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Abstract—We present a framework for WCET analysis of
programs with emphasis on cache micro-architecture. Such an
analysis is challenging primarily because of the timing model of
a dynamic nature, that is, the timing of a basic block is heavily
dependent on the context in which it is executed. At its core,
our algorithm is based on symbolic execution, and an analysis
is obtained by locating the “longest” symbolic execution path.
Clearly a challenge is the intractable number of paths in the
symbolic execution tree. Traditionally this challenge is met by
performing some form of abstraction in the path generation
process but this leads to a loss of path-sensitivity and thus
precision in the analysis. The key feature of our algorithm is
the ability for reuse. This is critical for maintaining a high-
level of path-sensitivity, which in turn produces significantly
increased accuracy. In other words, reuse allows scalability in
path-sensitive exploration. Finally, we present an experimental
evaluation on well known benchmarks in order to show two
things: that systematic path-sensitivity in fact brings significant
accuracy gains, and that the algorithm still scales well.

I. INTRODUCTION

Hard real-time systems need to meet hard deadlines. Static
Worst-Case Execution Time (WCET) analysis is therefore very
important in the design process of real-time systems.

Traditionally, WCET analysis consists of three phases. The
first phase, referred to as low-level analysis, involves micro-
architectural modeling to determine the maximum execution
time for each basic block. The second phase concerns de-
termining the infeasible paths and loop bounds from the
program. The third phase computes the aggregated WCET

bound, employing the results of the prior phases. In some
recent approaches, the second and third phases are fused into
one, called generally as high-level analysis. Importantly, for
scalability, in the literature low-level analysis and high-level
analysis are often performed separately.

The main difficulty of low-level analysis comes from the
presence of performance enhancing processor features such
as caches and pipeline. This paper focuses on caches, since
their impact on the real-time behavior of programs is much
more than other features [1]. Cache analysis – to be scalable –
is often accomplished using Abstract Interpretation (AI), e.g.,
[2]. In particular, we need to analyze the memory accesses
of the input program via an iterative fixed-point computation.
This process can be efficient, but the results are often not
precise. There are two main reasons for the imprecision:

(1) The cache states are joined at the control flow merge
points. This results in subsequently over-estimating the
potential cache misses.

(2) Beyond the one-iteration virtual unrolling of loops [2],
AI is unable to give different timings for a basic block
executed in different iterations of a loop.

A direct improvement would be to curtail the above-mentioned
merge points. That is, when traversing the CFG from a par-
ticular source node to a particular sink node: (a) do not visit
any intermediate node which is unreachable from the source
node; (b) perform merging once traversals are finished, only
at the sink node. This process should be performed on some,
but not necessarily all the possible source/sink node pairs.

Recent works [3], [4] fall into this class. They employ a
form of infeasible path discovery, so that unreachable micro-
architectural states can be excluded from consideration, i.e.,
via (a), thus yielding more accurate WCET bounds. We note,
however, such addition of infeasible path discovery is quite
limited. We will elaborate more in Sections VI and VII.

More importantly, in the literature, most algorithms employ
a fixed-point computation to ensure sound analysis across loop
iterations. Thus, they inherit the imprecision of AI, identified as
reason (2) above. That is, a fixed-point method will compute a
worst-case timing for each basic block in all possible contexts,
even though the timings of a basic block in different iterations
of a loop can diverge significantly.

To overcome the identified shortcomings, we propose a
symbolic execution algorithm where low-level analysis and
high-level analysis are synergized. In our algorithm, loops
are unrolled fully1 and summarized. The only abstraction (or
merging) performed is within and once at the end of a loop
iteration, not across loop iterations. This leads to a precise in-
spection of the timing measured from the underlying hardware
model, because the (feasibility of) micro-architectural states
can be tracked across the iterations. Clearly, our method would
produce very accurate WCET bounds since it preserves the
program’s operational semantics in detail, down to the cache.

While precision is ensured, the scalability of our algorithm
becomes questionable. Obviously, a naive attempt to perform
exhaustive symbolic execution will not scale. Chu and Jaffar
[5] demonstrated that exhaustive symbolic execution can be
made scalable, in the presence of (nested) loops, by employing
the novel concept of reuse with interpolation. Their concept of
reuse [5] relies on the fact that the timing of each basic block
is determined as a constant by a prior low-level analysis. (We
will give a brief overview on [5] in Section II.)

1We note that our loop unrolling is done virtually and not physically, and
is different from loop unrolling done by compilers.



