nm technology

(estimated by scaling die micrographs) leaving sufficient

room for the tags on a typical HMC logic die (~100mm2).

To enable low tag lookup latency, we distribute the tag array

across the high-bandwidth memory module, placing each

tag array slice beneath a vault. For a 4GB soCache slice,

each slice of the in-SRAM tag array requires only 320KB of

storage and 3–4 cycles of access latency (obtained using

CACTI). Low associativity and small in-SRAM tags allow

for searching the ways in parallel at small latency and

energy overheads, allowing for a feasible and practical a

set-associative cache organization.

4.2. Processor-soCache Interface
The processor is connected to soCache via high-bandwidth

serial links. Both processor and soCache slices implement

simple controllers to orchestrate communication (Figure 4).

The controllers consist of a pair of queues to buffer

incoming and outgoing packets, and a SerDes interface.

Processor-side controllers serialize outgoing requests into

packets, before routing them to the soCache slice based on

corresponding address bits (Figure 5b), and deserialize

incoming data and forwards them to the last-level cache. An

soCache-side controller deserializes incoming memory

requests and forwards them to the vault's soCache controller

based on corresponding address bits (Figure 5b), and

serializes outgoing data into packets and forwards them to

the processor.

As scale-out workloads exhibit variable read-write ratios

[12], each serial link consists of 16 request lanes and 16

response lanes. Thus, a serial link requires ~70 pins (control

1 Per soCache slice, a 4-way cache consists of 32K sets per vault,

occupying 320KB of tags. Tag entries are 20-bit; 15 bits for the tag, 2
page-level valid and dirty bits, 3 bits for maintaining the pseudo-LRU tree.

 (a) Logic die organization (b) Tag array architecture

Figure 5. The organization of an soCache slice.

Figure 4. MeSSOS overview.

6

and double-ended signalling for data lanes) as opposed to a

DDR channel, which requires ~150 pins. The lower number

of per-serial-link pins allows for integrating a high number

of processor-side SerDes channels without increasing the

number of the processor's pins compared to a processor with

DDR channels, thereby keeping the cost associated with the

processor's packaging constant.

4.3. soCache-Main Memory Interface
The off-package high-bandwidth memory modules provide

the communication bridge between processor and main

memory. Memory requests that miss in soCache are

forwarded directly to local memory modules. To do so, the

soCache slice integrates DDR controllers to control the local

DDR channels, requiring the implementation of the DDR

PHY and protocol in the logic die of the soCache modules.

DDR channels. Thanks to the high degree of bandwidth

screening provided by soCache, the DDR channels operate

at low frequency to reduce idle power. Compared to

conventional HMCs hosting four SerDes interfaces, each of

our specialized HMC hosts only one SerDes interface (of

area ~9mm2 and power 1.5Watt), freeing up area and power

resources for the required low-frequency DDR interfaces

(~10mm2 each). Our estimates show that the power

consumption of an soCache slice lies within the power

budget of conventional HMCs. The total number of pins

required by each soCache slice matches that of on-board

chips in buffer-on-board systems.

DDR controllers. They employ FR-FCFS open-row policy

with page-level address interleaving. We map an entire

soCache's page-sized cache line to one DRAM row by using

the following addressing scheme Row:ColumnHigh:Rank:

Bank:LocalChannel:soCacheSlice:ColumnLow:WordOffset,

where ColumnHigh(ColumnLow) is 2(8) bits. To guarantee

that requests missing in an soCache slice are served by local

DRAM, the mapping scheme interleaves addresses across

local channels using the least significant vault bit.

4.4. System-Level Considerations
High-bandwidth memory technology. While we choose off-

package stacked DRAM as our cache substrate, our insights

on high-capacity cache design are also applicable to on-

package stacked DRAM. Such design can lower cache

access latency by avoiding chip-to-chip links, but at the cost

of lower cache hit rates in big-memory systems, and

additional buffer-on-board chips, which would be required

to afford high memory capacity with conventional DIMMs

given the pin-count limitations of a single package.

Scalability. MeSSOS delivers high memory capacity in a

scalable manner while relying on cost-effective DIMMs.

