
• Consider a linearized network by first-order Taylor expansion 

• Under GD, DNN can work in the lazy training regime, under which 
this linearized network well approximates DNN training 

• Theorem: For single output linearized network with hidden layer 
width , bounded data with dimension , under certain regularity 
conditions, if  where  is size of training dataset, then

m d
d, m = Ω(n) n

• We theoretically prove and numerically show that for training DNNs 
with a small time, and for training linearized networks with any time 

• Increasing width always hurts KL privacy 

• Increasing depth helps KL privacy under certain initializations 

• Under certain data regularity and large enough  
widths, we further prove privacy-utility trade-offs for  
training linearized networks and prove that it similarly 
relies on the choice of initialization distributions

Reveal          , i.e., 
the training trajectory

Initialization at  for layer t = 0 l

Langevin diffusion Algorithm:

No 
clipping

KL(W[0:T ]kW0
[0:T ]) =

1

2�2

Z T

0

E
h
krL(Wt;D)�rL(Wt;D

0)k22
i
dt .

Initialization Matters: Privacy-Utility Analysis of 
Overparameterized Neural Networks

Our Approach (Circumventing clipping)

Special Case: Privacy-Utility Trade-offs for 
Training Linearized Network

Jiayuan Ye (jiayuan@comp.nus.edu.sg), Zhenyu Zhu (zhenyu.zhu@epfl.ch), Fanghui Liu (fanghui.liu@epfl.ch), Reza Shokri (reza@comp.nus.edu.sg) and Volkan Cevher (volkan.cevher@epfl.ch)

Overparameterization of Neural Network
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Problem: How does overparameterization affect the 
privacy bound of the training algorithm?

Gradient fluctuation dominates under large  and T MT

Initialization matters for 
small training time T

KL privacy bound for overparameterized DNN: Let MT

be the subspace spanned by gradient on individual training data
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fusion (Wt)t2[0,T ]. Denote k·kMT as the `2 norm of the projection
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Let  be the per-record gradients subspace in Langevin diffusion with 
time . Let constants  specify a relaxed smoothness condition.Then

MT
T β, c

where
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Figure 2: Numerically estimated KL privacy loss during noisy gradient descent on fully connected
ReLU network with increasing width and depth under different initialization. We observe that KL
privacy loss grows with width under all evaluated initialization in Figure 2c. In terms of depth, at
the beginning of training (20 epochs), KL privacy loss worsens (increases) with depth under He
initialization, but first worsens (increases) with depth ( 8) and then improves (decreases) with
depth (� 8) under Xavier and LeCun initializations. At later phases of the training (50 epochs),
KL privacy worsens (increases) with depth under all evaluated initializations. This is consistent
with Lemma 3.2, and suggests that by choosing appropriate initialization distributions (Xavier and
LeCun) and reducing the number of total training epochs, it is possible to obtain KL privacy loss that
improves (decreases) with increasing depth for large depth.

under all evaluated initialization distributions. This is consistent with empirical observations in the337

literature [47] that larger (i.e., wider) models suffer from higher privacy loss, given a fixed network338

depth. The relationship between KL privacy and network depth, however, is more complicated and339

highly depend on the initialization distributions and amount of training time. As we observe in340

Figure 2a and Figure 2b, only when the training time is small (20 epochs) and when the initialization341

distribution is LeCun or Xavier, it is possible to observe a numerical KL privacy loss that improves342

(decreases) with depth as long as the depth is large enough (> 8). These results suggest that the smaller343

per-layer variance in the LeCun and Xavier initialization distribution (compared to He initialization)344

contributes to smaller gradient norm at initialization, thus contributing to improved dependency of345

KL privacy loss on increasing depth. This is consistent with our discussion after Lemma 3.2 on the346

dependency of KL privacy bound for DNN on increasing width and depth, and validates our bound347

Theorem 4.1 for gradient difference norm at initialization. To this end, we validate that the choice of348

initialization distribution affects the dependency of KL privacy loss on increasing width and depth.349

6 Utility guarantees for Training Linearized Network350

Our privacy analysis suggests that training linearized network under certain initialization schemes351

(such as LeCun initialization) enable significantly better privacy bounds under overparameterization352

by increasing depth. In this section, we further prove utility bounds for Langevin diffusion under353

initialization schemes and investigate the effect of overparameterization on the privacy utility trade-off.354

