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• We prove a novel converging last-iterate privacy bound for noisy 
SGD on strongly convex smooth loss functions. 

• Our bound substantially improves over prior privacy bounds, via 
novel bounds for the additional DP amplification in noisy SGD 

• Our results show that to obtain tighter privacy bound, DP learning 
algorithms needs to be evaluated by a last-iterate privacy bound, 
unless it has a very fast convergence.
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Differentially Private Learning Needs Hidden State 
(Or Much Faster Convergence)

A Better Bound: DP Amplification under 
Hidden-state Subsampling of noisy SGD

How does stochastic ordering of mini-
batches further amplify privacy?
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How does hiding intermediate models amplify 
differential privacy?

The privacy loss for a mini-batch update is amplified if it only accesses 
every sensitive record with a small probability (due to sub-sampling)

B1 B2 Bi… …

Shuffle and Partition

D

Reveal parameters only 
at the end of algorithm 

For any possible 
sequence of mini-
batches (of size )b

GD on this  
mini-batch

Randomized  
Post-processing

with probability b
n

B1 B2 Bj… …with probability b
n

The privacy loss for a mini-batch update is amplified if it only accesses 
every sensitive record with a small probability (due to sub-sampling)

Key difficulty: the distribution of the final output is a mixture distribution 
with a large number of mixture components
Our Technique: recursively study divergence between mixtures
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• Differential Privacy: the distribution of algorithm ’s outputs, 
on any neighboring inputs, are indistinguishable. 

• -Rényi DP [29]: for any neighboring datasets 

𝒜

(α, ϵ) D, D′ 

Rα(P∥Q) =
1
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log 𝔼

θ∼Q [( P(θ)
Q(θ) )

α

]Rényi divergence:

Rα(𝒜(D)∥𝒜(D′ )) ≤ ϵ

Differential Privacy

Main Takeaway

Problem: could we directly prove a 
(better) DP bound for noisy SGD under 

the hidden-state assumption  
(i.e., analyze  while assuming 

hidden )?
R(θK∥θ′ K)

θK−1, ⋯, θ1

Idea:  

 by definition

Rα(θK, ⋯, θ1∥θ′ K, ⋯, θ1)
≥ Rα (θK∥θ′ K)

+ Noise

Standard DP Composition for noisy SGD

Quantitatively not ideal if the number of iterations  is largeK

DP Composition Analysis

 - Rényi DP(α, ε)

 - Rényi DP(α, ε ⋅ K)

Has a Complicated 
Distribution

and θK−1, ⋯, θ1

… …
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Amplification 
by shuffling

Main Theorem: For �-strongly convex, �-smooth loss functions
with `2-gradient sensitivity Sg, running Noisy SGD on n

b � 2
shu✏ed-once mini-batch partitions with K � 1 epochs and step-
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Amplification 
by the 
hidden-state 
assumption

mailto:jiayuan@comp.nus.edu.sg
mailto:reza@comp.nus.edu.sg

