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Abstract
With the advances in both hardware and software of embedded
systems in the past few years, dynamic memory allocation can
now be safely used in embedded software. As a result, the need
to develop methods to avoid heap overflow errors in safety-critical
embedded systems has increased. Resource analysis of imperative
programs with non-regular loop patterns and signed integers, to
support both memory allocation and deallocation, has long been an
open problem. Existing methods can generate symbolic bounds that
are parametric w.r.t. the program inputs; such bounds, however, are
imprecise in the presence of non-regular loop patterns.

In this paper, we present a worst-case memory consumption
analysis, based upon the framework of symbolic execution. Our as-
sumption is that loops (and recursions) of to-be-analyzed programs
are indeed bounded. We then can exhaustively unroll loops and the
memory consumption of each iteration can be precisely computed
and summarized for aggregation. Because of path-sensitivity, our
algorithm generates more precise bounds. Importantly, we demon-
strate that by introducing a new concept of reuse, symbolic execu-
tion scales to a set of realistic benchmark programs.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; B.2.2 [Performance
Analysis and Design Aids]: Verification,Worst-case analysis

Keywords Memory Consumption Analysis, Symbolic Execution,
Interpolation, Reuse

1. Introduction
Traditionally, in safety-critical embedded systems, it was recom-
mended not to use dynamic memory allocation because of two main
reasons: (a) the allocation instructions might take longer than ex-
pected, resulting in the failure of temporal constraints in hard real-
time systems; and (b) the memory fragmentation issue. As a result,
stack was the only memory that grows dynamically during execu-
tion. Worst-case stack usage was estimated by methods such as the
one proposed in [21]; the estimate is compared with the available
memory to ensure stack overflow errors does not occur.

In the past few years, there have been advances in both hardware
and software of embedded systems. The drop in the hardware cost,
the development of customized operating systems for embedded
systems, and finally the advent of constant time memory allocation
algorithms with a reasonable handling of memory fragmentation

[26, 27] are among these advances. Besides these, as the embedded
systems become more complex, the need to use third-party code –
which might require dynamic memory allocation – becomes more
inevitable. As a result, dynamic memory allocation has now been
used more frequently in embedded software [3].

Such increased use of dynamic memory allocation will raise
concerns about the reliability of embedded systems that are de-
ployed for safety-critical tasks. Thus, there is a real need for de-
veloping program analysis methods to avoid both stack and heap
overflows in safety-critical systems. Besides, the estimate produced
by such analyzers would be useful in the design process of embed-
ded systems to reduce hardware cost [32]; it can also be presented
to the programmers who are interested in dissecting the memory
footprint of an embedded system.

Memory is a non-cumulative resource: what is acquired can
later be released. As a result, unlike time and energy where the
maximum consumption of an execution path is at the end of
the path, the maximum memory usage of a path can be at any
place in that path, e.g. right in the middle of it. Thus, many
approaches developed for worst-case analysis of cumulative re-
sources, such as WCET analysis, becomes inapplicable. More
specifically, these methods often abstract away the orders between
the acquires/releases, which is crucial for precise analysis of non-
cumulative resource.

There has been a large body of work for automatically deriving
symbolic upper bounds of memory consumption. Such analyses
can provide a bound even when the program loops or recursions
are not statically bounded. A bound generated by these methods
is parametric in two types of program inputs: (1) the inputs that
determine the maximum depths of the loops and recursions; and
(2) the other program inputs. It is worth to note that the generated
bound is often a non-linear formula over the first type of inputs.

Resource analysis of imperative programs with non-regular loop
patterns and signed integers, to model both memory allocation and
deallocation, has long been an open problem. By “non-regular”,
we mean that the loop does not behave uniformly across different
iterations. We now mention some notable related work.

COSTA [1, 2], formulating the problem using the framework of
cost relations, can infer parametric upper-bounds on the memory
consumption of Java programs with region-based garbage collec-
tion. It was then extended [16] to generate more refined cost rela-
tions. On the other hand, [9] performs amortized resource analysis
for C programs. However, these methods are quite limited in cop-
ing with non-linear formulas, in the sense that either the bounds
generated are too imprecise or they have to require manual user
interaction. They are further challenged by the programs of which
the termination can only be decided if path-sensitivity is carefully
taken into account.

In this paper, we present a worst-case memory consumption
analysis, based upon the framework of symbolic execution. Our as-
sumption is that loops (and recursions) of to-be-analyzed programs
are indeed statically bounded. This is often the case in practice.



Our analysis is intra-procedural, but mainly for presentation pur-
pose. As a summarization-based (thus compositional if needed) ap-
proach, it can be easily extended to inter-procedural, by also sum-
marizing at the boundaries of functions, as opposed to only at the
boundaries of loop iterations.

We adopt from [11], to symbolically and exhaustively unroll
program loops. The memory consumption of each iteration can
be precisely computed and summarized for aggregation. The key
result from [11] is that non-regular loop patterns can be analyzed
efficiently, often in a linear number of steps.

A bound generated by our analysis still is symbolic, but this is
mainly because programs can allocate and/or deallocate a non-fixed
amount of memory, e.g. via some input variable that is not statically
determined. Our bound, however, is not parametric w.r.t. program
inputs dictating the maximum depths of the program loops. As a
result, we do not need to deal with the challenging problem of
inferring closed-form expressions for the loops. This enables our
method to have a higher level of automation, while producing more
accurate bounds.

In detail, given a program, our analysis starts by constructing
the symbolic execution tree, from which an estimate of the worst-
case memory consumption can be easily extracted. Being highly
path-sensitive, our analysis disregards infeasible combinations of
allocations/deallocations from consideration, thus producing accu-
rate bounds. In [13], Chu et al. have introduced the concept reuse
with interpolation and dominance to achieve scalable symbolic ex-
ecution for integrated timing analysis. The presence of cache makes
the worst-case timing of each basic block dynamic, i.e. dependent
on the contexts where the block is executed. In this paper, though
we adopt their method for scalability, we still need to address two
major challenges:
• First, it is the issue of non-cumulative resource. This requires the
interplay between the net usage and the high-water mark usage of
memory. As will be shown later, to accommodate this, we need to
introduce a new component in our summarization.
• Second, it is the issue of dealing with symbolic cost of an instruc-
tion, as opposed to concrete cost in many related work, as well as
in [13]. The need to compare between symbolic expressions leads
us to the usage of the standard MAX function. Importantly, how it
is used in tandem with the capturing of “dominance conditions” is
one key contribution of this paper. We elaborate more in Section 3.

2. Overview Examples
Consider the C program from Figure 1. The program points are
shown in brackets, e.g. 〈1〉. The allocations (deallocations) in the
program are annotated with increment (decrement) statements (in
red color). The resource variable r captures the resource of interest:
memory. Note that this variable is always initialized to 0 and both
increment and decrement operations are allowed on it.

Our analysis performs a depth-first traversal of the symbolic
execution tree (of the program) and returns the highest value of
r, possibly symbolic, that we can have along all the paths in the
tree. Recall that because memory is a non-cumulative resource, the
highest value of r can be at any place along a path (and in general
not at the end of a path).