In other words, we aim to understand whether there is any utility degradation for training linearized355

networks when using the more privacy-preserving initialization schemes.356

Convergence of training linearized network. We now prove convergence of excess empirical risk in357

training linearized network via Langevin diffusion. This is a well-studied problem in the literature for358

noisy gradient descent. We extend the convergence theorem to continuous-time Langevin diffusion359

below and investigate factors that affect the convergence under overparameterization.360
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Figure 2: Numerically estimated KL privacy loss during noisy gradient descent on fully connected
ReLU network with increasing width and depth under different initialization. We observe that KL
privacy loss grows with width under all evaluated initialization in Figure 2c. In terms of depth, at
the beginning of training (20 epochs), KL privacy loss worsens (increases) with depth under He
initialization, but first worsens (increases) with depth ( 8) and then improves (decreases) with
depth (� 8) under Xavier and LeCun initializations. At later phases of the training (50 epochs),
KL privacy worsens (increases) with depth under all evaluated initializations. This is consistent
with Lemma 3.2, and suggests that by choosing appropriate initialization distributions (Xavier and
LeCun) and reducing the number of total training epochs, it is possible to obtain KL privacy loss that
improves (decreases) with increasing depth for large depth.
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initialization �l =
2

ml�1+ml
, we prove that the KL privacy bound (especially the constant B (8))286

improves with increasing depth as long as the depth is large enough.287

(2) NTK and He initializations user large per-layer variance �l =

(
2
ml

l = 1, · · · , L� 1
1
o l = L

(for288

NTK) and �l =
2

ml�1
(for He). Consequently, the gradient difference under NTK or He initialization289

is significantly larger than that under LeCun initialization. Specifically, the gradient norm constant B290

(8) grows linearly with the width m and the depth L under He and NTK initializations, thus indicating291

a worsening of KL privacy bound under increasing width and depth.292

5 Numerical validation of our KL privacy bounds293

To understand the relation between privacy and overparameterization in practical DNNs training294

(and to validate our KL privacy bounds Lemma 3.2 and Corollary 4.2), we perform experiments for295

DNNs training via noisy GD to numerically estimate the KL privacy loss. We will show that if the296

total training time is small, it is indeed possible to obtain numerical KL privacy bound estimates that297

does not grow with the total number of parameter (under carefully chosen initialization distributions).298

Numerical estimation procedure. Observe that the KL privacy loss in Theorem 3.1 only de-299

pends on the noise scale �
2 and expected squared gradient norm during training. Therefore, we300

could numerically estimate the KL privacy loss by empirically averaging the squared gradient301

norm in multiple runs of the noisy GD algorithm. We consider the training datasets D as the302

subset of CIFAR-10 dataset that contains the ’car’ and ’plane’ labels. For neighboring dataset,303

we consider D0 over all possible dataset constructed by randomly removing one training record304

from D, or by adding one random record from test set with class ’car’ or ’plane’ to D. (Note305

that this is different from the general neighboring notion we consider for the analysis in the paper,306

but our privacy bound Theorem 3.1 still holds under this add-or-remove-one neighboring notion).307
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Figure 1: Numerical estimations of
KL privacy bound Theorem E.1 (ex-
tension of Theorem 3.1) for noisy GD
with constant step-size 0.001 on deep
neural network with width 1024 and
depth 10. We report the mean and
standard deviation across 6 training
runs. The numerical KL privacy loss
grows with the number of training
epochs under all initializations. The
growth rate is close to linear at begin-
ning of training (epochs < 10) and
is faster than linear at epochs � 10.
This is consistent with Lemma 3.2.

