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Differential Privacy

Differential Privacy: the distribution of algorithm &/’s outputs,

on any neighboring inputs, are indistinguishable.
(a, €)-Rényi DP [29]: for any neighboring datasets D, D’

R(AD)||H (D)) <€
Rényi di R(PIQ) = ——log E (i@)
ényi divergence: R, “a—1 S | \ow

Standard DP Composition for noisy SGD
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Dataset D = (x;, -+, x,)

n
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(a, €) - Rényi DP
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Outputnd O, 0,

Has a Complicated > Idea: R,(Ok, -+, 0|0k, -+, 0,)
Distribution >R, <9K||(9}<) by definition

(a, € - K) - Rényi DP
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Problem: could we directly prove a
(better) DP bound for noisy SGD under
the hidden-state assumption

(i.e., analyze R(0k||0%) while assuming
hidden O¢_;, +++,0,)?

A Better Bound: DP Amplification under
Hidden-state Subsampling of noisy SGD
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For any possible
sequence of mini-

batches (of size b)
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mini-batch Post-processing »
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with probability ~ Bl Bz Bj ... at the end of algorithm

Main Theorem: For A-strongly convex, S-smooth loss functions

with fy-gradient sensitivity Sy, running Noisy SGD on 7 > 2
shuffled-once mini-batch partitions with K > 1 epochs and step-

size 1 < ﬁ satisfies (a, €)-Rényi DP with
1 — (1 — pA)2E-Dm/- 1)

1 — (1 — gA)2 (/15D

+ 1 -log< Avg e(o‘l)eg/bjo(o‘)>

e <e5® (a)

a—1 0<jo<n/b

' ansS; 2.(j—1 . "
where £)(a) = 5% - (1 — 1)) G=1). Zﬁ;é(;—n/\)% forany j=1,---,7%.
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How does hiding intermediate models amplify
differential privacy?

The privacy loss for a mini-batch update is amplified if it only accesses

every sensitive record with a small probability (due to sub-sampling)

k epochs and j an update on mini-batch Bli with
iterations of training stepsize 77 and noise ' (0,2576°)
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Theorem: If distributions of (9]{ and Q’JI'C satisty log-Sobolev inequality with
constant ¢, and if each mini-batch GD mapping is L-Lipschitz, then
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How does stochastic ordering of mini-
batches further amplify privacy?

The privacy loss for a mini-batch update is amplified if it only accesses
every sensitive record with a small probability (due to sub-sampling)

Key difficulty: the distribution of the final output is a mixture distribution

with a large number of mixture components
Our Technique: recursively study divergence between mixtures
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Main Takeaway

* We prove a novel converging last-iterate privacy bound for noisy
SGD on strongly convex smooth loss functions.

* Our bound substantially improves over prior privacy bounds, via
novel bounds for the additional DP amplification in noisy SGD

e Our results show that to obtain tighter privacy bound, DP learning

algorithms needs to be evaluated by a last-iterate privacy bound,

unless it has a very fast convergence.
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