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Privacy Risks of ML Algorithms

Privacy Risk: output model leaks information about the
individual members of its training dataset

e Membership inference attacks

» Shokri, Stronati, Song, Shmatikov (2017)

 Reconstruction attacks

e Carlini, Trameér, et al. (2021)



Differential Privacy

» Ditferential Privacy: the distribution of algorithm &/’s outputs,

on any neighboring inputs, are indistinguishable.

e (a,e€)-Rényi DP: for any neighboring datasets D, D’
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Rényi divergence: R (P||Q) =

[Mironov] Rényi differential privacy. CSF 2017



How to Train Privacy-preserving
Model

0, < initialization

Dataset D = (x, .-+, x,)

Fork=1,---,K do

* 0,.; = Update (Hk, D) + Noise

Output

Has a Complicated Distribution

Problem: how to bound the Rényi privacy loss R (O||0%)

[Mironov] Rényi differential privacy. CSF 2017



How to Train Privacy-preserving
Model

6, < initialization DP Composition Analysis

Dataset D = (x{, **+, X,)

Fork=1,---,K do

* 0,.; = Update (Qk, D) + Noise (a, €) - Renyi DP
« Output O and Op_(, -, 0, (a, € - K) - Rényi DP
>

Problem: how to bound the Rényi privacy loss R (O||0%)

[Mironov] Rényi differential privacy. CSF 2017



How to Compute a Better Bound

* A new privacy analysis for the Noisy Gradient Descent on a
certain class of loss functions

* analyzes the privacy loss for revealing the final model 6%

» assumes hidden intermediate models 6,, -+, O¢_;

Input: Dataset D = (x1,X2, -+ ,Xy,), loss function ¢, learn-

ing rate n, noise variance o2, initial parameter vector 6.
. for k=0,1,--- , K —1do
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Privacy Dynamics Bound

e Main Theorem: Noisy GD on A-strongly convex -smooth loss

functions with gradient sensitivity S, = 111)1211))/( |g(8; D) — g(0; D)||2

step-size n < 1/f and K iterations satisfies (a, €)-Rényi DP

Max Privacy Loss Privacy Loss

Convergence Rate
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Parameters: @ = 30, 0 = 0.02, S, =4, n = 0.02, 41 = 1, Size of dataset: n = 5000



Our Privacy Analysis is Tight

» Exact Privacy Loss Lower Bound
compute exact privacy loss for noisy GD on the squared norm
loss function £(8;z) = ||0 — x||?/2

€ > 4a;922 (1—6 "K)

* Privacy Dynamics Bound
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» Tightness: the upper bound matches the lower bound up to
a small constant of 4




How to Prove Privacy Dynamics

* One Update: r+1=1I¢ (0k — 79(6k; D) + \/27702N(07]Id))

1 . 9(0x;D)—g(8x;D")

* (b) Langevin diffusion with drift = 2
* (b') Langevin diffusion with drift —1 . 92 0(0:D)
A
orivacy | |g_ 7. 9(95D)J;9(9$D/) Drift difference bounded by S,
loss = Projection
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Utility Analysis

e How does the added randomness required for achieving
orivacy by a privacy analysis affect the error of the algorithm’s
output?

noise 62 ¢ and iterations K 4

(tighter) Privacy An aV \

(@, €)-Rényi DP Empirical Error
E[Lp(0x) — Lp(6)] ¥
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Utility Analysis

* Privacy dynamics analysis facilitates a better privacy-utility
tradeoft than the DP composition analysis for strongly convex
smooth loss functions.

E[Lp( 9@ — Lp(6*)]
)

polylogn
smaller error

poly(n) smaller runtime
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Summary

We need better estimates of the privacy loss for differentially-private
machine learning algorithms

* How much does a trained model leak about its training data?
Assuming that intermediate steps of the training algorithm are
private and not visible to adversary.

We present a new tight converging privacy dynamics theorem for noisy
gradient descent algorithms on strongly convex smooth loss functions

Open problem: Privacy dynamics under relaxed conditions