In the setting of this paper, because of the presence of micro-
architectural features such as caches, the timing for each basic
block is no longer statically fixed. Instead, the timing depends
on the context in which the block is executed. We refer to
this as dynamic timing, and in a dynamic timing model, reuse
with interpolation alone is no longer sound. In short, one main
contribution of this paper is then, furnishing the concept of
reuse so that it is still sound and effective for the setting that
the timing of a basic block, under different contexts, can be
arbitrarily different.

In Section VI, we demonstrate on realistic benchmarks that
our algorithm is accurate as well as scalable. Note that our
benchmarks include statemate and nsichneu, which are
often used to evaluate the scalability of WCET analyzers. In
addition to proving metrics, we will elaborate our improve-
ment in the context of different program characteristics such
as loop behavior and the amount of infeasible paths.

II. OVERVIEW

Fig. 1(a) informally depicts a symbolic execution tree,
where each triangle presents a subtree. The program contexts
for the left and right subtrees, i.e., the symbolic states s0 and
s1 respectively, are of the same program point. If we had
applied the algorithm in [5] on the left subtree, we would
obtain two things: an interpolant Ψ0, a generalization of s0,
encapsulating any context that would preserve the infeasible
paths (indicated with a red cross) of the subtree. We also obtain
a “representative” path, called a witness, indicated in blue,
which gives rise to the WCET (15 in this case) of the subtree.

Fig. 1: Reuse of Summarizations: (a) [5] vs. (b) This Paper

The algorithm [5] now considers the right subtree, where
two tests are performed. First the context s1 is checked if it
implies the interpolant. If so, every infeasible path in the left
subtree remains infeasible in the right subtree. A second test
is whether the witness path is still feasible. If both tests are
passed, the analysis can be reused here, and the WCET of the
right subtree can now be computed without traversal.

The final analysis, at the root of the tree, can be computed by
collating the analyses of the left and right subtrees, and we can
now determine its value of 22 as indicated. Note, importantly,
that we never actually traversed the path that gives rise to this
result; instead, we inferred its value.

So far, we have only briefly overviewed the previous work
[5]. Next consider Fig. 1(b) where we now focus on dynamic
timing, which arises because of cache configurations. A cache
state c0 is also part of the context s0 of the subtree on the
left. After analyzing the left subtree we obtain an interpolant
Ψ0 and a witness path (indicated in blue) as before. The
most important point of departure here from Fig. 1(a) is that

the reuse of this witness path, solely as before, is unsound
in general. To remedy this, we now compute a dominating
condition c0. Essentially, this is a formula which describes an
abstract cache configuration which is sufficient to guarantee
the witness path remains optimal, i.e., the worst-case path in
the subtree, when encountering a new context.

In Fig. 1(b), suppose the dominating condition applies, that
is, suppose that the cache context c1 is covered by c0. We
indicate this by the predicate DOM(c0, c1). Now this allows us
to reuse the witness path. We then need to proceed replaying
the witness path under the new cache configuration c1. This,
importantly, can lead to new value of the path (now 17),
which is different from the original value (15). Finally, we
can conclude the analysis on the whole tree with the value 24.

Now suppose the dominating condition did not apply. Then
the path indicated by 17 may not be the worst-case path in the
right subtree. For example, there could be a path of length 18
somewhere else in the subtree. If we reuse the witness path,
we would now report, wrongly, a final value of 24.

III. GENERAL FRAMEWORK

A. Symbolic Execution with Abstract Cache

We model a program by a transition system. A transition
system P is a tuple 〈L, ℓ0,−→〉 where L is the set of program
points, ℓ0 ∈ L is the unique initial program point. Let
−→⊆ L × L × Ops, where Ops is the set of operations,
be the transition relation that relates a state to its (possible)
successors by executing the operations. All basic operations
are either assignments or “assume” operations. The set of
all program variables is denoted by Vars. An assignment
x := e corresponds to assign the evaluation of the expression
e to the variable x. The expression assume(cond) means: if
the conditional expression cond evaluates to true, execution

continues; otherwise it halts. We shall use ℓ
op
−→ ℓ′ to denote a

transition relation from ℓ ∈ L to ℓ′ ∈ L executing the operation
op ∈ Ops. Clearly a transition system is derivable from a
control flow graph (CFG).

Definition 1 (Symbolic State). A symbolic state s is a tuple
〈ℓ, c, σ,Π〉 where ℓ ∈ L is the current program point, c is the
abstract cache state the symbolic store σ is a function from
program variables to terms over input symbolic variables, and
finally the path condition Π is a first-order formula over the
symbolic inputs.

The abstract cache is modeled following the standard ab-
stract cache for must analysis [2] with LRU replacement policy.
The purpose of a path condition Π is to accumulate constraints
on input values which enable execution to reach this state.

