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Standard Machine Learning
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Training Data Learning a Classifier Test Data

Train and Test data Drawn i.i.d. from the same distribution 
High test performance means good classifier
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Issues in practice

• Robustness (influence of adversarial data) 

• Privacy (information leakage) 

• Sample selection bias 

• Overfitting and memorization 

• …
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Our work: We show they are intrinsically the same problem of 
estimating leave-one-out distinguishability

Track and control how 
each training data change 
trained model’s prediction

We propose one analytical framework to solve it accurately and efficiently



• Let  and  be two training datasets that differ in record(s)  

• Let  be the distribution of model output (e.g., loss, 
prediction) given training dataset  and query data , where 
the randomness is over the random coins of the algorithm 

• We define Leave-one-out Distinguishability as 
 
 
where  can be any statistical distance such as Euclidean 
distance between distribution means and KL divergence
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Leave-one-out Distinguishability
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Influence of Adversarial Data

• Poisoning attacks construct poisoned data that, when used in 
training with clean data, could adversely influence test loss 

• Adversarial training examples further find small perturbation 
of original data that adversely influence test predictions
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Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." International Conference on Machine Learning. PMLR, 2017.



• Influence of training data  on model’s loss at test data  is 
 
 
 

• This is leave-one-out distinguishability given by mean 
distance among loss distributions, for an (idealized) algorithm 
that outputs the optimal model given any training dataset

z ztest

Influence as LOOD
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̂θ−z = arg min
θ ∑

zi∈D

L(zi, θ) − L(z, θ) ̂θ = arg min
θ ∑

zi∈D

L(zi, θ)andwhere

Iloss(z, ztest) = L( ̂θ−z; ztest) − L( ̂θ; ztest)

Steinhardt, Jacob, Pang Wei W. Koh, and Percy S. Liang. "Certified defenses for data poisoning attacks." Advances in neural information processing systems 30 (2017). 
Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." International Conference on Machine Learning. PMLR, 2017.

Computation difficulty: exact minimizer is hard to find, and 
computing it as is requires leave-one-out retraining 



Influence Function as LOOD

• Influence function (Koh and Liang, 2017) aims to estimate this 
influence without retraining for small perturbation of training 
data, via a first-order Taylor approximation of influence 
 
 
 

• This is partial derivative of the following mean distance LOOD
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̂θzδ,−z = arg min
θ∈Θ

n

∑
i=1

L(zi, θ) − L(z, θ) + L(zδ, θ)where

Ipert,loss(z, ztest) = ∇δL(ztest, ̂θzδ,−z)

Ipert,loss(z, ztest) = ∇δLOODmean(ztest; D−z ∪ zδ, D)

Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." International Conference on Machine Learning. PMLR, 2017.

can be computed 
analytically using Hessian 

approximations at ̂θ
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Feldman, Vitaly, and Chiyuan Zhang. "What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation." NeurIPS. 2020. 
https://pluskid.github.io/influence-memorization/

Memorization intuitively quantifies "overfitting" at a per-record level



Memorization as LOOD

• Memorization is self-influence at , where Influence 
of training data  at test data  in prediction accuracy is 

• Thus memorization is mean distance LOOD when query 
equals differing data

z = (xi, yi)
i z
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Feldman, Vitaly. "Does learning require memorization? a short tale about a long tail." Proceedings of the 52nd Annual ACM SIGACT Symposium on 
Theory of Computing. 2020. 
Feldman, Vitaly, and Chiyuan Zhang. "What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation." NeurIPS. 2020. 
https://pluskid.github.io/influence-memorization/

Computation cost: estimating the probability accurately requires 
multiple repeated training runs on dataset  and  for each S S∖i i



Information Leakage

• Information Leakage relates to the extent to which a model 
unintentionally reveals information about its training dataset 
when its prediction (distribution) at a query is observed. 
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Loss of models on record x0

Increased over-fitting/memorization 
make membership inference easier

Further enables reconstructing 
sensitive data used in training 

[Carlini, Tramer, et al.] Extracting Training Data 
from Large Language Models, Usenix security’21

Non-
member

Member



• Information leakage boils down to the change of algorithm's 
output after only one individual in the training dataset  
changes its participance (denote the changed dataset by ) 

• This is exactly LOOD given by divergence measures, for an 
algorithm that outputs model's prediction on test query 

D
D′ 

Q

Information Leakage as LOOD
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-differential privacy 
of algorithm 

(ε, δ)
𝒜

 where 

 and 

Dfε(𝒜(D)∥𝒜(D′ )) ≤ δ
fε(x) = max(0,x − eε)

Df(P∥Q) = 𝔼Q [f(
dP
dQ ]

⇔

Dwork, Cynthia, et al. "Calibrating noise to sensitivity in private data analysis." Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, 
USA, March 4-7, 2006. Proceedings 3. Springer Berlin Heidelberg, 2006. 
Balle, Borja, Gilles Barthe, and Marco Gaboardi. "Privacy amplification by subsampling: Tight analyses via couplings and divergences." Advances in neural information 
processing systems 31 (2018).