MeSSOS distributes the required number of DDR channels

and their pins across multiple soCache modules as opposed

to a single processor chip. This approach resembles that of

buffer-on-board systems, which employ on-board chips to

boost memory capacity in a cost-effective way. In contrast

to these systems, MeSSOS does not require additional on-

board buffer chips as the functionality of those chips is

implemented in the logic die of the soCache modules.

TCO. MeSSOS achieves substantial system cost savings due

to lower acquisition and operating costs. By providing the

required bandwidth and capacity for a server, MeSSOS

maximizes server throughput, thus reducing the number of

servers required for the same throughput. MeSSOS also

lowers memory energy by minimizing the static power

footprint of its underlying memory interfaces. As MeSSOS

employs off-package stacked DRAM as a cache, it (i)

bridges the processor-bandwidth gap with a minimal

number of power-hungry serial links, (ii) efficiently utilizes

serial link bandwidth and amortizes their high idle power

consumption, and (iii) filters a high degree of memory

accesses, and thus infrequent main memory accesses can be

served by under-clocked DIMMs.

5. Experimental Methodology
We evaluate MeSSOS performance and energy efficiency

using a combination of cycle-accurate full-system

simulations, analytic models, and technology studies.

5.1. Scale-Out Server Organization
We model chips with an area of 250–280 mm2, and a power

budget of 95–115 Watt. We use the scale-out processor

methodology to derive the optimal ratio between core count

and cache size in each technology [3]. The configuration

resembles that of specialized manycore CMPs, such as

Cavium ThunderX.

Table 2 summarizes the details of the evaluated designs

across technology nodes. For a given technology node, the

processor configuration and memory capacity are fixed. We

evaluate the following memory systems: (i) DDR-only

memory; (ii) buffer-on-board (BOB) system [9], which

relies on on-board chips to boost bandwidth and capacity

through additional DDR channels, but at the cost of higher

end-to-end memory latency and energy consumption due to

(processor-BOB) serial links and intermediate buffers; (iii)

high-bandwidth memory modules (HBMM), which replaces

DDR-based memory with off-package stacked DRAM—

i.e., stacked DRAM is deployed as main memory. HBMM

employs a tree network topology to reduce the number of

network hops—average and maximum number of network

hops is three and four, respectively; (iv) Die-stacked cache

with a block-based organization [8] that maximizes effective

capacity and minimizes off-chip bandwidth waste. The

7

Table 2. System configuration.

cache is backed by DDR-based memory; and (v) MeSSOS

that deploys stacked DRAM modules as a cache in front of

DDR-based memory.

5.2. Performance and Energy Models
Due to space constraints, we present only a summary of our

framework. The details of the framework, including system

performance, energy modeling and projection to future

technologies can be found elsewhere [13] [14].

Performance. We measure performance using analytic

models, which are validated against cycle-accurate full-

system simulations of a 16-core CMP with high accuracy

(5% average error). Our model extends the classical average

memory access time analysis to predict per-core

performance for a given memory system. The model is

parameterized by 16-core full-system simulations results

(using Flexus [15]), including core performance, miss rates

of on-chip and stacked DRAM caches, and interconnect

delay. For off-chip access latency, we include link latency,

memory core latency, and queuing delays. We model

queuing delays by running cycle-accurate simulations to

measure memory latency for various bandwidth utilization

levels for each workload separately.

Energy. We develop a custom energy modeling framework

to include various system components, such as cores, on-

chip interconnects, caches, memory controllers, and

memory. Our framework draws on several specialized tools

(e.g., CACTI, McPAT) to maximize fidelity through

detailed parameter control.

Future technologies. To understand the effect of technology

scaling on the examined memory systems, we model our

systems in 2018 and 2021. Per ITRS estimates, processor

supply voltages will scale from 0.85V (2015) to 0.8V

(2018) and 0.75V (2021). We use Micron’s datasheets to

examine the impact of data rate and memory density on

DDR energy based on Micron's datasheets. We also study

the impact of manufacturing technology on power

consumption and data rate of SerDes interfaces based on

numerous published measurements.

Workloads. Our analysis is based on a wide range of scale-

out workloads taken from CloudSuite 2.0 [2]. We also

evaluate online analytics running a mix of TPC-H queries

on a modern column-store database engine, MonetDB.

6. Evaluation
We compare MeSSOS to various memory systems in terms

of system performance and energy efficiency across

technology generations.

