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Abstract 

Emerging scale-out servers are characterized by massive memory 

footprints and bandwidth requirements. On-chip stacked DRAM 

caches have been proposed to provide the required bandwidth for 

manycore servers through caching of secondary data working sets. 

However, the disparity between provided capacity and working set 

sizes precludes their effective deployment in servers, calling for 

high-capacity cache architectures. High-capacity caches—enabled 

by the emergence of high-bandwidth memory technologies—exhibit 

high spatio-temporal locality due to coarse-grained access 

patterns and long cache residency periods stemming from skewed 

dataset access distributions. The observed spatio-temporal 

behavior favors a page-based organization that naturally exploits 

spatial locality while minimizing tag storage requirements and 

enabling a practical in-SRAM tag array architecture. By storing 

tags in SRAM, caches avoid the complexity of in-DRAM metadata 

found in state-of-the-art DRAM caches. 

1. Introduction 
Scale-out datacenters host a variety of data-intensive 

services, such as search and social connectivity. To 

concurrently support billions of users, latency-sensitive 

online services and analytic engines creating user-specific 

content (e.g., advertisements and recommendations) rely on 

large amounts of memory to minimize dataset access 

latency. The ever-growing popularity of the in-memory 

computing paradigm—which will be further broadened by 

the emergence of non-volatile memory—leads to datacenter 

deployments in which memory accounts for a big share of 

the datacenter's total cost of ownership (TCO) [1]. 

Optimizing for datacenter's TCO calls for customized 

architectures that maximize compute density. Following a 

considerable amount of research, identifying the 

requirements of scale-out workloads, and indicating that 

these workloads benefit from thread-level parallelism and 

fast access to multi-megabyte instruction footprints [2] [3], 

industry has started employing specialized manycore 

processors with modestly-sized last-level caches (e.g., 

Cavium ThunderX, EZchip Tile-MX) due to the substantial 

performance and TCO advantages offered by specialization.  

Memory systems in scale-out servers are of paramount 

importance as they need to sustain the vast bandwidth 

demands of manycore CMPs [3] [4]. Recent advances in on-

chip stacked DRAM technology [5] eliminate the bandwidth 

bottleneck that plagues conventional DRAM. As this 

technology is capacity-limited due to thermal constraints, 

prior research advocates for using it as a cache to provide 

access to secondary data working sets [4] [6] [7] [8]. 

Our analysis shows that on-chip stacked DRAM caches are 

unattractive for scale-out servers. We find that memory 

accesses follow power-law distributions so that a hot portion 

of memory (~10%) accounts for the majority of accesses 

(65–95%). Thus, while the vast working sets of scale-out 

workloads are amenable to caching, high-capacity caches 

(10s of GB) are required given main memory sizes trending 

toward 100s of GB. The required cache capacities greatly 

exceed those of low-capacity caches, including on-chip 

stacked DRAM caches.  

This work seeks to develop a scalable, high-capacity, and 

high-bandwidth memory system for scale-out servers by 

leveraging emerging high-bandwidth memory modules as a 

high-capacity cache. High-bandwidth interconnect 

technologies allow for connecting the processor to multiple 

high-bandwidth memory modules via a silicon interposer 

(e.g., Hynix HBM) forming an on-package cache, or high-

speed serial links (e.g., Micron HMC) forming an off-

package cache.  

In contrast to prior stacked DRAM cache proposals, which 

advocate for block-based [7] [8] and sector-based 

organizations [4] [6], we find that page-based organizations 

are favored in scale-out servers. High-capacity caches—

effective in capturing the secondary data working sets of 

scale-out workloads—uncover significant spatio-temporal 

locality across dataset objects due to long cache residency 

periods. The improved spatio-temporal locality allows for 

employing a page-based cache organization, thereby 

minimizing tag storage requirements and enabling a 

practical in-SRAM tag array architecture, which can be 

implemented in the logic die of the high-bandwidth memory 

modules. This design offers fundamental complexity 

advantages over state-of-the-art DRAM caches, which 

suffer from high tag/metadata overheads that mandate in-

DRAM storage. 
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Table 1. Requirements of one scale-out server. 

Year Processor  Memory System 

 Cores Bandwidth  Bandwidth Capacity 

2015 96 115 GB/s  288 GB/s 384 GB 

2018 180 216 GB/s  540 GB/s 720 GB 

2021 320 384 GB/s  960 GB/s 1280 GB 

2. Emerging Scale-Out Servers and DRAM 
Technologies 
In this section, we examine the memory requirements of 

emerging scale-out servers and also review the features of 

emerging DRAM technologies. 