Let s0
def
= 〈ℓ0, c0, σ0,Π0〉 denote the unique initial symbolic

state, where c0 is the initial abstract cache state, usually
initialized as an empty cache. At s0 each program variable is
initialized to a fresh input symbolic variable. For every state
s ≡ 〈ℓ, c, σ,Π〉, the evaluation [[e]]σ of an arithmetic expression
e in a store σ is defined as usual: [[v]]σ = σ(v), [[n]]σ = n,
[[e + e′]]σ = [[e]]σ + [[e′]]σ , [[e − e′]]σ = [[e]]σ − [[e′]]σ , etc.
The evaluation of the conditional expression [[cond]]σ can be
defined analogously. The set of first-order logic formulas and
symbolic states are denoted by FO and SymStates, respectively.

Our analysis is performed on LLVM IR, which is expressive
enough for cache analysis and where the general CFG of the



program can be readily constructed. Given a program point ℓ,
an operation op ∈ Ops, and a symbolic store σ, the function
acc(ℓ, op, σ) denotes the sequence of memory block accesses
by executing op at the symbolic state 〈ℓ, c, σ, ·〉. While the
program point ℓ identifies the instruction cache access, the
sequence of data accesses are obtained by considering both
op and σ together.

Definition 2 (Transition Step). Given 〈L, l0,−→〉, a transition
system, and a symbolic state s ≡ 〈ℓ, c, σ,Π〉 ∈ SymStates,

the symbolic execution of transition tr : ℓ
op
−→ ℓ′ returns

another symbolic state s′ defined as:

s′
def
=

{

〈ℓ′, c′, σ,Π ∧ cond〉 if op ≡ assume(cond)

〈ℓ′, c′, σ[x 7→ [[e]]σ],Π〉 if op ≡ x := e

where c′ is the new abstract cache derived from c and the
sequence of accesses.

Note that c′ is computed using the standard update function
of the abstract cache semantics for must analysis from [2].
Thus c′ is U(acc(ℓ, op, σ), c).

Abusing notation, the execution step from s to s′ is denoted

as s
tr
−→ s′ where tr is a transition. Given a symbolic state

s ≡ 〈ℓ, c, σ,Π〉 we also define [[s]] : SymStates → FO as
the projection of the formula

[[Π]]σ ∧
∧

v∈Vars

v = [[v]]σ

onto the set of program variables Vars. The projection is per-
formed by the elimination of existentially quantified variables.

For convenience, when there is no ambiguity, we just refer
to the symbolic state s using the abbreviated tuple 〈ℓ, c, [[s]]〉
where ℓ and c are as before, and [[s]] is obtained by projecting
s as described above. A path π ≡ s0 → s1 → · · · → sm
is feasible if sm ≡ 〈ℓ, cm, [[sm]]〉 and [[sm]] is satisfiable.
Otherwise, the path is called infeasible and sm is called
an infeasible state. Here we query a theorem prover for
satisfiability checking on the path condition. We assume the
theorem prover is sound, but not complete. If ℓ ∈ L and there
is no transition from ℓ to another program point, then ℓ is
called the end point of the program. Under that circumstance,
if sm is feasible, then sm is called terminal state.
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Fig. 2: (a) a CFG and (b) Its Symbolic Execution Tree

Example 1 (Symbolic Execution Tree). Consider the CFG in
Fig. 2(a). Each node abstracts a basic block. Inside the basic
blocks, the program points (〈1〉, 〈2〉, · · · , 〈7〉) are shown and

the integer constants (in blue color) are the static timings
(timings of the corresponding basic blocks while assuming
that all memory accesses are hits). We also show the memory
accesses (in red color). They are accesses to memory blocks
m1 and m2. For brevity, we might use interchangeably the
identifying program point when referring to a basic block. Two
outgoing edges signify a branching structure, while the branch
conditions are labeled beside the edges. In this example, we
assume a direct-mapped cache, initially empty; and m1 and
m2 conflict with each other in the cache.

Next, in Fig. 2(b), we depict the symbolic execution tree
of the program. Each node, shown as a circle, is identified
by the corresponding program point, followed by a letter to
distinguish the multiple visits to the same program point. Each
node is associated with a symbolic state, but for simplicity we
do not explicitly show any state content in the figure.

Now assume that none of the basic blocks modifies the
variable x. At node 〈5a〉, the projection of the path condition
over the program variables [[s5a]] is x = 0 ∧ x > 1, which
is equivalent to false. In other words, the leftmost path in
Fig. 2(b) is in fact an infeasible path. Moreover, each node
will be assigned a cache state. The cache state of a child
node is determined by the cache state of the parent node and
the memory accesses in the corresponding basic block. For
example, the cache at node 〈4b〉 contains m1, while the cache
at node 〈7b〉 contains m2, evicting m1 out of the cache.