For the example in Figure 1, the highest value of r in the then
branch is 10 (at 〈5〉) and in the else branch is 15 (at 〈10〉). These
two values are compared at the parent node, namely 〈3〉. Because
the highest value of r in the else branch is larger, we say the else
branch dominates the then branch, under the current context. Then
the path 〈3〉, 〈8〉, . . . , 〈11〉 is returned as the dominating path in the
program. As a result, 15 – the highest value of r in the dominating
path – is returned as a sound estimate for the worst-case memory
consumption of the program.

〈1〉 int main(int j){
〈2〉 int n; r = 0;
〈3〉 if(j > 0){
〈4〉 n = 10;
〈5〉 char *matrix = malloc(n); r = r + n;
〈6〉 /* normal computation */
〈7〉 free(matrix); r = r - n;

} else {
〈8〉 n = 5
〈9〉 char *matrix = malloc(n + 10); r = r + (n + 10);
〈10〉 /* normal computation */
〈11〉 free(matrix); r = r - (n + 10);

}
〈12〉 return 0;

}
Figure 1: An Annotated C program

Before stepping into a full analysis example, let us revisit the
scalability issue. As stated in Section 1, one contribution of this
paper is to adapt the concept of “reuse with interpolation and
dominance” to the setting where the increment/decrement amount
of the resource usage (memory) can be a symbolic value.
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Figure 2: Reuse with Interpolation and Dominance

Figure 2 depicts a symbolic execution tree, where each triangle rep-
resents a subtree. The symbolic states s0 and s1 act as the program
contexts for the left and right subtrees, respectively; and they are
different visits to the same program point. Our analysis starts with
exploring the left subtree. After traversing the left subtree, we ob-
tain a summarization, comprised of four main components:
1) An interpolant Ψ0, which is a generalization of s0 that captures
a condition preserving the infeasible paths of the subtree. Infeasible
paths are marked with a red cross.
2) A “dominating” path, also called a witness path, denoted by
Γh, which gives rise to the worst-case memory consumption of the
subtree. This path is indicated in green color.
3) A second witness path, denoted by Γn, which captures the
highest net memory usage at the end of the subtree. This path is
indicated in blue color. The use of two witness paths is critical for
safely combining summarizations, presented in Section 3.
4) A dominating condition δ, a formula which sufficiently guaran-
tees that the dominating path remains optimal, i.e., the worst-case
path in the subtree, when encountering a new context.

Considering we are now at s1. Suppose that all the paths that
were infeasible in s0 stay infeasible, i.e. s1 |= Ψ0, and the domi-
nating condition applies, i.e. s1 |= δ. This allows us to “reuse” the
previous summarization. We then need to replay the witness path
Γh under the context s1. This, importantly, can lead to new value of
the path (now 19), which is different from the original value (14).
This is because the valuations of some symbolic expressions (or
variables) are different, under the new context s1, as opposed to the
old context s0 and may also hit the spike in another point along the
path (as shown in the figure).



〈0〉 void main(int c){
〈1〉 assume(c ≥ 0); int N = 3;

r = 0;
〈2〉 int** matrix = malloc(5 * sizeof(int*));

r = r + 5 * 8;
〈3〉 char * b = (char*) malloc(c);

r = r + c;
〈4〉 for (int i = 0; i ≤ N; i++){
〈5〉 if ((i % 2) == 0){
〈6〉 matrix[i]=malloc(i*sizeof(int));

r = r + (i * 4);
}

}
〈7〉 free (b); r = r - c;
}

〈8〉
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Figure 3: A Complicated Allocation Pattern (a); Our Analysis (b)

Backtracking to the root, and assuming that i > 0, thus i + 19 >
4 + 14. Therefore the right path in green is chosen as the overall
dominating path. We then can conclude the analysis on the whole
tree with the symbolic value i+ 19.

Next, consider the C program in Figure 3(a) where we will dis-
cuss the concepts under the presence of a loop. Figure 3(b) depicts a
symbolic execution tree of the corresponding program, where each
triangle represents a loop iteration. For each node, in additional to
a program point, we also use a letter to distinguish multiple visits
to the same program point. An infeasible node is identified with a
red bullet. For instance, at 〈4e〉, the red bullet indicates that it is
not possible to re-enter the loop body. For readability, the program
points 〈2〉 and 〈3〉 are not shown in the tree.

We note that loops are exhaustively unrolled and contexts (of
feasible paths) are merged in the end of each loop iteration.

Starting the analysis, the value of r is successively increased by
40 and then by the value of c (input argument) from program points
〈1〉 to 〈4〉. In the first loop iteration, the then branch is feasible and
the value of r is increased by the value of i ∗ 4, which is 0. Note
that the else branch (colored in red in the symbolic execution tree)
is infeasible because i = 0 ∧ i % 2 6= 0 is equivalent to false.

At 〈4b〉, the analysis moves to the second iteration where the
then branch is infeasible, because (i = 1 ∧ i % 2 == 0) is
equivalent to false. There are no allocation/deallocations in the
else branch, thus the value of r is unchanged. Similarly, in the
third and fourth iterations the value of r is increased by 8 (2∗4) and
0, respectively. Finally, only at 〈4e〉, exiting the loop is possible,
while re-entering is not. We continue with the node 〈7a〉, where r
is then decreased by c. Because c is non-negative, the maximum
value of r is reached at 〈7a〉 which is 48 + c.

Now let us go a bit deeper into the technicality. After the traver-
sal of the first iteration, the maximum increase/decrease in the value
of r in the iteration, which is +(i∗4), was stored in a summarization
of the loop iteration as a witness Γh. (The second witness path Γn
coincides with Γh in this example.) Since there is only one feasible
path in the loop iteration, the dominating condition is true and the
interpolant stored in the summarization is i % 2 6= 0 which is
enough to capture the reason of infeasibility.

In a following loop iteration where the interpolant and the dom-
inating condition hold, for example at 〈4c〉, the summarization of
the first iteration is then reused. The analysis of the new iteration
can be deduced to be +(8), without the need of exploring all other
paths in the loop iteration.

We also note that this summarization cannot be applied to the
second iteration at 〈4b〉. This is because the interpolant test fails.
Fast forwarding, we finally mention that in Figure 3(b), the respec-

tive triangles of the third and the fourth iterations are shown in dot-
ted lines to indicate that they were not explored in full. Instead, we
reuse the summarizations of other iterations.

3. General Framework
We model a program by a transition system. A transition system P
is a tuple 〈L, `0,−→〉 where L is the set of program points, `0 ∈ L
is the unique initial program point. Let−→⊆ L×L×Ops, where
Ops is the set of operations, be the transition relation that relates a
state to its (possible) successors by executing the operations.

Basic operations are either assignments, “assume” operations
or memory allocations/deallocations. The set of all program vari-
ables is denoted by Vars including a special variable r tracking
the amount of memory consumption. An assignment x := e cor-
responds to assign the evaluation of the expression e to the vari-
able x. The expression assume(cond) means: if the conditional
expression cond evaluates to true, execution continues; otherwise
it halts. Moreover, alc(+, e) or alc(−, e) corresponds to a memory
allocation or deallocation, respectively, of size e. These operations
are compiled from the malloc and free statements in the input
C programs. We shall use `

op−→ `′ to denote a transition relation
from ` ∈ L to `′ ∈ L executing the operation op ∈ Ops. Clearly a
transition system is derivable from a control flow graph (CFG).