2.1. Scale-Out Server Requirements 
Processor and system vendors resort to manycore processors 

(e.g., Cavium ThunderX) to boost server throughput and 

rely on buffer-on-board chips (e.g., Cisco’s extended 

memory technology [9]) to increase memory capacity. In 

doing so, datacenter operators can deploy fewer servers for 

the same throughput requirements and dataset size, thus 

lowering TCO significantly [9] [10]. 

We quantify the memory bandwidth and capacity 

requirements of emerging scale-out servers for various 

manufacturing technologies in Table 1. Our configuration 

maximizes throughput by integrating maximum number of 

cores for a given die area and power budget of 250–280 

mm2 and 95–115 Watt. The modeled organization resembles 

that of manycore servers, such as Cavium ThunderX. 

Bandwidth. We measure processor's off-chip bandwidth 

demands by scaling per-core bandwidth consumption with 

the total number of cores. We measure per-core bandwidth 

by simulating a 16-core server finding that per-core 

bandwidth ranges from 0.4GB/s to 1.2GB/s. Peak 

bandwidth demands are 115GB/s (2015), 216GB/s (2018), 

and 384GB/s (2021).  

High bandwidth utilization levels can adversely impact end-

to-end memory latency due to heavy contention on memory 

resources. As performance of scale-out services is 

characterized by tail latencies, memory latency and queuing 

delays must be minimized. Thus, system designers over-

provision memory bandwidth to ensure low utilization 

(<40%) and avoid queuing [2]. As such, memory systems 

need to supply 288GB/s (2015), 540GB/s (2018), and 

960GB/s (2021). Such requirements exceed the capabilities 

of conventional DRAM systems by 5.5–7.5x. 

Capacity. We estimate required memory capacity by 

examining various system deployments. Today, data 

analytic engines are provisioned with 2–8GB per core 

(Cloudera), web search engines deploy 64GB for 16 cores 

(Microsoft Bing) while web and streaming servers require 

1–2GB per core [2]. With the emergence of extended 

memory technology and non-volatile memory, we anticipate 

that datacenter operators will continue deploying 4GB of 

per-core memory cost-effectively, resulting in deployment 

of several 100s of GB of memory per server. 

2.2. Emerging DRAM Technologies 
Stacked DRAM can provide an order of magnitude higher 

(memory core) bandwidth than conventional DRAM due to 

dense through-silicon vias. It also offers low latency and 

low DRAM energy due to reduced wire spans and smaller 

page sizes. However, existing deployment options for 

stacked DRAM fail to satisfy the joint capacity, bandwidth, 

and power requirements mandated by scale-out servers. 

Next, we review the deployment options for stacked DRAM 

and their respective limitations. 

On-Chip and On-Package Stacked DRAM. Through-silicon 

vias provide high-bandwidth connectivity between the 

processor and on-chip stacked DRAM. Thermal constraints, 

however, limit the number of DRAM stacks that can be 

integrated on top of the processor, confining On-Chip 

Stacked DRAM to sizes that are two-to-three orders of 

magnitude smaller than the memory capacity demands of 

servers. Similarly, the high cost of big packages and area-

intensive silicon interposers limit the number of stacked 

DRAM modules in On-Package Stacked DRAM systems. 

When combined with the thermally-constrained capacity of 

a few GB per module, an On-Package DRAM solution fails 

to provide the requisite memory capacity for servers. 

Off-Package Stacked DRAM. High-speed serial interfaces 

can break the bandwidth wall by connecting the processor to 

multiple Off-Package Stacked DRAM modules. The high 

signal integrity of serial interfaces allows for achieving an 

order of magnitude higher data rates than DDR with the 

same number of pins. 

Although off-package stacked DRAM systems deliver much 

greater memory capacity than on-chip and on-package 

stacked DRAM systems, there are two main factors that 

prevent such systems from replacing conventional DRAM. 

First, serial channels impose high idle power as keep-alive 

packets must be sent at frequent intervals to maintain lane 

alignment across the channel's lanes. Second, thermal 

constraints limit the number of stacked layers per module 

and necessitate a blade-level network of these modules for a 

big-memory server. Such a network comes at the cost of 

high idle power consumption due to the use of many serial 

links resulting from a multi-hop chip-to-chip network. 