We now introduce the concepts required for our loop
unrolling framework. We assume that each loop has only one
loop head and one unique end point. For each loop, following
the back edge from the end point to the loop head, we do not
execute any operation. This can be achieved by a preprocessing
phase. Note that our transition system is a directed graph.

Definition 3 (Loop). Given a directed graph G = (V,E) (our
transition system), we call a strongly connected component
S = (VS , ES) in G with |ES | > 0, a loop of G.

Definition 4 (Loop Head). Given a directed graph G =
(V,E) and a loop L = (VL, EL) of G, we call E ∈ VL a
loop head of L, also denoted by E(L), if no node in VL, other
than E has a direct successor outside L.

Definition 5 (End Point of Loop Body). Given a directed
graph G = (V,E), a loop L = (VL, EL) of G and its loop
head E . We say that a node u ∈ VL is an end point of a loop
body if there exists an edge (u, E) ∈ EL.

Definition 6 (Same Nesting Level). Given a directed graph
G = (V,E) and a loop L = (VL, EL), we say two nodes u and
v are in the same nesting level if for each loop L = (VL, EL)
of G, u ∈ VL ⇐⇒ v ∈ VL.

B. Constructing Summarizations

In our framework, a “subtree” is a portion of the symbolic
execution tree. Given a state s and program point ℓ2 such
that (a) state s ≡ 〈ℓ1, c, [[s]]〉 appears in the tree, and (b) ℓ2
post-dominates ℓ1, then subtree(s, ℓ2) depicts all the paths
emanating from s and, if feasible, terminating at ℓ2. (Note
that ℓ2 may not be the end point of the whole tree.) We call
ℓ1 and ℓ2 the entry and exit points of the subtree.

A summarization of a subtree, intuitively, is a succinct de-
scription of its analysis. This is formalized as a tuple of certain



important components of the analysis. These are: the entry
and exit program points, an interpolant describing infeasible
paths, a witness describing the longest path in the subtree,
a dominating condition ensuring the witness represents the
appropriate worst-case path in the subtree, and finally an
abstract transformer relating the input and output program
variables and an abstract transformer relating the input and
output cache configurations. The abstract transformers are used
to generate the outgoing context at the exit point.

We start with our notion of interpolant. The idea here is to
approximate at the root of a subtree, the weakest precondition
in order to maintain the infeasibility of all the nodes inside.
(An exact computation is in general intractable.) In the context
of program verification, an interpolant captures succinctly
a condition which ensures the safety of the tree at hand.
Adapting this to program analysis is first done in [6] which
formalized a generalized form of dynamic programming. Since
all infeasible nodes are excluded from calculating the analysis
result of a subtree, in order to ensure soundness, at the point
of reuse, all such infeasibility must also be maintained.

Next, we discuss the witness concept. Intuitively, it is a
path that depicts the WCET of a subtree. More specifically,

it is depicted by Γ
def
= 〈t,Υ, π〉 where t is the (static)

execution time of the instructions along the path assuming all
the memory accesses are cache hits, Υ is the sequence of all
memory accesses along the path, and π is the path constraints
along the witness.

In case Υ contains consecutive accesses to the same mem-
ory block, all-but-first accesses in that subsequence can be
classified as Always Hit and, importantly they will not affect
the resulting cache state. As an optimization, we consider them
redundant and remove them from Υ. This helps reducing the
size of Υ.

The timing of a witness is obtained dynamically from t
and replaying the sequence Υ under an incoming cache state
c. The feasibility of a witness w.r.t. to an incoming context
is determined by checking if [[π]]∧ [[s]] is satisfiable. In what
follows, we abbreviate [[π]]∧ [[s]] by [[Γ]].

We say that two nodes in a symbolic execution tree are
similar if they refer to the same program point. Thus two
subtrees are similar if they share the same entry and exit
program points.

We next discuss dominating condition, another component
of our analysis of a subtree. Intuitively, this is a description of
what cache configuration is needed in order that the witness
remains optimal in a similar subtree. That is, in an analysis of
the latter subtree, the witness remains the longest path. More
specifically, the constraints in the dominating condition are
either of the form AGE(mi) < k or AGE(mi) ≥ k, where AGE is
a function returning the relative age of mi in the cache and k
is a non-negative integer. As an example, AGE(mi) < A means
the memory block mi is in the cache; in contrast, AGE(mi) ≥ A
indicates the memory block is not in the cache.