We run noisy gradient descent with constant step-size 0.01308

for 50 epochs on both datasets. We compute the mean and309

standard deviation of squared norm of gradient difference310

across 6 runs, and report the corresponding KL privacy loss311

computed by applying Theorem 3.1.312

Numerical evidence for the growth of KL privacy bound313

with regard to training time. We evaluate over a specific314

setting of fully connected network with width 1024 and depth315

10 under different initialization distributions. In Figure 1,316

we show the growth of the KL privacy loss estimate (mean317

in solid lines and standard deviation in shaded area) over318

the training process (as the number of epochs grows). We319

observe that the KL privacy loss grows at a close to linear320

rate at the beginning of training (< 10 epochs). Specifically,321

the KL privacy loss under LeCun and Xavier initialization322

distribution is close to zero at the beginning of training (<323

10 epochs). This is due to the small per-layer variance for324

model parameters in LeCun and Xavier initialization, which325

contributes to small gradient norm at the beginning of training326

(i.e., the first term in the KL privacy bound Lemma 3.2).327

However, as the number of epochs grow to > 10, the KL328

privacy loss grows faster than linear accumulation, reflecting329

that the exponential dependence of the second term in the KL330

privacy bound Lemma 3.2 on training time T is reasonable331

in this instance of practical training.332

Numerical evidence for the relation between KL privacy bound and network overparameterization.333

We now investigate the properties of numerically estimated KL divergence upper bound under334

overparameterization, i.e., increasing network depth and width. We observe in Figure 2c that the335

numerically estimated KL divergence uppper bound accumulates with increasing width and time336
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Lemma: For DNN with input data dimension , hidden layer width 
, and  output classes, at Gaussian initialization for model 

parameters  (with per-dimensional variance  at layer ), we have

m0 = d
m1, ⋯, mL−1 mL = o

W βl l

Small  and makes an initialization distribution good for privacyβlml
βL

βl

Precise KL privacy analysis at Initialization

where hl(x) denotes the post-activation output at l-th layer, and {Wl 2 Rml⇥ml�1 : l = 1, . . . , L}
denotes the set of per-layer weight matrices of DNN. For brevity, we denote the vector W :=
(Vec(W1), . . . ,Vec(WL)) 2 Rm1·d+m2·m1+···+o·mL�1 , i.e., the the concatenation of vectorizations
for weight matrices of all layers, as the model parameter.

Linearized Network. We also analyze the following linearized network, which is used in prior
works [32, 3, 38] as an important tool to (approximately and qualitatively) analyze the training
dynamics of DNNs. Formally, the linearized network f

lin,0
W

(x) is a first-order Taylor expansion of
the fully connected ReLU network at initialization parameter W lin

0 , as follows.

f
lin,0
W

(x) ⌘ f
W

lin
0

(x) +
@fW (x)

@W

���
W=W

lin
0

�
W �W

lin
0

�
, (3)

where f
W

lin
0

(x) is the output function of the fully connected ReLU network (2) at initialization W
lin
0 .

We denote L
lin
0 (W ;D) = 1

n

Pn
i=1 `

⇣
f
W

lin
0

(xi) +
@fW (x)

@W |
W=W

lin
0

(W �W
lin
0 );yi

⌘
as the em-

pirical loss function for training linearized network, by plugging (3) into (1).

Langevin Diffusion. Regarding the optimization algorithm, we focus on the Langevin diffusion
algorithm [33] with per-dimensional noise variance �

2. Note that we aim to avoid gradient clipping
while still proving KL privacy bounds. After initializing the model parameters W0 at time zero, the
model parameters Wt at subsequent time t evolves as the following stochastic differential equation.

dWt =�rL(Wt;D)dt+
p

2�2dBt . (4)

Initialization Distribution. The initialization of parameters W0 crucially affects the convergence
of Langevin diffusion, as observed in prior literatures [49, 25, 24]. In this work, we investigate
the following general class of Gaussian initialization distributions with different (possibly depth-
dependent) variances for the parameters in each layer. For any layer l = 1, · · · , L, we have

[W l]ij ⇠ N (0,�l), for (i, j) 2 [ml]⇥ [ml�1] , (5)

where �1, · · · ,�L > 0 are the per-layer variance for Gaussian initialization. By choosing different
variances, we recover many common initialization schemes in the literature, as summarized in Table 1.

2.1 Our objective and methodology

We aim to understand the relation between privacy, utility and over-parameterization (depth and width)
for the Langevin diffusion algorithm (under different initialization distributions). For privacy analysis,
we prove a KL privacy bound for running Langevin diffusion on any two worst-case neighboring
datasets. Below we first give the definition for neighboring datasets.
Definition 2.1. We denote D and D

0 as neighboring datasets if they are of same size and only differ
in one record. For brevity, we also denote the differing records as (x,y) 2 D and (x0

,y
0) 2 D

0.

Assumption 2.2 (Bounded Data). For simplicity, we assume bounded data, i.e., kxk2 
p
d.