2.3. State-of-the-art DRAM Caches 
Given the disparity between memory capacity requirements 

and the capacity provided by emerging DRAM 

technologies, most proposals advocate employing stacked 
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DRAM as a cache to filter accesses to main memory. State-

of-the-art cache proposals leveraging mainly On-Chip 

Stacked DRAM have to contend with relatively high miss 

rates due to its limited capacity. As a result, they are 

primarily optimized for low cache-memory bandwidth 

utilization through block-based organizations [7] [8], sector-

based footprint-predicting organizations [4] [6], and 

address-correlated filter-based caching mechanisms [11]. 

Unfortunately, such organizations come with high 

tag/metadata overhead and high design complexity, making 

such cache designs impractical. For instance, state-of-the-art 

block-based and footprint-predicting caches require 4GB 

and 200MB of tags, respectively, for a capacity of 32GB. 

Due to the prohibitive tag array overhead, recent proposals 

implement the tag array in DRAM [6] [7] [8]. In-DRAM tag 

arrays, however, require substantial engineering effort, 

making state-of-the-art caches less attractive. In addition, 

footprint-predicting caches [4] [6] rely on instruction-based 

prediction. However, the program counter of an instruction 

is not available in the memory hierarchy, thus requiring the 

core-to-cache transfer of the program counter for all 

memory references, further increasing design complexity. 

3. Memory Access Characterization of 
Scale-Out Servers 
High-bandwidth memory modules are an ideal building 

block for a high-capacity high-bandwidth cache. However, 

state-of-the-art DRAM caches are hindered by the need to 

keep metadata in DRAM. In this section, we study the 

application characteristics that enable architecting an 

effective, practical, and scalable cache. 

3.1. Temporal Characterization 
We examine the memory access distribution of scale-out 

applications by looking at the characteristics of the 

dominant types of memory accesses. 

Dataset accesses. We examine the dataset object popularity 

(i.e., how frequent a dataset object is accessed) of search 

query terms (AOL), tweets (Twitter), videos (Youtube), and 

web pages (Wikipedia) based on publicly available data. 

Figure 1 plots the probability for a dataset object to be 

referenced as a function of popularity, showing that the 

dataset object popularity is highly skewed with a small set 

of dataset objects (10–20%) contributing to most of the 

dataset object accesses (65–80%). For instance, a small 

fraction of users and their pictures account for most of the 

user traffic in picture sharing services, such as Flickr. Due 

to power-law popularity distributions, dataset accesses in 

data stores, object caching systems, streaming servers, web 

search engines, and web servers exhibit power-law 

distributions.  

Accesses to dynamically allocated memory. Server 

applications frequently access dynamically allocated 

memory with high temporal reuse. Examples include: 

¶ Server applications utilize software caches to keep a set 

of hot objects—e.g., rows in data stores and compiled 

script code in web servers. As they host dataset-

relevant data/metadata, the distributions of their 

accesses will follow those of the datasets. 

¶ Server applications and operating systems employ 

various data structures per client/network connection, 

such as buffers for media packets in streaming servers 

and OS data structures storing TCP/IP state. The large 

number of concurrent connections in manycore CMPs 

results in a footprint that dwarfs on-chip cache 

capacity. The reuse of these structures is high as they 

are accessed multiple times during a connection. 

The skew in object popularity and temporal reuse of 

dynamically allocated memory is expected to be mirrored in 

the memory access distribution. To confirm this, we 

examine the memory access distribution of a simulated 16-

core scale-out server. To estimate the hot memory footprint 

Figure 1. Dataset object popularity exhibits power-law 

distribution. Please note that power-law relationships show 
linear trends in log-log scale. 
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of scale-out applications, we employ a state-of-the-art 

DRAM cache and measure its miss ratio for various 

capacities [8]. 

Figure 2 plots the cache miss ratio for various Cache-to-

Memory Capacity Ratios. The markers denote 

measurements while contiguous lines show x-shifted power-

law fitted curves. The figure shows that memory accesses 

are skewed so that 6.25–12.5% of the memory footprint 

accounts for 65–95% of total accesses. The figure confirms 

that existing low-capacity caches (left points), such as on-

board SRAM caches (IBM Centaur), on-package eDRAM 

caches, and on-chip stacked DRAM caches cannot exploit 

temporal locality in scale-out servers. In extreme cases, such 

as Data Serving and Online Analytics, on-chip stacked 

DRAM caches are bandwidth-constrained with less than 

40% of memory accesses filtered. We thus conclude that the 

combination of poor cache performance and technological 

complexity of die stacking limits the usefulness of on-chip 

stacked DRAM caches in servers. 