We now discuss an abstract transformer ∆p of a subtree
from ℓ1 to ℓ2 which is an abstraction of all feasible paths
(w.r.t. the incoming symbolic state s) from ℓ1 to ℓ2. Its purpose
is to capture an input-output relation between the program
variables In our implementation, we adopt from [5] which
uses the polyhedral domain [7].

Similarly, we also have an abstract transformer ∆c for

cache. Suppose s is at program point ℓ1 and a summarization
of subtree(s, ℓ2) is reused at another visit to ℓ1 with an
incoming cache state c1. Then c2, the cache state at ℓ2, can
be generated by applying the cache abstract transformer to
c1. That is, the transformer over-approximates the memory
accesses along the feasible paths, which start from s and end
at ℓ2.

Let us first review on abstract set-associative cache for must
analysis. An abstract set-associative cache c is consisted of
N = C/(BS ∗ A) cache sets, where C is the cache capacity
and BS is block size. Specifically, c is [cs1, ..., csN ] where
each csj is a cache set. In turn, each cache set is a set of
cache lines, i.e. cs = [l1, ..., lA]. We use cs(li) = m to
indicate the presence of a memory block m in a cache-set,
where i describes the relative age of the memory block and
not the physical position in the cache hardware. The cache ab-
stract transformer ∆c is partitioned to N independent abstract
transformers of respective cache-sets ∆c ≡ [∆s0 , ...∆sN−1

].
Applying a cache abstract transformer on a cache state, each
abstract transformer of a cache-set is applied to the corre-
sponding cache-set.

Each cache-set abstract transformer ∆s is depicted by
〈M, n〉, where M is a set of pairs 〈m, i〉. Each pair indicates a
memory block m and its relative age in the cache i. Moreover,
n depicts the number of cache lines that the memory blocks
in M are loaded to. It is computed as the maximum i in
the sequence M plus 1. While computing the cache abstract
transformer, only the memory blocks with an age less than
the associativity A are stored. The rest of the memory blocks
would naturally be pushed out of the cache and we do not
need to maintain them in the abstract transformer. Thus, it is
always true that n <= A and the size of the cache abstract
transformer is linear w.r.t. the cache capacity.

At the time of reuse, each ∆s ≡ 〈M, n〉 in the cache
abstract transformer is applied to its respective cache-set. First,
the memory blocks in the cache-set are aged n times. Next, for
each pair 〈m, i〉 in M, the memory block m is loaded to its
cache-set with relative age i. Considering that the pairs in M
maintain the memory blocks accessed in subtree(s, ℓ2), the
cache abstract transformer simulates the updates and merges
of the cache state along the paths in subtree(s, ℓ2).

We collect together the components discussed above into a
summarization.

Definition 7. A summarization of subtree(s, ℓ2), where ℓ1 is
the program point of s, is a tuple

[ℓ1, ℓ2,Ψ,Γ, w, δ,∆p,∆c]
where Ψ is an interpolant, Γ is the witness, w is the WCET of
the subtree(s, ℓ2), and δ is the dominating condition. ∆p is
an abstract transformer relating the input and output variables
and finally, ∆c is a an abstract transformer of cache.

We now display a key feature of our algorithm: reuse
of a summarization. Suppose we have already computed a
summarization [ℓ1, ℓ2,Ψ,Γ, w, δ,∆p,∆c] where the witness is
Γ ≡ 〈t,Υ, π〉. Suppose we then encounter a symbolic state
s′ ≡ 〈ℓ1, c, [[s

′]]〉. The summarization now can be reused if:

1) [[s′]] implies the stored interpolant Ψ i.e., [[s′]] |= Ψ.
2) The context of s′ is consistent with the witness formula,

i.e., [[π]]∧ [[s′]] is satisfiable.



3) The dominating condition is satisfied by c, i.e.,
DOM(δ, c) holds.

The WCET of the subtree beneath the state s′ is then derived
from the witness Γ and the cache state c. The WCET of the
subtree is t plus the sum of the access times of all the memory
accesses in Υ. Using the context c, we resolve each memory
access in Υ to either a cache hit or a cache miss. Note that
the WCET of the subtree beneath s′ can be different from w.

We now conclude this subsection by mentioning that we
only summarize at selected program points. Given entry point
ℓ1, the corresponding exit point ℓ2 is determined as follows.
It is the program point that post-dominates ℓ1 s.t. ℓ2 is of
the same nesting level as ℓ1 and either is (1) an end point
of the program, or (2) an end point of some loop body.
In other words, we only perform “merging” abstraction at
loop boundaries. As ℓ2 can always be deduced from ℓ1, in
a summarization, we omit the component about ℓ2.

