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Overparameterization of Neural Network

Increasing Depth and Width of the Hidden Layers (for DNN)

Increased model fitting power may
make membership inference easier
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Problem: How does overparameterization affect the
privacy bound of the training algorithm?

Difficulty for Precise Privacy-Utility Analysis
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Our Approach (Circumventing clipping)

Langevin diffusion Algorithm: dW; = — VL(W;; D)dt + vV 20%dB,
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KL privacy bound for overparameterized DNN (informal)

Let M be the per-record gradients subspace in Langevin diffusion with

time T. Let constants f3, ¢ specify a relaxed smoothness condition.Then
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gradient difference fluctuation during training
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Gradient fluctuation dominates under large T and M,

recise KL privacy analysis at Initialization

Lemma: For DNN with input data dimension m, = d, hidden layer width

my, --+,m; _;, and m; = o output classes, at Gaussian Initialization for model

parameters W (with per-dimensional variance f; at layer [), we have
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Small f;m; and ?Lmakes an initialization distribution good for privacy
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Numerical evidence for KL privacy loss of DNNs

Numerical KL privacy loss
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Special Case: Privacy-Utility Trade-offs for
Training Linearized Network

» Consider a linearized network by first-order Taylor expansion

() = g () + T2

. lin
’W:ng (W Wo )

« Under GD, DNN can work in the lazy training regime, under which

this linearized network well approximates DNN training

* Theorem: For single output linearized network with hidden layer

width m, bounded data with dimension d, under certain regularity
conditions, it d, m = (n) where n is size of training dataset, then

Initialization Variance [ KL privacy bound Excess Empiricgl risk
for layer [ under fixed T" and o2 under ¢-KL privacy
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decreases under increasing depth for L > 2

Main Takeaways

* We theoretically prove and numerically show that for training DNNs
with a small time, and for training linearized networks with any time

* Increasing width always hurts KL privacy

* Increasing depth helps KL privacy under certain initializations
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» Under certain data regularity and large enough
widths, we further prove privacy-utility trade-offs for

training linearized networks and prove that it similarly
relies on the choice of initialization distributions
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