3.2. Spatial Characterization 
Scale-out applications often operate on bulk objects (e.g., 

database rows), thus exhibiting a high incidence of coarse-

grained accesses [12]. To allow for retrieving an object in 

sub-linear time, objects are pinpointed through pointer-

intensive indexing structures, such as hash tables and trees. 

For instance, data stores and object caching systems use a 

hash table to retrieve data objects. While objects are 

accessed at coarse granularity, finding them requires 

performing a sequence of pointer dereferences. Thus, a non-

negligible fraction of accesses are fine-grained [12]. 

We examine the granularity at which high-capacity (HC) 

caches access memory by measuring the access density at 

which page-sized lines are fetched from and written back to 

memory in Figure 3. We define page access density as the 

fraction of 64-byte blocks within a page accessed between 

the page's first access and the page's eviction from the 

cache. We use a page of 2KB as it reduces the tag array size 

significantly with limited tolerance for overfetch. Thus, 

fine-grained pages have low access density (up to 8 unique 

cache blocks accessed) while coarse-grained pages have 

high access density (at least 24 unique cache blocks 

accessed). For comparison, we include a low-capacity 

cache, labeled as Die-Stacked (DS).  

We find that Die-Stacked exhibits bimodal memory access 

behavior—i.e., fine-grained and coarse-grained accesses 

account for 21% and 68% of accesses, respectively. While 

coarse-grained accesses are prevalent, the frequent 

incidence of fine-grained accesses must also be 

accommodated effectively. Due to the limited capacity of 

on-chip stacked DRAM caches, pointer-containing pages 

show low temporal reuse and are frequently evicted. To 

avoid massive bandwidth waste in accesses to such pages, 

state-of-the-art DRAM caches rely on block-based or sector-

based footprint-predicting organizations that are bandwidth-

frugal, but carry a high metadata storage cost. 

In contrast, high-capacity caches exhibit coarse-grained 

memory access behavior—i.e., 93% of all accesses. This 

behavior is attributed to two phenomena. First, the lifetime 

of pages in the cache is on the order of 10s to 100s of 

milliseconds. Thus, pages containing a collection of fine-

grained objects (e.g., hash bucket headers) can enjoy spatial 

locality uncovered through long cache residency times, 

stemming from skewed access distributions. Second, low-

access-density pages containing pointer-intensive indexing 

structures with good temporal reuse (e.g., intermediate tree 

nodes) are preserved across accesses. 

3.3. Summary 
Our study demonstrates that high-capacity caches are 

needed to capture the skewed memory access distributions 

of servers. We also find that the improved spatio-temporal 

behavior of high-capacity caches offers an opportunity to 

use a simple page-based organization, thus avoiding the 

storage and complexity overheads associated with state-of-

the-art stacked DRAM caches. 

4. Memory System Architecture for Scale-
Out Servers 
We present MeSSOS, a Memory System architecture for 

Scale-out Servers that provides the required bandwidth and 

capacity for a scale-out server. High bandwidth is delivered 

through caching of data working sets in a high-capacity 

Scale-Out Cache (soCache), which consists of multiple off-

package stacked DRAM modules. High memory capacity is 

achieved through the deployment of multiple conventional 

(DDR-based) DIMMs. 

Figure 3. Granularity at which page-sized lines are fetched 

(F) from and written back (WB) to DRAM for Die-Stacked 
(DS) and high-capacity cache (HC) of 1:128 and 1:8 
Cache-to-Memory Capacity Ratio, respectively. 
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Figure 4 shows the design overview. In MeSSOS, an on-

board building block consists of an soCache slice fronting a 

set of conventional DIMMs. The design of each building 

block (e.g., serial link and DDR bandwidth, cache-to-

memory capacity ratio) is guided by our memory access 

characterization. Capacity and bandwidth can be seamlessly 

scaled by adjusting the number of building blocks. Next, we 

examine the soCache architecture and its integration with 

the rest of the system. 

4.1. soCache Architecture 
MeSSOS utilizes multiple off-package stacked DRAM 

modules as a high-capacity cache. To avoid communication 

between soCache slices, memory addresses are statically 

interleaved across the slices. Figure 5a shows the 

organization of an soCache slice. As shown in the figure, 

stacked DRAM is internally organized as a set of vaults, 

which are connected to the serial link via an interconnect.  

Cache organization. soCache uses a page-based 

organization leveraging the observation that high-capacity 

caches uncover spatial locality that is beyond the temporal 

reach of lower-capacity caches. The page-based design not 

only naturally captures spatial locality, but also minimizes 

metadata storage requirements over block-based and 

footprint-predicting designs thanks to smaller tag entries 

and/or fewer cache sets. The page-based design also reduces 

dynamic DRAM energy by exploiting DRAM row buffer 

locality and fetching the entire page with one DRAM row 

activate, thus minimizing the number of DRAM row 

activates, which dominate energy consumption in 

conventional DRAM [12].  