LOOD vs Leakage against 
Inference Attacks

• Another established method for assessing information 
leakage is through a membership inference attack 

• Attacker guess whether a specific data point S was part of 
the model’s training dataset;  

• Leakage is quantified by the performance of the attacker, 
e.g., its FPR versus TPR curve, on randomly trained target 
models and their training/test data 

•  Such leakage against MIA (and other inference attacks) can 
be upper-bounded by LOOD given by divergence measures
⇒
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[a] Shokri, Reza, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. "Membership inference attacks against machine learning models." In IEEE S&P 2017. 
[b] Balle, B., Cherubin, G., & Hayes, J. Reconstructing training data with informed adversaries. In IEEE S&P 2022.
[c] Guo, C., Sablayrolles, A., & Sanjabi, M. Analyzing privacy leakage in machine learning via multiple hypothesis testing: A lesson from fano. In ICML 2023.
[d] Yeom, S., Giacomelli, I., Fredrikson, M., & Jha, S. Privacy risk in machine learning: Analyzing the connection to overfitting. In CSF 2018.
[e] Guo, C., Karrer, B., Chaudhuri, K., & van der Maaten, L.Bounding training data reconstruction in private (deep) learning. In ICML 2022.
[f] Hayes, J., Mahloujifar, S., & Balle, B. (2023). Bounding Training Data Reconstruction in DP-SGD. In NeurIPS 2023.



Leave-one-out distinguishability lie 
at the heart of estimating influence, 
memorization and information leakage
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• Prior approaches are heavily based on experiments, thus 
suffering from  

• approximation error (e.g., due to first-order Taylor 
expansion and high-dimensional Hessian computation)  

• modelling error (e.g., suboptimal inference attacks) 

• high computation cost (e.g., training many models for 
estimating memorization) 

• instability (uncontrollable experimental randomness)
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How to Estimate Leakage, 
Influence, and Memorization



We propose one method that estimates LOOD accurately and 
efficiently — model the prediction distribution of DNNs as 
Gaussian process to analytically compute LOOD
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Gaussian Process

• "Roughly speaking a stochastic process is a generalization of 
a probability distribution (which describes a finite-dimensional 
random variable) to functions" 

• We say a function   follows a Gaussian process, if for any 
finite collection of inputs , we have that  
follows a multivariate Gaussian distribution 

• We denote  as the mean function, denote 
 as the covariance 

function for Gaussian process 

f
x1, ⋯, xk f(x1), ⋯, f(xk)

μ(x) = 𝔼f[ f(x)]
K(x, x′ ) = Ef [( f(x) − μ(x)) ⋅ ( f(x′ ) − μ(x))]

GP(μ, K)
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Rasmussen, Carl Edward, and Christopher KI Williams. Gaussian processes for machine learning. Vol. 1. Cambridge, MA: MIT press, 2006.



• Initially, for  the prior prediction distribution is 
 
 
 
 
for training dataset  and test data 

f ∼ GP(0,K)

X X*

Gaussian Process regression
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Rasmussen, Carl Edward, and Christopher KI Williams. Gaussian processes for machine learning. Vol. 1. Cambridge, MA: MIT press, 2006.

• Initially, for  the prior prediction distribution is 
 
 
 
 
for training dataset  and test data  

• Given ground-truth observations  for training data , by 
conditioning the joint prior distribution on , we have that

f ∼ GP(0,K)

X X*

f X
f

allows analytical 
computation of LOOD



Neural Network Gaussian 
Processes (NNGP)

• In the limit of infinite network width, deep neural networks at 
random initialization forms a GP, denoted as NNGP 

• Intuitively this is due to the central limit theorem 

• The covariance function can be computed recursively over 
the layers, and depends on the network architecture
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Radford M. Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of Toronto, 1994. 
Christopher KI Williams. Computing with infinite networks. In Advances in neural information processing systems, pp. 295–301, 1997. 
Lee, Jaehoon, et al. "Deep Neural Networks as Gaussian Processes." International Conference on Learning Representations. 2018.

NNGP allows predictions from Bayesian neural networks to 
be more efficiently evaluated, and provides an analytic tool to 
understand deep learning models



LOOD under NNGP accurately estimates 
Leakage, Memorization and Influence
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Models are trained on 'car' and 'plane' images in the CIFAR-10 dataset



• LOOD is an analytical framework, and therefore allows 
efficient and accurate answers for many questions (without 
the need for training any models) 

• What prediction leaks the most information about 
individual training data?  

• What is the joint influence of a group of training data? 

• How does network activation choice affect leakage? 

• ...
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What prediction leaks the most 
information? 

• Optimze LOOD to identify the most influenced prediction 

• Theoretically: let  be the differing record between  and  

• The above optimization problem incurs stationary solution 
when  (under weak regularity conditions) 

• Mean distance LOOD is stationary at  only if  is very 
far away or very close to the training dataset 

S D D′ 

Q = S

Q = S S
D
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Experimentally Find the Most-
Influenced Prediction -- Reconstruction

• We can use SGD or Adam to solve the optimization problem
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How the network activation 
choice affects leakage?

• Prior works: smooth activations enable kernels that are farther 
away from a low rank all-constant matrix (more expressive) 
than kernel obtained with non-smooth activations 

• We prove that low rank kernel matrix ensures low LOOD 

• Thus we prove smooth activations, e.g., GeLU, induce higher 
leakage (LOOD) than non-smooth activations, e.g., ReLU
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Numerically Validation and 
Generalizability to DNNs
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Conclusion

• Understanding how each training data influences the prediction 
of the trained model is a canonical problem. It allows answering  

• whether data X is used in training a model 

• how robust the model is to removing data X from its training 
dataset 

• how much does the model memorize individual training data 

• We develop one framework -- leave-one-out distinguishability, 
that facilitates more efficient and interpretable answers to 
existing and new questions about data influence, memorization 
and information leakage for machine learning models
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