Differentially Private Learning Needs Hidden State

Jiayuan Ye (iiayuan@comp.nus.edu.sg), Reza Shokri (reza@comp.nus.edu.sg) Department of Computer Science, National University of Singapore

Differential Privacy

- Differential Privacy: the distribution of algorithm \mathscr{A} 's outputs, on any neighboring inputs, are indistinguishable
- (α, ϵ)-Rényi DP [29]: for any neighboring datasets D, D^{\prime}

$$
\begin{gathered}
R_{\alpha}\left(\mathscr{A}(D) \| \mathscr{A}\left(D^{\prime}\right)\right) \leq \epsilon \\
\text { Rényi divergence: } R_{\alpha}(P \| Q)=\frac{1}{\alpha-1} \log \underset{\theta \sim Q}{\mathbb{E}}\left[\left(\frac{P(\theta)}{Q(\theta)}\right)^{\alpha}\right]
\end{gathered}
$$

Standard DP Composition for noisy SGD

- $\theta_{0} \leftarrow$ initialization
- Dataset $D=\left(x_{1}, \cdots, x_{n}\right)$
- For $k=1, \cdots, K$ do

DP Composition Analysis

- Sample a minibatch B_{k}
- $\theta_{k+1}=\operatorname{Update}\left(\theta_{k^{\prime}} B_{k}\right)+$ Noise
(α, ε) - Rényi DP
- Output $\overparen{\theta}_{K}$ and $\theta_{K-1}, \cdots, \theta_{1}$ $(\alpha, \varepsilon \cdot K)$ - Rényi DP

Has a Complicated Distribution

Idea: $R_{\alpha}\left(\theta_{K}, \cdots, \theta_{1} \| \theta_{K}^{\prime}, \cdots, \theta_{1}\right)$
$\geq R_{\alpha}\left(\theta_{K} \| \theta_{K}^{\prime}\right)$ by definition

Quantitatively not ideal if the number of iterations K is large

Problem: could we directly prove a (better) DP bound for noisy SGD under
the hidden-state assumption
(i.e., analyze $R\left(\theta_{K} \| \theta_{K}^{\prime}\right)$ while assuming hidden $\left.\theta_{K-1}, \cdots, \theta_{1}\right)$?

A Better Bound: DP Amplification under Hidden-state Subsampling of noisy SGD

Main Theorem: For λ-strongly convex, β-smooth loss functions with ℓ_{2}-gradient sensitivity S_{g}, running Noisy SGD on $\frac{n}{b} \geq 2$ shuffled-once mini-batch partitions with $K \geq 1$ epochs and stepsize $\eta<\frac{2}{\lambda+\beta}$ satisfies (α, ε)-Rényi DP with

$$
\begin{aligned}
\varepsilon \leq & \leq \varepsilon_{0}^{\left\lfloor\frac{n}{2 b}\right\rfloor}(\alpha) \cdot \frac{1-(1-\eta \lambda)^{2 \cdot(K-1) \cdot\left(n / b-\left\lfloor\frac{n}{2 b}\right\rfloor\right)}}{1-(1-\eta \lambda)^{2 \cdot\left(n / b-\left\lfloor\frac{n}{2 b}\right\rfloor\right)}} \\
& +\frac{1}{\alpha-1} \cdot \log \left(\underset{0 \leq j_{0}<n / b}{\left.\operatorname{Avg} e^{(\alpha-1) \varepsilon_{0}^{n / b-j_{0}}(\alpha)}\right)}\right. \\
\text { where } \varepsilon_{0}^{j}(\alpha)= & \frac{\alpha \eta S_{g}^{2}}{4 \sigma^{2} b^{2}} \cdot(1-\eta \lambda)^{2 \cdot(j-1)} \cdot \frac{1}{\sum_{s=0}^{j-1}(1-\eta \lambda)^{2 s}} \text { for any } j=1, \cdots, \frac{n}{b} .
\end{aligned}
$$

How does hiding intermediate models amplify differential privacy?

The privacy loss for a mini-batch update is amplified if it only accesses every sensitive record with a small probability (due to sub-sampling)

Theorem: If distributions of θ_{k}^{j} and $\theta^{\prime j}{ }_{k}$ satisfy log-Sobolev inequality with constant c, and if each mini-batch GD mapping is L-Lipschitz, then

$$
\frac{R_{\alpha}\left(\theta_{k}^{j+1} \| \theta_{k}^{\prime j+1}\right)}{\alpha} \leq\left\{\begin{array}{ll}
\frac{R_{\alpha}^{\prime}\left(\theta_{k}^{j}, \| \theta^{\prime \prime} k_{k}\right)}{\alpha^{\prime}} \cdot\left(1+\frac{c \cdot 2 \eta \sigma^{2}}{L^{2}}\right)^{-1} & \text { if } i_{0} \notin B_{k}^{j} \\
\frac{R_{\alpha}\left(\theta_{k}^{\|}\| \|_{k}^{\prime j}\right)}{\alpha}+\frac{\eta S_{0}^{2}}{4 \sigma^{2} b^{2}} & \text { if } i_{0} \in B_{k}^{j}
\end{array} \text { with } \alpha^{\prime}=\frac{\alpha-1}{1+\frac{c_{2} \cdot 2 \eta \sigma^{2}}{L^{2}}}+1 .\right.
$$

How does stochastic ordering of minibatches further amplify privacy?

The privacy loss for a mini-batch update is amplified if it only accesses every sensitive record with a small probability (due to sub-sampling)
Key difficulty: the distribution of the final output is a mixture distribution with a large number of mixture components
Our Technique: recursively study divergence between mixtures

$$
e^{(\alpha-1) \cdot R_{\alpha}\left(\sum_{j=1}^{m} p_{j} \mu_{j} \| \sum_{j=1}^{m} p_{j} \nu_{j}\right)} \leq \sum_{j=1}^{m} p_{j} \cdot e^{(\alpha-1) \cdot R_{\alpha}\left(\mu_{j} \| \nu_{j}\right)}
$$

Main Takeaway

- We prove a novel converging last-iterate privacy bound for noisy SGD on strongly convex smooth loss functions.
- Our bound substantially improves over prior privacy bounds, via novel bounds for the additional DP amplification in noisy SGD
- Our results show that to obtain tighter privacy bound, DP learning algorithms needs to be evaluated by a last-iterate privacy bound, unless it has a very fast convergence.