Definition 1 (Symbolic State). A symbolic state s is a tuple
〈`, σ,Π〉 where ` ∈ L is the current program point, the symbolic
store σ is a function from program variables to terms over input
symbolic variables, and finally the path condition Π is a first-order
formula over the symbolic inputs.

Let s0
def
= 〈`0, σ0,Π0〉 denote a unique initial symbolic state. At

s0, r is initialized to 0 while other program variables are initialized
to fresh symbolic variables. For every state s ≡ 〈`, σ,Π〉, the
evaluation [[e]]σ of an arithmetic expression e in a store σ is defined
as usual: [[v]]σ = σ(v), [[n]]σ = n, [[e + e′]]σ = [[e]]σ + [[e′]]σ ,
[[e − e′]]σ = [[e]]σ − [[e′]]σ , etc. The evaluation of the conditional
expression [[cond]]σ can be defined analogously. The set of first-
order logic formulas and symbolic states are denoted by FO and
SymStates, respectively.

Definition 2 (Transition Step). Given 〈L, l0,−→〉, a transition
system, and a symbolic state s ≡ 〈`, σ,Π〉 ∈ SymStates, the
symbolic execution of transition tr : `

op−→ `′ returns another
symbolic state s′ defined as:

s′
def
=


〈`′, σ,Π ∧ cond〉 if op ≡ assume(cond)
〈`′, σ[x 7→ [[e]]σ],Π〉 if op ≡ x := e
〈`′, σ[r 7→ r + [[e]]σ],Π〉 if op ≡ alc(+,e)
〈`′, σ[r 7→ r − [[e]]σ],Π〉 if op ≡ alc(-,e)

Abusing notation, the execution step from s to s′ is denoted
as s tr−→ s′ where tr is a transition. Given a symbolic state s ≡
〈`, σ,Π〉we also define [[s]] : SymStates→ FO as the projection
of the formula

[[Π]]σ ∧
∧

v∈Vars
v = [[v]]σ

onto the set of variables Vars. The projection is performed by the
elimination of existentially quantified variables.

For convenience, when there is no ambiguity, we just refer to
the symbolic state s using the abbreviated tuple 〈`, [[s]]〉 where ` is
as before, and [[s]] is obtained by projecting s as described above.
A path π ≡ s0 → s1 → . . . sm is feasible if sm ≡ 〈`, [[sm]]〉
and [[sm]] is satisfiable. Otherwise, the path is called infeasible and
sm is called an infeasible state. Here we query a theorem prover
for satisfiability checking on the path condition. We assume the
theorem prover is sound, but not complete. If ` ∈ L and there is no



transition from ` to another program point, then ` is called the end
point of the program. Under that circumstance, if sm is feasible,
then sm is called terminal state.
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Figure 4: A CFG (a); and Its Symbolic Execution Tree (b)

Example 1 (Symbolic Execution Tree). Consider the CFG in Fig-
ure 4(a). Each node abstracts a basic block. In each basic block,
a program point is shown. For brevity, we might use interchange-
ably the identifying program point when referring to a basic block.
Two outgoing edges signify a branching structure, while the branch
conditions are labeled beside the edges. Moreover, r is set to 0 in
the beginning and the updates to it are also shown.

Next, in Figure 4(b), we show our analysis tree. Each node,
shown as a circle, is identified by the corresponding program point,
followed by a letter to distinguish between multiple visits to the
same program point. Each path denotes a symbolic execution path
of the program. Each node is associated with a symbolic state, but
for simplicity we do not explicitly show any state content.

Now assume that no basic block modifies x. At node 〈5a〉,
the projection of the path condition over program variables Vars,
namely [[s5a]], is r = 20 ∧ x = 0 ∧ x > 1, which is equivalent
to false. In other words, the leftmost path in Figure 4(b) is in
fact infeasible. On the other hand, at node 〈7a〉, the projection of
the path condition over program variables Vars, namely [[s7a]], is
r = 50 ∧ x = 0 ∧ x ≤ 1. As it can be seen, the high-water mark
usage of memory is at 〈7a〉 with the value of 50.

Recall that our transition system is a directed graph. We now
introduce relevant concepts for our loop unrolling framework. We
assume that each loop has only one loop head and one unique end
point. For each loop, following the back edge from the end point to
the loop head, we do not execute any operation. These assumptions
can be achieved by a preprocessing phase.

Definition 3 (Loop). Given a directed graph G = (V,E) (our
transition system), we call a strongly connected component S =
(VS , ES) in G with |ES | > 0, a loop of G.

Definition 4 (Loop Head). Given a directed graph G = (V,E)
and a loop L = (VL, EL) of G, we call E ∈ VL a loop head of L,
also denoted by E(L), if no node in VL, other than E has a direct
successor outside L.

Definition 5 (End Point of Loop Body). Given a directed graph
G = (V,E), a loop L = (VL, EL) of G and its loop head E . We
say that a node u ∈ VL is an end point of a loop body if there exists
an edge (u, E) ∈ EL.

Definition 6 (Same Nesting Level). Given a directed graph G =
(V,E) and a loop L = (VL, EL), we say two nodes u and v are
in the same nesting level if for each loop L = (VL, EL) of G,
u ∈ VL ⇐⇒ v ∈ VL.

A “subtree” is a portion of a symbolic execution tree. Given a
state s and program point `2 such that (a) state s ≡ 〈`1, [[s]]〉 ap-
pears in the tree, and (b) `2 post-dominates `1, then subtree(s, `2)
depicts all the paths emanating from s and, if feasible, terminate at
`2. (Note that `2 may not be the end point of the whole tree.) We
call `1 and `2 the entry and exit points of the subtree.

A summarization of a subtree, intuitively, is a succinct descrip-
tion of its analysis. This is formalized as a tuple of important com-
ponents of the analysis. These are: the entry and exit program
points, an interpolant describing infeasible paths, two witnesses,
one describing the sub-path with the high-water mark of memory
usage and one describing the sub-path with the highest net memory
usage, two domination conditions ensuring each witness is, respec-
tively, the worst-case sub-path in the subtree, and finally an abstract
transformer relating the input and output variables.

We start with our notion of interpolant. The idea here is to
approximate at the root of a subtree, the weakest precondition in
order to maintain the infeasibility of all the nodes inside. (An exact
computation is in general undecidable.) In the context of program
verification, an interpolant captures succinctly a condition which
ensures the safety of the tree at hand. Adapting this to program
analysis is first done in [20]. Since all infeasible nodes are excluded
from calculating the analysis result of a subtree, in order to ensure
soundness, at the point of reusing the result, all such infeasibility
must also be maintained.

Next, we discuss the concept of witness. A high-water mark
witness is a sub-path from the root of the subtree subtree(s, `2)
to a program point ` inside the subtree where the resource variable
r reaches its peak value. It is depicted by Γh ≡ 〈γh, πh〉 where
γh is the sequence of alc(±, e) depicting all memory allocation or
deallocations and πh is the path constraints along the witness.