6.1. Performance and Energy Efficiency
Implications
We begin our study with a 96-core CMP in the 22nm

technology. Figure 6 plots the fraction of memory requests

that are served by soCache for various Cache-to-Memory

Capacity Ratios. The figure demonstrates the ability of

MeSSOS to serve the bulk (>95%) of those using its

soCache thanks to temporal locality arising from skewed

access distributions (gray bar) and spatial locality arising

from page-based organizations and high cache residency

times stemming from high cache capacity (white bar).

The figure (right) illustrates the DDR bandwidth

consumption compared to the DDR baseline. As expected,

System 2015 (22nm) 2018 (18nm) 2021 (14nm)

CMP 96 cores, 3-way OoO, 2.5GHz 180 cores, 3-way OoO, 2.5GHz 320 cores, 3-way OoO, 2.5GHz

LLC 24 MB 45 MB 80 MB

Memory 384 GB 720 GB 1280 GB

DDR
4 DDR-1600 5 DDR-2133 6 DDR-2667

Memory latency: 55ns including off-chip link (15ns) and DRAM core (40ns)

HBMM
8 32-lane @ 10Gbps 10 32-lane @ 15Gbps 12 32-lane @ 20Gbps

Memory latency: hop-count*35ns (SerDes & pass-through logic) + 20ns (stacked DRAM access)

BOB

8 32-lane @ 10Gbps

16 DDR-1600

10 32-lane @ 15Gbps

20 DDR-2133

12 32-lane @ 20Gbps

24 DDR-2667

Memory latency: 95ns including SerDes & buffer (40ns), buffer-DDR link (15ns) and DRAM core (40ns)

Die-Stacked

Cache: 1GB Cache: 2GB Cache: 4GB

Hit latency: ~20ns including predictor lookup and stacked DRAM access (20ns)

Miss latency: ~55ns including predictor lookup and off-chip DRAM access (55ns)

Off-chip: 4 DDR-1600 Off-chip: 5 DDR-2133 Off-chip: 6 DDR-2667

MeSSOS

CMP-Cache: 8 32-lane @ 10Gbps CMP-Cache: 10 32-lane @ 15Gbps CMP-Cache: 12 20-lane @ 20Gbps

Cache: 8x4GB Cache: 10x8GB Cache: 12x8GB

Tag lookup latency: 35ns including SerDes (30ns) and distributed tag array lookup (5ns)

Hit latency: 55ns including tag lookup (35ns) and stacked DRAM access (20ns)
Miss latency: 95ns including tag lookup (35ns) and off-chip DRAM access (60ns)

Cache-Memory: 16 DDR-1066 Cache-Memory: 20 DDR-1066 Cache-Memory: 24 DDR-1066

8

DDR bandwidth savings increase with bigger caches. For a

1:8 Cache-to-Memory Capacity Ratio, soCache captures the

hot data working sets, and hence is able to absorb 65–95%

of memory traffic. The light gray bars illustrate the extra

traffic generated due to coarse-grained transfers between

soCache and the DIMMs. The absolute increase in traffic is

small (3% on average). For the rest of the evaluation, we use

1:8 Cache-to-Memory Capacity Ratio, unless stated

otherwise.

Performance. Figure 7 compares MeSSOS to the DDR

baseline as well as HBMM (which employs high-bandwidth

memory modules as main memory), BOB, and Die-Stacked.

BOB and HBMM improve performance over DDR by 49%

and 33%, respectively, as they provide sufficient bandwidth

to the processor. However, the bandwidth increase comes at

the cost of higher memory latency. BOB adds an extra 40ns

while HBMM requires a point-to-point network, which adds

a latency of 35ns per network hop. Because HBMM

accesses are frequently multi-hop, BOB outperforms

HBMM by 12%. Our analysis (not shown) also finds that

on-board SRAM caches found in some BOB chips exhibit

low temporal locality (average hit ratio of 25%), and thus

provide negligible performance gains.

MeSSOS outperforms all systems due to its ability to

provide high bandwidth at low latency. Compared to the

DDR baseline, MeSSOS improves system performance by

~2x. MeSSOS outperforms BOB and HBMM by 28% and

43%, respectively, due to lower memory latency.

