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Membership Inference
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Does the sensitive dataset contain a given person's record?



Widely studied in
machine learning
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e Could serve as the base for
stronger attacks
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Issues with existing MIA

Belief: success of attacker
is @ metric for privacy loss

Success over what
records or models?
How to interpret
different success rate?

Inconsistencies in
formalizing the problem

An (unknown)
optimal attack
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Lack of explanation
for the leakage




Contributions

» Explain games in which difterent kinds of leakage could be quantitiea

» Formalize prior attack in this consistent framework

 Design attack stronger than prior attacks in this framework, via
approximating an optimal attack that minimizes adversary's uncertainty



Membership Inference Attack (MIA) Game

— —

—»
I l

Uncertainties
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» Black-box Access to Target Model

* Access to a population data pool

Prior works largely fomulates MIA game when all the components are randomized

[Yeom, Glacomelli, Fredrikson, Jha] Privacy risk in machine learning, CSF'18

[Sablarolles, Douze, Schmid, Olivier, Jegou] White-box vs black-box: Bayes optimal strategies for membership inference, ICML19



Reason for Leakage?

Overfitting

An average behavior of the
model on data distributions

Higher Better

Leakage Generalization

A large body of the literature is based on
techniques that simulates these two average-case
member and non-member worlds, via training
shadow models on random population data

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP17



How to Design Stronger Inference Attacks?
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Training Set

» Black-box Access to Target Model

* Access to a population data pool

Minimize the uncertainties of MIA Game f------ A Strongest Inference Attack

[Jagielski, Ullman, Opera] Auditing Differentially Private Machine Learning: How Private is Private SGD? NeurlPS'20
[Nasr, Song, Thakurta, Papernot, Carlini] Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning, IEEE S&P’'21




Higher
Leakage

Conditional Memorization

Reaso n fO r Lea kage? The behavior of models on a data

point, conditioned over other
unkonwn training data

Conditionally
Atypical

Hard to learn
data sample x,
given other
training data D

Less
conditional
memorization
on x, given D

Conditionally
Typical

Easy to learn
data sample x,

given other
training data D Loss of models on record x




How to simulate the two worlds in this
game when the remaining training dataset
Is unknown?



Mimic all the
training dataset
of the target
model (except
the target data)

Reference Models
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training —»

* E.qg., train reterence

models on random
population records,
l.e., similar to
shadow models

* E.g., Model
distillation — train
reference models on
relabelled random
population records
by the target model
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Our MIA via Reference Models on Target Data
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Our MIAs via Reference Models are Stronger
than Prior Attacks via Shadow Models
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TPR

Our MIA via Reference Models is Stronger than
existing MIAs of similar nature
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[Carlini, Chien, Nasr, Song, Terzis, Tramér] Membership inference attacks from first principles, IEEE S&P'22
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Main Takeaways

* Membership inference attack is useful for auditing different kinds of leakage when
formulated in different games

* There are multiple issues with the existing MIA in formalizing the problem and the
performance of attacks

* We propose a framework to deal with these issues, and design more powertful
attack via reducing adversary's uncertainty
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