The witness of highest net-usage is a sub-path from the root
of the subtree subtree(s, `2) to the program point `2 where the
resource variable r has the highest value at `2 and it is depicted by
Γn ≡ 〈γn, πn〉.

Note that the two witnesses can be different. Also, to reduce the
size of the witness, consecutive allocations of concrete amount are
merged into one. Similarly for consecutive deallocations.

Because non-constant allocations may be evaluated to different
values, with different contexts. For such evaluation, we rely on the
estimating upper-bound and the estimating lower-bound functions.

Definition 7 (Estimating Upper-bound (EUB)). Given a symbolic
state s ≡ 〈`, [[s]]〉 and a non-constant allocation of the amount
captured by an expression e, the function EUB(e, [[s]]) returns the
smallest expression ub over symbolic input parameters and con-
crete values such that [[s]] |= e ≤ ub. In case no such upper-bound
can be generated, e is returned.

Definition 8 (Estimating Lower-bound (ELB)). Given a symbolic
state s ≡ 〈`, [[s]]〉 and a non-constant deallocation of the amount
captured by an expression e, the function ELB(e, [[s]]) returns the
largest expression lb over symbolic input parameters and concrete
values such that such that [[s]] |= lb ≤ e.

In summary, EUB and ELB are to over-estimate and under-
estimate non-constant allocations and deallocations, respectively.
Note that, in the worst case, ELB can always return 0 as a trivial
lower bound. Generating sound, but not precise bounds using EUB
or ELB would affect the overall precision of the analysis.

Example 2 (Witness Path). Assume the following sequence of
allocating/deallocating statements along a symbolic path, which is
selected as a high-water mark witness:

x=malloc(10), y=malloc(5), free(y), free(x), z=malloc(c)

This sequence would be stored as γh ≡ ([+, 15], [−, 15], [+, c]).



When the summarization is reused, the high-water mark mem-
ory usage is computed by replaying the sequence γh under the new
incoming context s, making use of the EUB and ELB functions.
For example, given that [[s]] ≡ c < 5, γh in the above example will
be approximated by γ1 = [+, 15], [−, 15], [+, 4], which gives us a
high-water mark of 15. In a different context where [[s]] ≡ c < 20,
γh will be approximated by γ1 = [+, 15], [−, 15], [+, 19], which
gives us a high-water mark of 19.

Finally, as in [11], the feasibility of a witness Γ ≡ 〈γ, π〉 w.r.t.
to an incoming context s is determined by checking if [[π]]∧ [[s]] is
satisfiable. In what follows, we abbreviate [[π]]∧ [[s]] by [[Γ]].

We say that two nodes in a symbolic execution tree are similar if
they refer to the same program point. Thus, two subtrees are similar
if they share the same entry and exit program points.

We next discuss dominating condition, another component of
our analysis of a subtree. Each dominating condition is generated
with respect to a witness. Intuitively, this answers the question “in
what context of a similar subtree does the witness remain optimal?”

More specifically, the constraints in the dominating condition
are typically of the form x ≤ y where x, y are either program
variables or some concrete values — note that at least one must be
a variable. The domination condition is computed by abstracting
the context that gives rise to dominance in the first place.

We now discuss an abstract transformer ∆ of a subtree from `1
to `2 which is an abstraction of all feasible paths (w.r.t. the incom-
ing symbolic state s) from `1 to `2. Its purpose is to capture an
input-output relation between the variables. In our implementation,
we adopt from [11] which uses the polyhedral domain [14].

We collect the components discussed above into a definition.

Definition 9. A summarization of subtree(s, `2), where `1 is the
program point of s, is a tuple

[`1, `2,Ψ,Γh,Γn,mhw, δh, δn,∆]

where Ψ is an interpolant, Γh and Γn are the high-water mark
and net-usage witnesses, mhw is the high-water mark memory
usage of the subtree, and δh and δn are the respective dominating
conditions. Finally, ∆ is an abstract transformer relating the input
and output variables.

We now display a key feature of our algorithm: reuse of a
summarization. Suppose we have already computed a summa-
rization [`1, `2,Ψ,Γh,Γn,mhw, δh, δn,∆] where the high-water
mark witness is Γh ≡ 〈γh, πh〉. Suppose we then encounter a sym-
bolic state s′ ≡ 〈`1, [[s′]]〉. The summarization can be reused if:

1. [[s′]] implies the stored interpolant Ψ i.e., [[s′]] |= Ψ.

2. The context of s′ is consistent with the witness formula, i.e.,
[[πh]]∧ [[s′]] is satisfiable.

3. The high-water mark dominating condition is satisfied by s′,
i.e., [[s′]] |= δh holds.

The worst-case heap memory consumption of the subtree beneath
the state s′ is the peak value of r derived from the witness γh w.r.t.
the context [[s′]]. Note that this worst-case can be different from the
mhw stored in the summarization.

We now conclude this section by mentioning that we only sum-
marize at selected program points. Given entry point `1, the corre-
sponding exit point `2 is determined as follows. It is the program
point that post-dominates `1 s.t. `2 is of the same nesting level as
`1 and either is (1) an end point of the program, or (2) an end point
of some loop body. In other words, we only perform “merging” ab-
straction at loop boundaries. As `2 can always be deduced from `1,
in a summarization, we omit the component about `2.

4. An Example Analysis
Figure 5(a) presents the CFG of an example program. Its symbolic
execution tree is depicted in Figure 5(b). Both the CFG and the
tree are annotated with the updates on the resource variable r (in
red color). Assume that b is a symbolic input parameter for this
example program. The variable of interest r is initialized to 0
between nodes 〈1a〉 and 〈2a〉. The value of r can be seen beside
node 〈2a〉 (in green color). Note that in Figure 5(b), we do not
(fully) show the subtree below node 〈5b〉 and that we do not discuss
the abstract transformers in detail.

In the left-most path, the value of r is updated to 20 at 〈5a〉, 0
at 〈8a〉 and c at 〈11a〉, which is a symbolic value. Note that c is a
random number in the range of [0, b− 1] and cannot be determined
statically. In the second path, reaching 〈10a〉, the path constraints
contains both j = 0 and j < 0 (only relevant constraints are shown
for brevity), thus an infeasible path is detected.

After finishing the subtree beneath 〈8a〉, the following summa-
rization is computed and stored:

[〈8〉,Ψ,Γh,Γn,mhw, δh, δn,∆],

where the stored interpolant is Ψ ≡ j ≥ 0, which is a succinct rea-
son for the infeasibility of the right sub-path; the stored dominating
conditions δh and δn are true, given that there is only one feasi-
ble path. Similarly, the only feasible path (in blue color) is stored
both as the high-water mark witness Γh ≡ 〈([+, c]), j ≥ 0〉 and
as the net-usage witness Γn ≡ 〈([+, c]), j ≥ 0〉, where j ≥ 0
is the witness path constraint and ([+, c]) is the sequence of the
allocation/deallocations along the witness path. Finally, mhw, the
worst-case heap memory consumption of the subtree, is computed
to b− 1, by evaluating the memory consumption of the high-water
mark witness. This, in turn, is achieved by invoking the function
EUB with c as the first argument and the current context as the sec-
ond argument.