IV. AN EXAMPLE ANALYSIS

Consider the CFG and the symbolic execution tree in
Fig. 3. Here we assume a direct-mapped cache with 3 cache
sets, initially empty, and a cache miss penalty of 10 cycles.
Consider accesses to memory blocks m1,m2,m3, and m4,
where only m1 and m3 conflict with each other in the first
cache set. Note that in Fig. 3(b), we have not (fully) drawn
the subtree below node 〈4b〉.

Suppose the subtree 〈7a〉 has been analyzed, and its sum-
marization is [〈7〉,Ψ,Γ, w, δ,∆p,∆c]. We now explain the
components of this summarization. The interpolant Ψ is easily
determined as true because all (two) paths of this subtree
are feasible. Next, because the incoming cache state contains
only m1, the timing of the sub-path 〈7a〉, 〈8a〉, 〈10a〉 is
40 = (10+5+10+15), with both accesses as cache misses.
Similarly, the timing of the other sub-path 〈7a〉, 〈9a〉, 〈10b〉
is 45 = (10+5+10+10+10). So, the sub-path 〈7a〉, 〈9a〉,
〈10b〉 is longer than the other and it is chosen as the worst-case
path2 of subtree 〈7a〉. Consequently, the witness Γ is computed
as 〈15, [m2,m3,m4], z ≥ 0〉, where 15 is the static timing of
the witness path, [m2,m3,m4] are the memory accesses along
the path, and z ≥ 0 is the (partial) path constraints of the
path. Moreover, the WCET of the subtree w is 45. Next, we
capture a dominating condition δ as AGE(m4) ≥ 1 (The cache
associativity of a direct-mapped cache is 1). This condition
is sufficient to ensure that the chosen path dominates (i.e., is
longer than) any other path in the subtree.

The abstract transformer ∆p is the trivial one where the
output is the same as the input. This is because in this example
we abstract away all the instructions executed by the basic
blocks. The memory blocks m2 and m3 are accessed along
the sub-path 〈7a〉, 〈8a〉, 〈10a〉. The abstract transformer of the
first cache set is ∆s0 ≡ 〈[〈m3, 0〉], 1〉, where 〈m3, 0〉 indicates
the relative age of m3 in the first cache set of the cache state at
〈10〉 and 1 shows the number of cache lines that the memory
blocks are loaded to. Similarly, the relative age of m2 in the
second cache set is 0 and the transformer of the second cache
set is ∆s1 ≡ 〈[〈m2, 0〉], 1〉. The abstract transformer of the
third cache set ∆s2 is empty 〈[ ], 0〉. In a similar manner, the
set abstract transformers for the sub-path 〈7a〉, 〈9a〉, 〈10b〉
are ∆s0 ≡ 〈[〈m3, 0〉], 1〉, ∆s1 ≡ 〈[〈m2, 0〉], 1〉 and ∆s2 ≡

2When it is clear, we often use “path” to mean “sub-path”.

〈[〈m4, 0〉], 1〉. The respective set abstract transformers are
joined at 〈7a〉. The joined abstract transformer would main-
tain the common memory block accesses from both abstract
transformers and the maximum of the number of cache lines
where memory blocks are loaded to. The memory accesses
m2 and m3 are the common accesses on both subpaths, so
∆c ≡ [∆s0,∆s1,∆s2] ≡ [〈[〈m3, 0〉], 1〉, 〈[〈m2, 0〉], 1〉, 〈[ ], 1〉].

In short, after analyzing 〈7a〉, we also have com-
puted a summarization [7, true, 〈15, [m2,m3,m4], z ≥
0〉, 45, AGE(m4) ≥ 1, Id(Vars),∆c]. For brevity, in what fol-
lows, we do not detail on abstract transformers ∆p and ∆c.

Next we propagate the analysis of 〈7a〉 to its parent 〈5a〉
whose summarization is now updated so that the witness is
stored in the form 〈20, [m1,m2,m3,m4], z ≥ 0〉, where 20
is computed as the sum of: (1) the static timing of block 〈5〉,
which is 5; (2) the static timing of the witness for 〈7a〉, which
is 15. The dominating condition is AGE(m4) ≥ 1, as before.