MeSSOS outperforms Die-Stacked by 23% due to lower

off-chip bandwidth pressure, resulting from its greater cache

capacity. On average, MeSSOS filters 84% of DDR

accesses as compared to 45% in Die-Stacked. For Data

Serving and Online Analytics, MeSSOS outperforms Die-

Stacked by 81% and 61%, as Die-Stacked is bandwidth-

constrained due to is inability to filter off-chip bandwidth

(only 38% and 13% of accesses). One exception is Data

Analytics where memory accesses are extremely skewed,

and hence Die-Stacked achieves high hit ratio,

outperforming MeSSOS due to lower cache access latency.

Energy. Figure 8 plots system energy for the examined

designs normalized to the DDR baseline. BOB reduces

energy by 12% compared to DDR mainly due to

performance gains. HBMM increases energy by 2.3x

compared to DDR due to its power-hungry memory

network.

MeSSOS reduces system energy by 1.9x, 1.7x, and 4.3x

compared to DDR, BOB, and HBMM. As bulk of the

accesses are served by soCache, MeSSOS exploits the low-

Figure 8. System energy breakdown.

Figure 6. MeSSOS effectiveness for various Cache-to-Memory Capacity Ratio: (a) 1:32, (b) 1:16, (c) 1:8.

0%

25%

50%

75%

100%

a b c a b c a b c a b c a b c a b c

Data
Analytics

Data
Serving

Media
Streaming

Online
Analytics

Web
Search

Web
Serving

M
e
m

o
ry

 R
e
q

u
e

s
ts

S

e
rv

e
d

 b
y
 s

o
C

a
c
h

e

0%

25%

50%

75%

100%

a b c a b c a b c a b c a b c a b c

Data
Analytics

Data
Serving

Media
Streaming

Online
Analytics

Web
Search

Web
Serving

D
D

R
 B

a
n

d
w

id
th

N

o
rm

a
li

z
e
d

 t
o

 D
D

R

Cache-to-Memory Capacity Ratio: a.1:32 b.1:16 c.1:8

Temporal Spatial Requested Over-fetch

0%

50%

100%

150%

200%

Data Data Media Online Web Web

Analytics Serving Streaming Analytics Search Serving

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

Im
p

o
rv

e
m

e
n

t

BOB HBMM Die-Stacked MeSSOS

Figure 7. System performance improvement of various

memory systems over DDR.

0%

50%

100%

150%

a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e

Data
Analytics

Data
Serving

Media
Streaming

Online
Analytics

Web
Search

Web
Serving

S
y
s
te

m
 E

n
e

rg
y

N
o

rm
a
li

z
e
d

 t
o

 D
D

R

CMP Memory DRAM Cache

a. DDR b. BOB c. HBMM d. Die-Stacked e. MeSSOS

208% 197% 299% 218% 219% 226%

9

energy access of stacked DRAM modules, thus reducing

memory energy consumption significantly. Furthermore,

MeSSOS enforces coarse-grained data movement between

soCache and DRAM, thus amortizing energy-intensive

DRAM row activates [12]. Compared to Die-Stacked,

MeSSOS reduces energy by 23% due to lower DDR energy

resulting from lower off-chip bandwidth consumption.

6.2. Projection to Future Technologies
In Figure 9, we study the effect of technology scaling on

MeSSOS’s performance and energy efficiency in 14nm

(2018) and 11nm (2021) technologies.

MeSSOS leverages the abundant bandwidth provided by

SerDes, increasing performance almost linearly with the

number of cores and by 3.7x (2018) and 6.6x (2021)

compared to DDR-2015. Due to poor scalability of DDR

interfaces, the bandwidth gap between DDR-based systems

and the processor is increasing rapidly. Thus, MeSSOS's

performance improvement over DDR and Die-Stacked

increases across technologies. MeSSOS improves

performance by 2.3x (2018) and 2.7x (2021) over DDR, and

by 30% (2018) and 43% (2021) over Die-Stacked.

Regarding energy efficiency, the DDR energy footprint

increases across technologies. Because MeSSOS employs

under-clocked DIMMs, its energy footprint increases by

only a small factor. Thus, MeSSOS reduces energy by 1.7x

(2015), 2x (2018), and 2.6x (2021) compared to DDR and

BOB, and by 23% (2015), 40% (2018), and 60% (2021)

compared to Die-Stacked. Compared to HBMM, MeSSOS

reduces energy by 4-4.4x.