Continuing the analysis, consider the pair of nodes 〈8a〉 and
〈8b〉. At node 〈8b〉, the value of r is 40, due to the memory
allocation from 〈7a〉 to 〈8b〉. We will check the reuse conditions
here. We first check whether the stored interpolant (Ψ) is implied.
This does not hold. The key reason is: some infeasible path in 〈8a〉
is in fact feasible in 〈8b〉. As a result, reuse does not happen and
the node 〈8b〉 is expanded.

After the analysis of the subtree beneath 〈8b〉, a summariza-
tion is generated from the analysis of node 〈8b〉. The summariza-
tion would be [〈8〉,Ψ′,Γ′

h,Γ
′
n,mhw

′, δ′h, δ
′
n,∆

′]. The stored in-
terpolant Ψ′ is simply true because both paths in the subtree are
feasible. Comparing the peak value of r along these two feasible
sub-paths, it can be seen that the value of r is larger in the right
sub-path. So, the right sub-path is chosen as the high-water mark
witness and Γ′

h is stored as 〈([+, b], [−, b]), j < 0〉. Consequently,
mhw′ is set to b.

Now, we need to capture a dominating condition such that when
it holds, it is guaranteed that the chosen witness path dominates
all the other path(s) in the subtree. For any symbolic state s, it is
the case that [[s]] |= EUB(c, [[s]]) < EUB(b, [[s]]). Thus the stored
dominating condition δ′h is simply true.

On the other hand, the value of r at 〈11c〉 is 40 + c, which
is higher than the value of r at 〈11d〉, which is 40. So the net-
usage witness is the sub-path 〈8b〉, 〈9b〉, 〈11c〉 (with green color)
Γ′
n ≡ 〈([+, c]), j ≥ 0〉. Moreover, the net-usage dominating

condition δ′n would also be simply true. For brevity, we would
not discuss net-usage witnesses and their dominating conditions in
the rest of this example.

Continuing the analysis, consider the pair of nodes 〈5a〉 and
〈5b〉. We will show that reuse can in fact take place here. Please
take note, without proof, that: (1) the high-water mark witness of
the subtree rooted at 〈5a〉 is the rightmost feasible path 〈5a〉, 〈7a〉,
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Figure 5: (a) The CFG of an annotated program (b) The analysis tree of the program

〈8b〉, 〈10b〉, 〈11d〉 (in blue color), stored as 〈([+, a], [+, b]), j <
0〉; (2) The interpolant of interest is true; and the dominating
condition for the high-water mark witness is also true.

Now we can exemplify the reuse at 〈5b〉. We first check if
the context of 〈5b〉, called [[s5b]] implies the interpolant computed
after finishing 〈5a〉. In this case, the interpolant is true, thus the
implication trivially holds. We then check whether the dominating
condition, which is true, holds. This is also trivially satisfied, thus
we can reuse the high-water mark witness of 〈5a〉, yielding an
overall worst-case memory consumption of 20 + EUB(a, [[s5b]]) +
EUB(b, [[s5b]]), which is simplified to be 50 + b.

We remark here that, the worst-case consumption of the sub-
path 〈5〉 〈7〉 〈8〉 〈10〉 〈11〉 for contexts 〈5a〉 and 〈5b〉 are indeed
different. It is because, fundamentally, the worst-case consumption
of a symbolic path is dependent on its context. In this particular
example, the valuation of a in the two contexts is different.

5. Symbolic Execution with Reuse
For brevity, in the pseudocode we use F and T as abbreviations of
false and true, respectively. We use · to represent a component
that is not of interest.

Algorithm 1 consists of two important functions. The function
ANALYZE takes as input the initial symbolic state s0 and the tran-
sition system P of an input program. It then invokes SUMMARIZE

to generate a summarization for the whole program (line 1) and
returns mhw, stored in the summarization, as the high watermark
memory usage of the whole program (line 2).

The function SUMMARIZE performs a depth-first traversal of the
symbolic execution tree. During the traversal, at each node either
(1) a summarization is reused, thus we do not need to expand
the node; or (2) after expanding it, we compute its summarization
based on the summarizations of its child nodes. We now discuss the
SUMMARIZE function in detail.

Base Cases: SUMMARIZE handles 4 base cases. First, when the sym-
bolic state s is infeasible (line 3), no execution needs to be consid-
ered. Note that here path-sensitivity plays a role since only prov-
ably executable paths will be considered. As a result, the returned

Algorithm 1 The Analysis Algorithm
function ANALYZE(s0, P)
〈1〉 [`0, ·, ·, ·,mhw, ·, ·, ·] := SUMMARIZE(s0,P)
〈2〉 return mhw

function SUMMARIZE(s, P)
Let s be 〈`, [[s]]〉

〈3〉 if ([[s]] ≡ F)
return [`,F, 〈([−,∞]),F〉, 〈([−,∞]),F〉,−∞,F,F,F]

〈4〉 if (OUTGOING(`,P) = ∅)
return [`, T, 〈([+, 0]), T〉, 〈([+, 0]), T〉, 0, T, T, Id]

〈5〉 if (LOOP-END(`,P)) return
return [`, T, 〈([+, 0]), T〉, 〈([+, 0]), T〉, 0, T, T, Id]

〈6〉 S := [`,Ψ,Γh,Γn, w, δh, δn,∆] := MEMOED(`)
〈7〉 if (S 6= ∅ ∧ [[s]] |= Ψ ∧ [[Γh]] 6≡ F ∧ [[s]] |= δh) return S
〈8〉 if (LOOP-HEAD(`,P))
〈9〉 S1 := [·, ·,Γh1, ·, ·, ·, ·,∆] := TRANSSTEP(s,P, ENTRY(̀ ,P)))

〈10〉 if ([[Γh1]] ≡ F) S := JOIN(s, S1, TRANSSTEP(s,P, EXIT(̀ ,P)))
else

〈11〉 Let tr be ` ∆−→ `′ and s
tr−→ s′

〈12〉 S′ := SUMMARIZE(s′,P)
〈13〉 S := COMPOSE(s, S1, S

′)

〈14〉 S := JOIN(s, S, TRANSSTEP(s,P, EXIT(`,P)))

〈15〉 else S := TRANSSTEP(s,P, OUTGOING(`,P))

〈16〉 memo and return S

witness formulas would identically be 〈([−,∞]),F〉. Second, s is a
terminal state (line 4). Here Id refers to the identity function, which
keep the values of variables unchanged. The ending point of a loop
is treated similarly in the third base case (line 5). The last base case,
lines 6-7, is the case when a summarization can be reused. We have
demonstrated this step at the end of Section 3.