We now give the definition for KL privacy, which is a more relaxed, yet closely connected privacy
notion to the standard (", �) differential privacy [22], see Appendix A.2 for more discussions. KL
privacy and its relaxed variants are commonly used in previous literature [8, 10, 50].
Definition 2.3 (KL privacy). A randomized algorithm A satisfies "-KL privacy if for any neighboring
datasets D and D

0, we have that the KL divergence KL(A(D)kA(D0))  ", where A(D) denotes
the algorithm’s output distribution on dataset D.

In this paper, we prove KL privacy upper bound for maxD,D0 KL(W[0:T ]kW
0
[0:T ]) when running

Langevin diffusion on any worst-case neighboring datasets. For brevity, here (and in the remaining
paper), we abuse the notations and denote W[0:T ] and W

0
[0:T ] as the distributions of model parameters

trajectory during Langevin diffusion processes Eq. (4) with time T on D and D
0 respectively.

For utility analysis, we prove the upper bound for the excess empirical risk given any fixed KL diver-
gence privacy budget for a single-output neural network under the following additional assumption
(it is only required for utility analysis and not needed for our privacy bound).

4

Numerical evidence for KL privacy loss of DNNs

Table 1: Our privacy utility trade-off bounds for training linearized network (3) via Langevin diffusion,
under different hidden-layer width m, depth L and initializations. The per-layer widths m0 = d,
m1, · · · ,mL�1 = m and mL = o where d is the data dimension and o is number of classes. For
KL privacy bounds, we assume Assumption 2.2 holds and L � 2 for simplicity. For the excess risk
bounds, we assume o = 1, d,m = ⌦̃ (n) are large, and Assumption 2.2. Under LeCun and Xavier,
we prove privacy utility trade-offs that improve with over-parameterization (increasing depth).

Initialization Variance �l

for layer l
KL privacy bound

under fixed T and �
2

Approximate lazy
training distance R

Excess Empirical risk
under "-KL privacy
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⌘
Õ
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1
n2 +

q
1

2L"

⌘

To answer this question, we circumvent the difficulties of analyzing gradient clipping, and instead
algorithmically focus on analyzing privacy for the Langevin diffusion algorithm without gradient
clipping nor Lipschitz assumption on loss function. 2 It avoids an artificial setting in DP-SGD [2]
where a constant sensitivity constraint is enforced for each gradient update and thus makes the privacy
bound insensitive to the network over-parameterization. Theoretically, we prove that the KL privacy
loss for Langevin diffusion scales with the expected gradient difference between the training on
any two worst-case neighboring datasets (Theorem 3.1). 3 By proving precise upper bounds on the
expected `2-norm of this gradient difference, we thus obtain KL privacy bounds for fully connected
neural network (Lemma 3.2) and its linearized variant (Corollary 4.2) that changes with the network
width, depth and per-layer variance for the initialization distribution. We summarized the details of
our KL privacy bounds in Table 1, and highlight our key observations below.

• Width always worsen privacy, under all the considered initialization schemes. Meanwhile,
the interplay between network depth and privacy is much more complex and crucially
depends on which initialization scheme is used and how long the training time is.

• Regarding the specific initialization schemes, under small per-layer variance in initialization
(e.g. in LeCun and Xavier), if the depth is large enough, our KL privacy bound for training
fully connected network (with a small amount of time) as well as linearized network (with
finite time) decays exponentially with increasing depth. To the best of our knowledge, this is
the first time that an improvement of privacy bound under over-parameterization is observed.

We further perform numerical experiments (Section 5) on deep neural network trained via noisy
gradient descent to validate our privacy analyses. Finally, we analyze the privacy utility trade-off
for training linearized network, and prove that the excess empirical risk bound (given any fixed KL
privacy budget) scales with a lazy training distance bound R (i.e., how close is the initialization to a
minimizer of the empirical risk) and a gradient norm constant B throughout training (Corollary 6.4).
By analyzing these two terms precisely, we prove that under certain initialization distributions
(such as LeCun and Xavier), the privacy utility trade-off strictly improves with increasing depth
for linearized network (Table 1). To our best knowledge, this is the first time that such a gain in
privacy-utility trade-off due to over-parameterization (increasing depth) is shown. Meanwhile, prior
results only prove (nearly) dimension-independent privacy utility trade-off for such linear models
in the literature [42, 30, 34]. Our improvement demonstrates the unique benefits of our algorithmic
framework and privacy-utility analysis in understanding the effect of over-parameterization.