We fast forward to node 〈7b〉, and consider now if the
above analysis of 〈7a〉 can be reused. That is, even though we
have depicted the subtree 〈7b〉 in full, could we in fact have
simply declared that the witness in the subtree below 〈7b〉
would remain the same as the witness in subtree below 〈7a〉?
(Recall that the witness in the subtree below 〈7a〉 spans along
the program points 〈7〉, 〈9〉, 〈10〉.) Unfortunately, the answer
is negative, and the reason is that the dominating condition,
AGE(m4) ≥ 1, is not met because m4 is in the cache at 〈7b〉.
This non-reuse is depicted by a red cross. We thus have to
analyze 〈7b〉 fully. We get a different longest sub-path this
time, 〈7b〉, 〈8b〉, 〈10c〉, with the witness 〈20, [m2,m3], z < 0〉.
The dominating condition is also different: δ : AGE(m4) < 1.

Finally, this analysis of 〈7b〉 is propagated for its parent
〈6a〉. The dominating condition is AGE(m4) < 1 which always
holds due to the access of m4 at 〈6〉. Thus the dominating
condition for 〈6a〉 is simply true.

Having now analyzed both 〈5a〉 and 〈6a〉, we can now
compute an analysis for their common parent 〈4a〉. Here the
observed longest sub-path is 〈4a〉, 〈6a〉, 〈7b〉, 〈8b〉, 〈10c〉, and
the witness is stored as 〈41, [m4,m2,m3], y ≥ 0∧z < 0〉. The
dominating condition is conjoined from: (a) the dominating
condition of its left child 〈5a〉; (b) the dominating condition
of its right child 〈6a〉; and (c) the reason for the dominance
of the above observed longest path over the other path. In
particular, δ is AGE(m4) ≥ 1 ∧ true ∧ AGE(m1) < 1.

Now we can exemplify reuse on the subtree 〈4b〉. We
first check if the context of 〈4b〉 implies the interpolant
computed for 〈4a〉. Because all paths from 〈4a〉 are feasible,
the interpolant is true, thus, it trivially holds. We then check if
the dominating condition holds. Examining the cache context
of 〈4b〉, indeed m1 is in the cache and m4 is not in the cache.
Furthermore, the witness is still feasible w.r.t. the incoming
context (x ≥ 0). So we can reuse the witness of 〈4a〉, yielding
the timing of 61. We remark here that the timing of the sub-
path 〈4b〉, 〈6b〉, 〈7c〉, 〈8c〉, 〈10e〉 is less than the timing of
〈4a〉,〈6a〉, 〈7b〉, 〈8b〉, 〈10c〉 because now m2 is present in the
cache at 〈4b〉.

Finally, we easily arrive at the WCET of the entire tree, thus,
the entire example program, to be 106 cycles (= 10 + 10 +
10 + 15 + 61, since the accesses to m1 and m2 at 〈3a〉 are
cache miss).

Let us reconsider the same example using a pure abstract
interpretation (AI) framework such as [2]. A pure AI method
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Fig. 3: (a) a CFG (with memory accesses and static instruction timing shown in each block); and (b) Our Analysis Tree

would typically perform merging at the three join points: 〈4〉,
〈7〉, 〈10〉. Importantly, it discovers that at 〈4〉, m1 must be in
the cache. Thus, the access to m1 at 〈5〉 is hit. However, at
〈7〉, AI has to conservatively declare that m4 is not in the
cache. As a result the access to m4 at 〈9〉 will be cache
miss. Consequently, the final worst case timings for the basic
blocks that have some memory accesses are: (〈2〉,20), (〈3〉,35),
(〈5〉,5), (〈6〉,21), (〈7〉,15), (〈8〉,25), (〈9〉,30).

If we aggregate using a path-insensitive high-level analysis,
the WCET estimate is 121 (= 10 + max(20, 35) + 10 + max(5,
21) + 15 + max(25,30)). If we aggregate using a path-sensitive
high-level analysis [5], we cannot improve the estimate for this
example, because the program contains no infeasible paths.

V. SYMBOLIC EXECUTION FOR DYNAMIC TIMING

We explain Algorithm 1 in a top-down manner. The function
ANALYZE takes in the initial symbolic state s0 and the transition
system P of an input program. It then invokes SUMMARIZE to
generate a summarization for the whole program (line 1) and
returns w as the WCET of the whole program.

The SUMMARIZE function performs a depth-first traversal of
the symbolic execution tree. During the depth-first traversal,
at each node either (1) a summarization is reused, thus we
do not need to expand the node; or (2) after expanding it, we
compute its summarization based on the summarizations of its
child nodes. We now discuss the SUMMARIZE function in detail.