Expanding to the next programming point: Line 15 depicts the
case when transitions can be taken from current program point
`, and ` is not a loop starting point. Here we call TRANSSTEP to
move recursively to next program points. TRANSSTEP implements
the traversal of transition steps emanating from `, denoted by



function TRANSSTEP(s,P, TransSet)
Let s be 〈`, ·〉

〈17〉 S := [`, T, 〈([+, 0]), T〉, 〈([+, 0]), T〉, 0, T, T, Id]
〈18〉 foreach (tr ∈ TransSet) do
〈19〉 s

tr−→ s′

〈20〉 S′ := SUMMARIZE(s′,P)
〈21〉 S := COMPOSE(s, SUMMARIZE-A-TRANS(s, tr), S′)

〈22〉 S := JOIN(s, S, S)
endfor

〈23〉 return S

function SUMMARIZE-A-TRANS(s, tr)
Let s be 〈`, σ,Π〉 and Let tr be `

op−→ `′

〈24〉 γ := Sequence of (de-)allocations in op
〈25〉 Iterate on γ and merge consecutive concrete allocations
〈26〉 Iterate on γ and merge consecutive concrete deallocations
〈27〉 i := 0;netusg := mhw := 0
〈28〉 foreach [sign,m] ∈ γ do
〈29〉 if sign is+ then netusg := netusg +m
〈30〉 else netusg := netusg −m
〈31〉 if netusg > mhw then mhw := netusg

endfor
〈32〉 Γh := 〈γ, [[op]]σ〉; Γn := 〈γ, [[op]]σ〉
〈33〉 return [`, true,Γh,Γn,mhw, true, true, op∆]

function COMPOSE(s, S1, S2)
Let S1 be [`1,Ψ1,Γh1,Γn1,mhw1, δh1, δn1,∆1]
Let S2 be [`2,Ψ2,Γh2,Γn2,mhw2, δh2, δn2,∆2]
Let Γn1 be 〈γn1, πn1〉

〈34〉∆ := ∆1 ∧ ∆2

〈35〉 Ψ := Ψ1 ∧ PRE-COND(∆1,Ψ2)
〈36〉if (mhw1 > NET-USG(s, γn1) +mhw2)
〈37〉 mhw := mhw1

〈38〉 Γh := Γh1; δh := δh1

else
〈39〉 mhw := NET-USG(s, γn1) +mhw2

〈40〉 {Γh, δh} := COMBINE-WITNESSES(∆1,Γn1,Γh2, δn1, δh2)
〈41〉 {Γn, δn} := COMBINE-WITNESSES(∆1,Γn1,Γn2, δn1, δn2)
〈42〉 return [`1,Ψ,Γh,Γn,mhw, δh, δn,∆]

function JOIN(s, S1, S2)
Let S1 be [`,Ψ1,Γh1,Γn1,mhw1, δh1, δn1,∆1]
Let S2 be [`,Ψ2,Γh2,Γn2,mhw2, δh2, δn2,∆2]

〈43〉mhw := MAX(mhw1,mhw2)
〈44〉 Ψ := Ψ1 ∧ Ψ2

〈45〉∆ := ∆1 ∨ ∆2

〈46〉 {Γh, δh} := MERGE-WITNESS-H(Γh1,Γh2, δh1, δh2)
〈47〉 {Γn, δn} := MERGE-WITNESS-N(s,Γn1,Γn2, δn1, δn2)
〈48〉 return [`,Ψ,Γh,Γn,mhw, δh, δn,∆]

Figure 6: Helper Functions

OUTGOING(`,P), by calling Summarize recursively and then com-
pounds the returned summarizations into a summarization of `. For
each tr in TransSet, TRANSSTEP extends the current state with
the transition. The resulting child state is then given as an argument
in a recursive call to SUMMARIZE (line 20). From each summariza-
tion of a child returned by the call to SUMMARIZE, the algorithm
computes a summarization, contributed by that particular child to
the parent as in line 21. Finally, all of these summarizations will be
compounded using the Join function (line 22).

SUMMARIZE-A-TRANS computes a summarization for a single
transition tr at state s. This can be seen as a basic step in our al-
gorithm. Because no infeasible path has been discovered, the inter-
polant Ψ is just true. There is a single path, thus the dominating

conditions are true. The abstract transformer ∆ is the operation
op itself, but translated to the language of input-output relation. As
an example, y := y + 1 is translated to yout = yin + 1. We use
op∆ to denote such translated op. We now elaborate on the com-
putation of the witnesses and the high-water mark usage mhw.
First, γ is initialized to the sequence of allocations/deallocations,
i.e. [+, e] and/or [−, e] in op. Next, consecutive concrete alloca-
tion/deallocations are merged by iterating through γ once. More-
over, for each (de-)allocation the netusg is updated in lines 29 and
30. If the value of netusg is greater than the high-water mark value,
mhw is updated and `′ is stored as the peak location (line 31).

Finally, the path constraint for each witness is computed by
projecting op onto the set of program variables w.r.t. the symbolic
store σ, denoted as [[op]]σ .

Handling Loops: Lines 9-14 handle the case when the current
program point ` is a loop head. Let ENTRY(`,P) denote the set
of transitions going into the body of the loop, and EXIT(`,P) de-
note the set of transitions exiting the loop. Upon encountering a
loop, our algorithm attempts to unroll it once by calling the func-
tion TRANSSTEP to explore the entry transitions (line 9). When the
returned representative path is false, it means that we cannot go into
the loop body anymore, we thus proceed to the exit branches. The
returned summarization is compounded (using JOIN) with the sum-
marization of the previous unrolling attempt (line 10). Otherwise,
if some feasible paths are found by going into the loop body, we
first use the returned abstract transformer to produce a new con-
tinuation context, (line 11), so that we can continue the analysis
with the next iteration (line 12). The returned information is then
compounded (lines 13 - 14) with the first unrolling attempt. Our
algorithm can be reduced to linear complexity because these com-
pounded summarizations of the inner loop(s) can be reused in later
iterations of the outer loop.

Next, we will elaborate on how summarizations are com-
pounded through the helper functions, COMPOSE and JOIN, pre-
sented in Figure 6.

Compounding Vertically Two Summarizations: Consider that
subtree(s2, `3) suffixing subtree(s1, `2), where s2 ≡ 〈`2, [[s2]]〉
and s1 ≡ 〈`1, [[s1]]〉. In other words, a path π1 from `1 to `2
followed by a path π2 from `2 to `3 corresponds a path π in
subtree(s1, `3). The COMPOSE function returns a summarization
for subtree(s1, `3) by compounding the two existing summariza-
tions, respectively for subtree(s1, `2) and subtree(s2, `3).

The abstract transformer ∆ is computed as the conjunction of
the input abstract transformers (line 34), with proper variable re-
naming. Note that in our implementation, abstract transformers are
computed using polyhedral domain. We employ ∆ to generate one
continuation context, before proceeding the analysis with subse-
quent program fragments. Next, the desired interpolant must cap-
ture the infeasibility of S1, as well as the infeasibility of S2 given
that we treat subtree(s1, `2) as an abstract transition, of which the
operation is ∆. We rely on the function PRE-COND, which in line 35
under-approximates the weakest-precondition of the post-condition
Ψ2 w.r.t. to the transition relation ∆.