Based on page-size sensitivity analysis, we find that a page 

size of 2KB offers a good trade-off between tag array size 

and bandwidth overhead stemming from overfetch. We also 

observe that low associativity (4-way in the preferred 

design) is sufficient for minimizing the incidence of 

conflicts while also reducing tag and LRU metadata costs. 

Tag array. The page-level organization reduces the tag array 

overhead significantly. For instance, a soCache of 32GB, 

consisting of eight 4GB slices, requires 5MB of tags per 

slice, or 20mm2 in 40nm technology (obtained using 

CACTI).1 The small tag array size allows us to embed it in 

the logic die of the modules comprising soCache. These 

logic dies are under-utilized, typically housing per-vault 

memory controllers, an on-chip interconnect, and off-chip 

I/O interfaces and controllers. In our specialized HMC, 

these components occupy ~70mm2 in 40nm technology 

(estimated by scaling die micrographs) leaving sufficient 

room for the tags on a typical HMC logic die (~100mm2).  

To enable low tag lookup latency, we distribute the tag array 

across the high-bandwidth memory module, placing each 

tag array slice beneath a vault. For a 4GB soCache slice, 

each slice of the in-SRAM tag array requires only 320KB of 

storage and 3–4 cycles of access latency (obtained using 

CACTI). Low associativity and small in-SRAM tags allow 

for searching the ways in parallel at small latency and 

energy  overheads, allowing for a feasible and practical a 

set-associative cache organization.  

4.2. Processor-soCache Interface 
The processor is connected to soCache via high-bandwidth 

serial links. Both processor and soCache slices implement 

simple controllers to orchestrate communication (Figure 4). 

The controllers consist of a pair of queues to buffer 

incoming and outgoing packets, and a SerDes interface. 

Processor-side controllers serialize outgoing requests into 

packets, before routing them to the soCache slice based on 

corresponding address bits (Figure 5b), and deserialize 

incoming data and forwards them to the last-level cache. An 

soCache-side controller deserializes incoming memory 

requests and forwards them to the vault's soCache controller 

based on corresponding address bits (Figure 5b), and 

serializes outgoing data into packets and forwards them to 

the processor. 

As scale-out workloads exhibit variable read-write ratios 

[12], each serial link consists of 16 request lanes and 16 

response lanes. Thus, a serial link requires ~70 pins (control 

                                                        
1  Per soCache slice, a 4-way cache consists of 32K sets per vault, 

occupying 320KB of tags. Tag entries are 20-bit; 15 bits for the tag, 2 
page-level valid and dirty bits, 3 bits for maintaining the pseudo-LRU tree.  

    (a) Logic die organization           (b) Tag array architecture 

Figure 5. The organization of an soCache slice. 

Figure 4. MeSSOS overview. 
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and double-ended signalling for data lanes) as opposed to a 

DDR channel, which requires ~150 pins. The lower number 

of per-serial-link pins allows for integrating a high number 

of processor-side SerDes channels without increasing the 

number of the processor's pins compared to a processor with 

DDR channels, thereby keeping the cost associated with the 

processor's packaging constant. 

4.3. soCache-Main Memory Interface 
The off-package high-bandwidth memory modules provide 

the communication bridge between processor and main 

memory. Memory requests that miss in soCache are 

forwarded directly to local memory modules. To do so, the 

soCache slice integrates DDR controllers to control the local 

DDR channels, requiring the implementation of the DDR 

PHY and protocol in the logic die of the soCache modules.  

DDR channels. Thanks to the high degree of bandwidth 

screening provided by soCache, the DDR channels operate 

at low frequency to reduce idle power. Compared to 

conventional HMCs hosting four SerDes interfaces, each of 

our specialized HMC hosts only one SerDes interface (of 

area ~9mm2 and power 1.5Watt), freeing up area and power 

resources for the required low-frequency DDR interfaces 

(~10mm2 each). Our estimates show that the power 

consumption of an soCache slice lies within the power 

budget of conventional HMCs. The total number of pins 

required by each soCache slice matches that of on-board 

chips in buffer-on-board systems. 