2A key difference between this paper and existing privacy utility analysis of Langevin diffusion [26] is that
we analyze in the absence of gradient clipping or Lipschitz assumption on loss function. Our results also readily
extend to discretized noisy GD with constant step-size (as discussed in Appendix E).

3We focus on KL privacy loss because it is a more relaxed distinguishability notion than standard (", �)-DP,
and therefore could be upper bounded even without gradient clipping. Moreover, KL divergence enables upper
bound for the advantage (relative success) of various inference attacks, as studied in recent works [36, 27].
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Table 1: Our privacy utility trade-off bounds for training linearized network (3) via Langevin diffusion,
under different hidden-layer width m, depth L and initializations. The per-layer widths m0 = d,
m1, · · · ,mL�1 = m and mL = o where d is the data dimension and o is number of classes. For
KL privacy bounds, we assume Assumption 2.2 holds and L � 2 for simplicity. For the excess risk
bounds, we assume o = 1, d,m = ⌦̃ (n) are large, and Assumption 2.2. Under LeCun and Xavier,
we prove privacy utility trade-offs that improve with over-parameterization (increasing depth).
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To answer this question, we circumvent the difficulties of analyzing gradient clipping, and instead
algorithmically focus on analyzing privacy for the Langevin diffusion algorithm without gradient
clipping nor Lipschitz assumption on loss function. 2 It avoids an artificial setting in DP-SGD [2]
where a constant sensitivity constraint is enforced for each gradient update and thus makes the privacy
bound insensitive to the network over-parameterization. Theoretically, we prove that the KL privacy
loss for Langevin diffusion scales with the expected gradient difference between the training on
any two worst-case neighboring datasets (Theorem 3.1). 3 By proving precise upper bounds on the
expected `2-norm of this gradient difference, we thus obtain KL privacy bounds for fully connected
neural network (Lemma 3.2) and its linearized variant (Corollary 4.2) that changes with the network
width, depth and per-layer variance for the initialization distribution. We summarized the details of
our KL privacy bounds in Table 1, and highlight our key observations below.

• Width always worsen privacy, under all the considered initialization schemes. Meanwhile,
the interplay between network depth and privacy is much more complex and crucially
depends on which initialization scheme is used and how long the training time is.

• Regarding the specific initialization schemes, under small per-layer variance in initialization
(e.g. in LeCun and Xavier), if the depth is large enough, our KL privacy bound for training
fully connected network (with a small amount of time) as well as linearized network (with
finite time) decays exponentially with increasing depth. To the best of our knowledge, this is
the first time that an improvement of privacy bound under over-parameterization is observed.

We further perform numerical experiments (Section 5) on deep neural network trained via noisy
gradient descent to validate our privacy analyses. Finally, we analyze the privacy utility trade-off
for training linearized network, and prove that the excess empirical risk bound (given any fixed KL
privacy budget) scales with a lazy training distance bound R (i.e., how close is the initialization to a
minimizer of the empirical risk) and a gradient norm constant B throughout training (Corollary 6.4).
By analyzing these two terms precisely, we prove that under certain initialization distributions
(such as LeCun and Xavier), the privacy utility trade-off strictly improves with increasing depth
for linearized network (Table 1). To our best knowledge, this is the first time that such a gain in
privacy-utility trade-off due to over-parameterization (increasing depth) is shown. Meanwhile, prior
results only prove (nearly) dimension-independent privacy utility trade-off for such linear models
in the literature [42, 30, 34]. Our improvement demonstrates the unique benefits of our algorithmic
framework and privacy-utility analysis in understanding the effect of over-parameterization.

2A key difference between this paper and existing privacy utility analysis of Langevin diffusion [26] is that
we analyze in the absence of gradient clipping or Lipschitz assumption on loss function. Our results also readily
extend to discretized noisy GD with constant step-size (as discussed in Appendix E).

3We focus on KL privacy loss because it is a more relaxed distinguishability notion than standard (", �)-DP,
and therefore could be upper bounded even without gradient clipping. Moreover, KL divergence enables upper
bound for the advantage (relative success) of various inference attacks, as studied in recent works [36, 27].

2

decreases under increasing depth for L ≥ 2
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