Next we update the high-water mark witness. Here the net-usage
witness becomes important. In the combined subtree, the high-
water mark is chosen by comparing (1) the high-water mark of
the prefix tree and (2) the (worst) net-usage of the prefix subtree
plus the high-water mark of the suffix subtree (line 36). In case
(1) is greater, the witness and the dominating condition of the
prefix subtree is returned (lines 37 and 38). Otherwise, the net-
usage witness and its dominating condition of the prefix subtree are
combined with the high-water mark witness and the corresponding
dominating condition of the suffix subtree (lines 39 and 40). This
is achieved by calling the function COMBINE-WITNESSES. Finally,



we again invoke COMBINE-WITNESSES to combine the net-usage
witnesses and their respective dominating conditions (line 41).

function COMBINE-WITNESSES(∆,Γ1,Γ2, δ1, δ2)
Let Γ1 be 〈γ1, π1〉 and Let Γ2 be 〈γ2, π2〉

〈49〉 π := π1 ∧ π2

〈50〉 δ′2 := true
〈51〉 foreach cond ∈ δ2 do
〈52〉 δ′2 := δ′2 ∧ PRE-COND(∆, cond)

endfor
〈53〉 δ := δ1 ∧ δ′2
〈54〉 γ′

2 := [ ]
〈55〉 foreach [sign,m] ∈ γ2 do
〈56〉 γ′

2 := Add [sign, PRE-COND(∆,m)] into γ′
2

endfor
〈57〉 γ := γ1 • γ′

2 // concatenation
〈58〉 return {〈γ, π〉, δ}

Figure 7: Combining Witness Formula and Dominating Conditions

In Figure 7, COMBINE-WITNESSES produces a witness and a dom-
inating condition, by compounding the witnesses and dominating
conditions of the two subtrees, where one suffixes the other. This
can be understood as a sequential composition.

First, the path constraint π is simply the conjunction of π1

and π2 (line 49). Next, the combined dominating condition δ is
computed as the conjunction of δ1 and a condition δ′2, in line 53,
where intuitively, δ′2 describes a set of conditions, such that δ′2 is
a precondition of δ2 w.r.t. to the transition relation ∆. Similarly,
the allocation/deallocations in γ2 are updated w.r.t. to the transition
relation ∆ and stored in γ′

2.

Compounding Horizontally Two Summarizations: Given two
summarizations of two subtrees rooted at two nodes which are sib-
lings, we want to propagate the information back and compute the
summarization for the (common) parent node. While propagation
can be achieved by COMPOSE, we need JOIN (presented in Figure 6)
to “merge” the contributions of the two children to the parent node.
Note that unlike COMPOSE, we need to select the path with the larger
memory high-water mark usage between the two witnesses of the
input summarizations. Thus, the high-water mark usage would be
the maximum of the mhw1 and mhw2 (line 43). Moreover, all
the infeasible paths in both sub-structures must be maintained, thus
the desired interpolant is the conjunction of the two input inter-
polants (line 44). On the other hand, the abstract transformer ∆ is
computed straightforwardly as the disjunction of the input abstract
transformers (line 45). Finally, MERGE-WITNESSES-H is invoked to
merge the high-water mark witnesses and the respective dominat-
ing conditions (line 46) and similarly MERGE-WITNESSES-N is in-

function MERGE-WITNESS-H(Γ1,Γ2,mhw1,mhw2, δ1, δ2)
〈59〉 δ := δ1 ∧ δ2
〈60〉 if (true |= mhw1 ≥ mhw2) then return {Γ1, δ}
〈61〉 if (true |= mhw1 ≤ mhw2) then return {Γ2, δ}
〈62〉 return {〈MAX(γ1, γ2), π1 ∧ π2〉, δ}

function MERGE-WITNESS-N(s,Γ1,Γ2, δ1, δ2)
Let Γ1 be 〈γ1, π1〉 and Let Γ2 be 〈γ2, π2〉

〈63〉 δ := δ1 ∧ δ2
〈64〉 if (true |= NET-USG(s, γ1) ≥ NET-USG(s, γ2))
〈65〉 return {Γ1, δ}
〈66〉 if (true |= NET-USG(s, γ1) ≤ NET-USG(s, γ2))
〈67〉 return {Γ2, δ}
〈68〉 return {〈MAX(γ1, γ2), π1 ∧ π2〉, δ}

Figure 8: Merging Witness Formulas and Dominating Conditions

voked to merge the net-usage witnesses and the respective domi-
nating conditions (line 47).

In Figure 8, MERGE-WITNESSES-H produces a high-water mark
witness and a dominating condition, by compounding the witnesses
and dominating conditions of two sibling subtrees. We need to
choose one witness from the two input witnesses. The combined
dominating condition must ensure the dominance of each witness
(in its respective subtree) and the dominance of the chosen witness,
which produces a higher value of r, over the other.

The dominating condition δ is initialized as the conjunction of
the two dominating conditions (line 59). Next we compare the two
high-water marks mhw1 and mhw2; if mhw1 is greater or equal
to mhw2, Γ1 dominates Γ2, and Γ1 is returned as the dominating
witness with δ as the dominating condition (line 60). If not, we
check if mhw2 is greater or equal to mhw1 and then we return
Γ2 as the dominating witness with δ as the dominating condition
(line 61). If both tests fail, this could happen when we deal with
symbolic expressions, we then employ the MAX function, delaying
the dominance test to a higher level in the symbolic execution tree
(line 62) with the hope that another witness might dominate this
path. Similarly, the MERGE-WITNESSES-N function produces a net-
usage witness and a dominating condition. Here we make use of
the function NET-USG, which extracts the net usage given a context
(e.g. s) and a sequence of allocations/deallocations (e.g. γ1 or γ2).
This function can be easily implemented, we omit the detail due to
space reason.

Theorem 1 (Soundness). Our algorithm always produces safe
worst-case heap memory consumption estimates.

6. Experimental Evaluation
We evaluate our proposed algorithm using a number of benchmarks
collected from the literature. The suite includes: (1) memory allo-
cator tests such as shbench, larson and cache-scratch from
Hoard benchmarks [15]; (2) embedded programs from MiBench
[17] and from Mälardalen WCET benchmarks [25]); and (3) heap
manipulating benchmarks from [23].

In Table 1, the third column indicates the values to which input
parameters are concretized. T ime, States and Reuses columns
present the running time, the number of visited states, and the
number of reuses in each benchmark instance. In other words, they
illustrate the cost of our algorithm.

Among the benchmarks, nsichneu, statemate and ndes
contain many (possibly infeasible) paths. They are to stress the
scalability of our algorithm. Benchmarks cache-thrash and
cache-scratch are used to test active and passive false sharing.
To test for memory fragmentation, shbench is often used. It ran-
domly allocates and deallocates random memory chunks of mem-
ory. As illustrated in Section 4, our analysis can generate bounds
even for programs where memory allocations/deallocations are
highly randomized. Finally, larson is a famous benchmark which
simulates a server. Similar to shbench it has a random behavior
in memory allocation/deallocation. The analyzed benchmarks are
categorized into four groups, separated by a double line in Table 1.
We discuss each individual group as below.

The first group of benchmarks contain complicated patterns
of allocations/deallocations, e.g. inside loops and conditional
branches. In these benchmarks, path-sensitivity plays a crucial role
in generating a precise worst-case estimates. Although the method
presented in [10] also benefits from path-sensitivity, one key dis-
tinction of this work is the employment of symbolic witnesses,
which make our analysis applicable to programs with unbounded
allocations/deallocations.