DDR controllers. They employ FR-FCFS open-row policy 

with page-level address interleaving. We map an entire 

soCache's page-sized cache line to one DRAM row by using 

the following addressing scheme Row:ColumnHigh:Rank: 

Bank:LocalChannel:soCacheSlice:ColumnLow:WordOffset, 

where ColumnHigh(ColumnLow) is 2(8) bits. To guarantee 

that requests missing in an soCache slice are served by local 

DRAM, the mapping scheme interleaves addresses across 

local channels using the least significant vault bit. 

4.4. System-Level Considerations 
High-bandwidth memory technology. While we choose off-

package stacked DRAM as our cache substrate, our insights 

on high-capacity cache design are also applicable to on-

package stacked DRAM. Such design can lower cache 

access latency by avoiding chip-to-chip links, but at the cost 

of lower cache hit rates in big-memory systems, and 

additional buffer-on-board chips, which would be required 

to afford high memory capacity with conventional DIMMs 

given the pin-count limitations of a single package. 

Scalability. MeSSOS delivers high memory capacity in a 

scalable manner while relying on cost-effective DIMMs. 

MeSSOS distributes the required number of DDR channels 

and their pins across multiple soCache modules as opposed 

to a single processor chip. This approach resembles that of 

buffer-on-board systems, which employ on-board chips to 

boost memory capacity in a cost-effective way. In contrast 

to these systems, MeSSOS does not require additional on-

board buffer chips as the functionality of those chips is 

implemented in the logic die of the soCache modules. 

TCO. MeSSOS achieves substantial system cost savings due 

to lower acquisition and operating costs. By providing the 

required bandwidth and capacity for a server, MeSSOS 

maximizes server throughput, thus reducing the number of 

servers required for the same throughput. MeSSOS also 

lowers memory energy by minimizing the static power 

footprint of its underlying memory interfaces. As MeSSOS 

employs off-package stacked DRAM as a cache, it (i) 

bridges the processor-bandwidth gap with a minimal 

number of power-hungry serial links, (ii) efficiently utilizes 

serial link bandwidth and amortizes their high idle power 

consumption, and (iii) filters a high degree of memory 

accesses, and thus infrequent main memory accesses can be 

served by under-clocked DIMMs. 

5. Experimental Methodology 
We evaluate MeSSOS performance and energy efficiency 

using a combination of cycle-accurate full-system 

simulations, analytic models, and technology studies.  

5.1. Scale-Out Server Organization 
We model chips with an area of 250–280 mm2, and a power 

budget of 95–115 Watt. We use the scale-out processor 

methodology to derive the optimal ratio between core count 

and cache size in each technology [3]. The configuration 

resembles that of specialized manycore CMPs, such as 

Cavium ThunderX. 

Table 2 summarizes the details of the evaluated designs 

across technology nodes. For a given technology node, the 

processor configuration and memory capacity are fixed. We 

evaluate the following memory systems: (i) DDR-only 

memory; (ii) buffer-on-board (BOB) system [9], which 

relies on on-board chips to boost bandwidth and capacity 

through additional DDR channels, but at the cost of higher 

end-to-end memory latency and energy consumption due to 

(processor-BOB) serial links and intermediate buffers; (iii) 

high-bandwidth memory modules (HBMM), which replaces 

DDR-based memory with off-package stacked DRAM— 

i.e., stacked DRAM is deployed as main memory. HBMM 

employs a tree network topology to reduce the number of 

network hops—average and maximum number of network 

hops is three and four, respectively; (iv) Die-stacked cache 

with a block-based organization [8] that maximizes effective 

capacity and minimizes off-chip bandwidth waste. The
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Table 2. System configuration. 

cache is backed by DDR-based memory; and (v) MeSSOS 

that deploys stacked DRAM modules as a cache in front of 

DDR-based memory. 

5.2. Performance and Energy Models  
Due to space constraints, we present only a summary of our 

framework. The details of the framework, including system 

performance, energy modeling and projection to future 

technologies can be found elsewhere [13] [14]. 

Performance. We measure performance using analytic 

models, which are validated against cycle-accurate full-

system simulations of a 16-core CMP with high accuracy 

(5% average error). Our model extends the classical average 

memory access time analysis to predict per-core 

performance for a given memory system. The model is 

parameterized by 16-core full-system simulations results 

(using Flexus [15]), including core performance, miss rates 

of on-chip and stacked DRAM caches, and interconnect 

delay. For off-chip access latency, we include link latency, 

memory core latency, and queuing delays. We model 

queuing delays by running cycle-accurate simulations to 

measure memory latency for various bandwidth utilization 

levels for each workload separately. 