7. Conclusion
We proposed a memory system architecture that utilizes

multiple high-bandwidth memory modules as a scale-out

cache, which is effective in capturing the secondary data

working sets of scale-out workloads. Unlike state-of-the-art

stacked DRAM caches employing in-DRAM block-level

metadata, the proposed cache employs a page-based

organization with low-overhead in-SRAM metadata as

coarse-grained access patterns are dominant in high-

capacity caches. The proposed memory system architecture

provides the required memory bandwidth and capacity for

scale-out servers.

References

[1] L. A. Barroso and U. Holzle, "The Datacenter as a Computer: An

Introduction to the Design of Warehouse-Scale Machine," Madison:

Morgan & Claypool, 2009.

[2] M. Ferdman et al., "Clearing the Clouds: A Study of Emerging Scale-out

Workloads on Modern Hardware," in ASPLOS, 2012.

[3] P. Lotfi-Kamran et al., "Scale-Out Processors," in ISCA, 2012.

[4] D. Jevdjic et al., "Die-stacked DRAM Caches for Servers: Hit Ratio,

Latency, or Bandwidth? Have it All with Footprint Cache," in ISCA, 2013.

[5] B. Black et al., "Die Stacking (3D) Microarchitecture," in MICRO, 2006.

[6] D. Jevdjic et al., "Unison Cache: A Scalable and Effective Die-stacked

DRAM Cache," in MICRO, 2014.

[7] G. H. Loh and M. D. Hill, "Efficiently Enabling Conventional Block Sizes
for Large Die-stacked DRAM Caches," in MICRO, 2011.

[8] M. Qureshi and L. H. Gabriel, "Fundamental Latency Trade-off in

Architecting DRAM Caches: Outperforming Impractical SRAM Tags with

Simple and Practical Design," in MICRO, 2012.

[9] Cisco, "Extended Memory Technology," [Online]. Available:

http://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-

computing/ucs-5100-series-blade-server-chassis/at_a_glance_c45-

555038.pdf.

[10] B. Grot et al., "Optimizing Datacenter (TCO) with Scale-Out Processors,"

IEEE Micro, vol. 32, no. 5, pp. 52-63, 2012.

[11] X. Jiang et al., "CHOP: Adaptive Filter-based DRAM Caching for CMP

Server Platforms," in HPCA, 2010.

[12] S. Volos et al., "BuMP: Bulk Memory Access Prediction and Streaming,"

in MICRO, 2014.

[13] S. Volos et al., "An Effective DRAM Cache Architecture for Scale-Out

Servers," Technical Report, MSR-TR-2016-20, Microsoft Research, 2016.

[14] S. Volos, "Memory Systems and Interconnects for Scale-Out Servers,"

Doctoral Dissertation, EPFL-THESIS-6682, Dept. of Computer &

Communication Sciences, EPFL, 2015.

[15] T. F. Wenisch et al., "SimFlex: Statistical Sampling of Computer System

Simulation," IEEE Micro, vol. 26, no. 4, pp. 18-31, 2006.

Figure 9. System performance and energy consumption for various technologies normalized to DDR-2015.

0

1

2

D
D

R

B
O

B

H
B

M
M

D
ie

-S
ta

c
k
e
d

M
e
S

S
O

S

D
D

R

B
O

B

H
B

M
M

D
ie

-S
ta

c
k
e
d

M
e
S

S
O

S

D
D

R

B
O

B

H
B

M
M

D
ie

-S
ta

c
k
e
d

M
e
S

S
O

S

2015 2018 2021

S
y
s
te

m
 E

n
e

rg
y

CMP Memory DRAM Cache

0

2

4

6

8
D

D
R

B
O

B

H
B

M
M

D
ie

-S
ta

c
k
e
d

M
e
S

S
O

S

D
D

R

B
O

B

H
B

M
M

D
ie

-S
ta

c
k
e
d

M
e
S

S
O

S

D
D

R

B
O

B

H
B

M
M

D
ie

-S
ta

c
k
e
d

M
e
S

S
O

S

2015 2018 2021

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e 2.2x