Moreover, let us elaborate on puzzle to highlight the impact
of addressing the issue of non-cumulative resource directly, as op-



Table 1: Analysis of Experimental Benchmarks

Benchmark LOC Input Parameters (Concretized) Time States Reuses Bound
larson 614 threads = 1, num chunks = 100 55.55 613 198 240050000
ndes 219 N.A. 21.21 643 201 11214
puzzle 197 N.A. 164.43 1094 354 204
fasta 121 N.A. 0.23 91 17 755
chomp 401 N.A. 1.59 153 36 6800
cache-thrash 120 threads = 1, iterations = 100, objSize = 1, repetitions = 10 7.96 344 108 1
cache-thrash 120 threads = 2, iterations = 100, objSize = 1, repetitions = 10 8.00 329 103 1
cache-thrash 120 threads = 1, iterations = 200, objSize = 1, repetitions = 10 58.96 644 208 1
cache-thrash 120 threads = 2, iterations = 200, objSize = 1, repetitions = 10 57.60 629 203 1
cache-scratch 126 threads = 1, iterations = 100, objSize = 1, repetitions = 10 9.32 350 108 9
cache-scratch 126 threads = 2, iterations = 100, objSize = 1, repetitions = 10 9.26 338 104 18
cache-scratch 126 threads = 1, iterations = 200, objSize = 1, repetitions = 10 68.86 650 208 9
cache-scratch 126 threads = 2, iterations = 200, objSize = 1, repetitions = 10 69.40 638 204 18
statemate 1090 N.A. 233.63 3553 1296 64
nsicheneu 3144 N.A. 791.75 3639 1376 112
shbench 121 threads = 1, Nalloc = 100 554.39 4461 1408 43600
himenobmtxpa 272 N.A. 175.45 1472 406 57344
dry 491 N.A. 0.3 142 39 112

fft1 (main) 234 MAXWAVES = 8 5.23 88 23 16 * MAXSIZE
+ 64

nsieve-bits 33 N.A. 4.74 552 192 sz / 8 + 4
ffbench 287 Asize = 10 138.56 1550 508 262160

posed to applying some known approaches for analyzing cumula-
tive resource. In puzzle, the outer loop iterates 5 times, and in each
iteration it acquires memory, performs some operations in some in-
ner loops and releases the memory at the end of each outer loop
iteration. Analyzing memory as a cumulative resource would re-
turn 1020 as an estimate of the worst-case consumption, which is 5
times larger than the bound produced by our method.

The second group of benchmarks contains cache-thrash and
cache-scratch which are analyzed for different input parame-
ters. Both cache-thrash and cache-scratch are multi-threaded
benchmarks. We have analyzed their local computation for the
cases when number of threads (nthreads) are either 1 or 2. In
both benchmarks, the number of the iterations of an inner loop
is determined by repetitions/nthreads. As a result, the execu-
tion with nthreads = 2 is indeed shorter than the execution
with nthreads = 1. Finally, note that the generated bound for
cache-scratch is dependent on the number of threads.

The third group of benchmarks contains nsichneu and
statemate. These two benchmarks contain very large loops which
iterate twice. These benchmarks are often used by WCET research
community to test the scalability aspect of an algorithm, especially
when it is based upon symbolic execution. Our algorithm is able to
fully analyze these benchmarks, demonstrating the potential of our
new concept of “reuse”.

Finally, the last group of benchmarks contain loops with large
number of iterations, where the ability to reuse compounded
summarizations to avoid state explosion is crucial. For example,
himenobmtxpa contains 14 loops with the nested level of 3 and
shbench contains a complicated loop pattern with the nested level
of 3. Among these benchmarks, shbench can be executed in both
single-threaded and multi-threaded forms which we have analyzed
it in the single threaded form. We highlight that the bounds gener-
ated for fft1 and nsieve-bits are symbolic bounds.

7. Related Work
We will briefly review three groups of related work.

7.1 Instrumentation Tools
Several different dynamic analysis tools have been developed
which perform different forms of memory analysis; they can be
categorized under instrumentation tools. Such tools often start by
profiling an input program before analyzing the collected data; de-
pending on the granularity of the data and the analysis overhead,
we can broadly classify into “lightweight” and “heavyweight”.

Firstly, Valgrind [28], is a tool that has been widely used for
memory debugging. One of its components, Massif, is a heap
profiler that can measure the heap usage in a current execution of
the program. Secondly, DynamoRio [7], has a memory debugging
tool which can be used to detect heap-overflow errors. One state-
of-the-art tool from IBM, Pin [24], tracks the amount of system
resources used by a program. Finally, WMTrace [29], is most
relevant to this paper. It tracks memory allocation events in a
multi-threaded program and in a post processing phase, it measures
the worst-case heap usage of the program. All these methods are
based on dynamic analysis, and not able to calculate the worst-case
memory consumption.

7.2 Worst-case Stack Consumption
Worst-case stack analysis is important for detecting stack over-
flows in safety-critical embedded systems. One state-of-the-art tool
is AbsInt’s StackAnalyzer [21]. It is a variant of values analysis
performed on memory cells and CPU registers where the high-
est value on stack pointer is reported as the worst-case stack us-
age. This approach employs interval analysis and for precision, it is
context-sensitive. Contexts are differentiated by a call string, which
is bounded to some N (for scalability). The value analysis keeps up-
dating the intervals till a fixpoint is reached. The highest value on
the stack pointer shows the worst-case stack usage.

Recently, [8] employs a variant of Hoare logic to establish
bounds on stack usage of C programs. However, this method cannot
be extended for dynamic heap allocation. In its current formulation,
it requires the size of the stack frame to be static.



In contrast, our method can be used for analyzing both worst-
case heap and stack consumption. Importantly, our approach is
path-sensitive, thus it produces more precise results. The benefits
of path-sensitivity, via symbolic execution, have been argued and
also evidenced in many recent works (e.g. [13]).

7.3 Worst-case Heap Consumption
Recently, object oriented languages have been proposed to be used
in real-time critical systems [5, 31]. In such languages, besides
WCET analysis, analysis of worst-case heap consumption is also
crucial for ensuring safety of the deployed systems [30].

One attempt is [30], targeting Java. It employs IPET-based
framework, originated from WCET analysis [22]. The method does
not take into account memory deallocations and thus the bounds it
produces would be imprecise. Another similar work is [4], which
only measures the allocations and assumes scope-based memory
model: all the allocations are deallocated with the entire scope.

Our most closely related work is the static analysis presented
in [10], where an algorithm, extended from [11, 12], has been out-
lined to perform non-cumulative resource analysis. This algorithm,
however, assumes that the amount of resource consumed by each
basic block is a constant. In this paper, we make no such assump-
tion. In fact, to accommodate that, we need to introduce a new form
of reuse, as detailed in Section 3.

Last but not least, inferring parametric bounds, for memory
consumption of imperative and object-oriented programs, has been
an important research topic [1, 2, 6, 9, 16, 18, 19]. We have care-
fully discussed their representatives in previous Sections.

8. Conclusion
In this paper, we have presented an algorithm – based on sym-
bolic execution, for analyzing program worst-case memory con-
sumption. In order to adapt for analysis of memory, a cumulative
resource, we have modified the concept of “reuse”; now the reused
witnesses can also be in the form of a symbolic expression. Finally,
we have demonstrated the potential of our approach by showing
that our algorithm scales to some realistic benchmarks.
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