Energy. We develop a custom energy modeling framework 

to include various system components, such as cores, on-

chip interconnects, caches, memory controllers, and 

memory. Our framework draws on several specialized tools 

(e.g., CACTI, McPAT) to maximize fidelity through 

detailed parameter control.  

Future technologies. To understand the effect of technology 

scaling on the examined memory systems, we model our 

systems in 2018 and 2021. Per ITRS estimates, processor 

supply voltages will scale from 0.85V (2015) to 0.8V 

(2018) and 0.75V (2021). We use Micron’s datasheets to 

examine the impact of data rate and memory density on 

DDR energy based on Micron's datasheets. We also study 

the impact of manufacturing technology on power 

consumption and data rate of SerDes interfaces based on 

numerous published measurements. 

Workloads. Our analysis is based on a wide range of scale-

out workloads taken from CloudSuite 2.0 [2]. We also 

evaluate online analytics running a mix of TPC-H queries 

on a modern column-store database engine, MonetDB. 

6. Evaluation 
We compare MeSSOS to various memory systems in terms 

of system performance and energy efficiency across 

technology generations. 

6.1. Performance and Energy Efficiency 
Implications 
We begin our study with a 96-core CMP in the 22nm 

technology. Figure 6 plots the fraction of memory requests 

that are served by soCache for various Cache-to-Memory 

Capacity Ratios. The figure demonstrates the ability of 

MeSSOS to serve the bulk (>95%) of those using its 

soCache thanks to temporal locality arising from skewed 

access distributions (gray bar) and spatial locality arising 

from page-based organizations and high cache residency 

times stemming from high cache capacity (white bar). 

The figure (right) illustrates the DDR bandwidth 

consumption compared to the DDR baseline. As expected, 

System 2015 (22nm) 2018 (18nm) 2021 (14nm) 

CMP 96 cores, 3-way OoO, 2.5GHz 180 cores, 3-way OoO, 2.5GHz 320 cores, 3-way OoO, 2.5GHz 

LLC 24 MB 45 MB 80 MB 

Memory 384 GB 720 GB 1280 GB 

DDR 
4 DDR-1600 5 DDR-2133 6 DDR-2667 

Memory latency: 55ns including off-chip link (15ns) and DRAM core (40ns) 

HBMM 
8 32-lane @ 10Gbps 10 32-lane @ 15Gbps 12 32-lane @ 20Gbps 

Memory latency: hop-count*35ns (SerDes & pass-through logic) + 20ns (stacked DRAM access) 

BOB 

8 32-lane @ 10Gbps 

16 DDR-1600 

10 32-lane @ 15Gbps 

20 DDR-2133 

12 32-lane @ 20Gbps 

24 DDR-2667 

Memory latency: 95ns including SerDes & buffer (40ns), buffer-DDR link (15ns) and DRAM core (40ns) 

Die-Stacked 

Cache: 1GB Cache: 2GB Cache: 4GB 

Hit latency: ~20ns including predictor lookup and stacked DRAM access (20ns) 

Miss latency: ~55ns including predictor lookup and off-chip DRAM access (55ns) 

Off-chip: 4 DDR-1600 Off-chip: 5 DDR-2133 Off-chip: 6 DDR-2667 

MeSSOS 

CMP-Cache: 8 32-lane @ 10Gbps CMP-Cache: 10 32-lane @ 15Gbps CMP-Cache: 12 20-lane @ 20Gbps 

Cache: 8x4GB Cache: 10x8GB Cache: 12x8GB 

Tag lookup latency: 35ns including SerDes (30ns) and distributed tag array lookup (5ns) 

Hit latency: 55ns including tag lookup (35ns) and stacked DRAM access (20ns) 
Miss latency: 95ns including tag lookup (35ns) and off-chip DRAM access (60ns) 

Cache-Memory: 16 DDR-1066 Cache-Memory: 20 DDR-1066 Cache-Memory: 24 DDR-1066 
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DDR bandwidth savings increase with bigger caches. For a 

1:8 Cache-to-Memory Capacity Ratio, soCache captures the 

hot data working sets, and hence is able to absorb 65–95% 

of memory traffic. The light gray bars illustrate the extra 

traffic generated due to coarse-grained transfers between 

soCache and the DIMMs. The absolute increase in traffic is 

small (3% on average). For the rest of the evaluation, we use 

1:8 Cache-to-Memory Capacity Ratio, unless stated 

otherwise. 

Performance. Figure 7 compares MeSSOS to the DDR 

baseline as well as HBMM (which employs high-bandwidth 

memory modules as main memory), BOB, and Die-Stacked. 

BOB and HBMM improve performance over DDR by 49% 

and 33%, respectively, as they provide sufficient bandwidth 

to the processor. However, the bandwidth increase comes at 

the cost of higher memory latency. BOB adds an extra 40ns 

while HBMM requires a point-to-point network, which adds 

a latency of 35ns per network hop. Because HBMM 

accesses are frequently multi-hop, BOB outperforms 

HBMM by 12%. Our analysis (not shown) also finds that 

on-board SRAM caches found in some BOB chips exhibit 

low temporal locality (average hit ratio of 25%), and thus 

provide negligible performance gains. 

MeSSOS outperforms all systems due to its ability to 

provide high bandwidth at low latency. Compared to the 

DDR baseline, MeSSOS improves system performance by 

~2x. MeSSOS outperforms BOB and HBMM by 28% and 

43%, respectively, due to lower memory latency.  

MeSSOS outperforms Die-Stacked by 23% due to lower 

off-chip bandwidth pressure, resulting from its greater cache 

capacity. On average, MeSSOS filters 84% of DDR 

accesses as compared to 45% in Die-Stacked. For Data 

Serving and Online Analytics, MeSSOS outperforms Die-

Stacked by 81% and 61%, as Die-Stacked is bandwidth-

constrained due to is inability to filter off-chip bandwidth 

(only 38% and 13% of accesses). One exception is Data 

Analytics where memory accesses are extremely skewed, 

and hence Die-Stacked achieves high hit ratio, 

outperforming MeSSOS due to lower cache access latency. 

Energy. Figure 8 plots system energy for the examined 

designs normalized to the DDR baseline. BOB reduces 

energy by 12% compared to DDR mainly due to 

performance gains. HBMM increases energy by 2.3x 

compared to DDR due to its power-hungry memory 

network. 

MeSSOS reduces system energy by 1.9x, 1.7x, and 4.3x 

compared to DDR, BOB, and HBMM. As bulk of the 

accesses are served by soCache, MeSSOS exploits the low-

Figure 8. System energy breakdown. 

Figure 6. MeSSOS effectiveness for various Cache-to-Memory Capacity Ratio: (a) 1:32, (b) 1:16, (c) 1:8. 
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energy access of stacked DRAM modules, thus reducing 

memory energy consumption significantly. Furthermore, 

MeSSOS enforces coarse-grained data movement between 

soCache and DRAM, thus amortizing energy-intensive 

DRAM row activates [12]. Compared to Die-Stacked, 

MeSSOS reduces energy by 23% due to lower DDR energy 

resulting from lower off-chip bandwidth consumption. 

6.2. Projection to Future Technologies 
In Figure 9, we study the effect of technology scaling on 

MeSSOS’s performance and energy efficiency in 14nm 

(2018) and 11nm (2021) technologies. 

MeSSOS leverages the abundant bandwidth provided by 

SerDes, increasing performance almost linearly with the 

number of cores and by 3.7x (2018) and 6.6x (2021) 

compared to DDR-2015. Due to poor scalability of DDR 

interfaces, the bandwidth gap between DDR-based systems 

and the processor is increasing rapidly. Thus, MeSSOS's 

performance improvement over DDR and Die-Stacked 

increases across technologies. MeSSOS improves 

performance by 2.3x (2018) and 2.7x (2021) over DDR, and 

by 30% (2018)  and 43% (2021) over Die-Stacked. 

Regarding energy efficiency, the DDR energy footprint 

increases across technologies. Because MeSSOS employs 

under-clocked DIMMs, its energy footprint increases by 

only a small factor. Thus, MeSSOS reduces energy by 1.7x 

(2015), 2x (2018), and 2.6x (2021) compared to DDR and 

BOB, and by 23% (2015), 40% (2018), and 60% (2021) 

compared to Die-Stacked. Compared to HBMM, MeSSOS 

reduces energy by 4-4.4x. 

7. Conclusion 
We proposed a memory system architecture that utilizes 

multiple high-bandwidth memory modules as a scale-out 

cache, which is effective in capturing the secondary data 

working sets of scale-out workloads. Unlike state-of-the-art 

stacked DRAM caches employing in-DRAM block-level 

metadata, the proposed cache employs a page-based 

organization with low-overhead in-SRAM metadata as 

coarse-grained access patterns are dominant in high-

capacity caches. The proposed memory system architecture 

provides the required memory bandwidth and capacity for 

scale-out servers. 
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Figure 9. System performance and energy consumption for various technologies normalized to DDR-2015. 
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