Base Cases: SUMMARIZE handles 4 base cases. First, when the
symbolic state s is infeasible (line 4). Note that here path-
sensitivity plays a role because provably infeasible paths will
be excluded from contributing to the analysis result. Thus
the returned witness is 〈−∞, [ ], false〉. Note that the empty
cache abstract transformer is depicted by 〈[ ], 0〉 for brevity.
Second, s is a terminal state (line 6). Here Id refers to the
identity function, which keep the symbolic state unchanged.
The end point of a loop is treated similarly in the third base
case (line 8). The last base case, lines 9-10, is the case that a
summarization can be reused. We have discussed this step in
Section III-B.

Expanding to the next programming point: Line 20 depicts
the case when transitions can be taken from the current
program point ℓ, and ℓ is not a loop head. We call TRANSSTEP to

Algorithm 1 Integrated WCET Analysis Algorithm

function ANALYZE(s0, P)
〈1〉 [ℓ0, ·, ·, w, ·, ·, ·] := SUMMARIZE(s0,P)
〈2〉 return w
end function

function SUMMARIZE(s, P)
Let s be 〈ℓ, c, [[s]]〉

〈3〉 if ([[s]] ≡ false)
〈4〉 return [ℓ, false,〈−∞, [ ], false〉,−∞, false, false, 〈[ ], 0〉]
〈5〉 if (OUTGOING(ℓ,P) = ∅)
〈6〉 return [ℓ, true, 〈0, [ ], true〉, 0, true, Id(Vars), 〈[ ], 0〉]
〈7〉 if (LOOP-END(ℓ,P))
〈8〉 return [ℓ, true, 〈0, [ ], true〉, 0, true, Id(Vars), 〈[ ], 0〉]
〈9〉 S := [ℓ,Ψ,Γ, w, δ,∆p,∆c] := MEMOED(ℓ)
〈10〉 if ([[s]] |= Ψ ∧ [[Γ]] 6≡ false ∧ DOM(δ, c)) return S
〈11〉 if (LOOP-HEAD(ℓ,P))
〈12〉 S1 := [·, ·,Γ1, ·, ·,∆p1,∆c1]:= TRANSSTEP(s,P, ENTRY(ℓ,P)))
〈13〉 if ([[Γ1]] ≡ false)
〈14〉 S := JOIN(c, S1, TRANSSTEP(s,P, EXIT(ℓ,P)))

else

〈15〉 Let tr be ℓ
∆p1,∆c1
−−−−−−→ ℓ′

〈16〉 s
tr
−→ s′

〈17〉 S′ := SUMMARIZE(s′,P)
〈18〉 S := COMPOSE(S1, S

′)
〈19〉 S := JOIN(c, S, TRANSSTEP(s,P, EXIT(ℓ,P)))
〈20〉 else S := TRANSSTEP(s,P, OUTGOING(ℓ,P))
〈21〉 memo and return S
end function

move recursively to next program points. TRANSSTEP considers
all transitions emanating from ℓ, denoted as OUTGOING(ℓ,P),
then calls SUMMARIZE recursively and compounds the returned
summarizations into a summarization of ℓ.

In more detail, for each tr in TransSet, TRANSSTEP extends
the current state with the transition. We then call SUMMARIZE

with the resulting child state (line 25). The algorithm ag-
gregates each returned summarization into a single summa-
rization, namely S. This is achieved by first calling COMPOSE

(line 26), then calling JOIN (line 27). We use COMPOSE and
JOIN (explanation delegated to the later parts in this section)
to combine vertically and merge horizontally two summariza-
tions. Note here that we construct a summarization from a



function TRANSSTEP(s,P, TransSet)
Let s be 〈ℓ, ·, ·, ·〉

〈22〉 S := [ℓ, false, 〈0, [ ], true〉, 0, true, Id(Vars), 〈[ ], 0〉]
〈23〉 foreach (tr ∈ TransSet) do

〈24〉 s
tr
−→ s′

〈25〉 S′ := SUMMARIZE(s′,P)
〈26〉 S := COMPOSE(SUMMARIZE-A-TRANS(s, tr), S′)
〈27〉 S := JOIN(c, S, S)

endfor
〈28〉 return S
end function

function SUMMARIZE-A-TRANS(s, tr)

Let s be 〈ℓ, c, σ, .〉 and Let tr be ℓ
op
−→ ℓ′

〈29〉 t := EXECUTION-TIME(op); Υ := acc(ℓ, op, σ)
〈30〉 Iterate through Υ and remove repeating accesses
〈31〉 i := 0;M := ∅;w := t
〈32〉 foreach m ∈ REVERSE(acc(ℓ, op, σ)) do
〈33〉 Add 〈m, i〉 into M; i := i+ 1
〈34〉 w := w + ACC-TIME(m, c)

endfor
〈35〉 ∆c := 〈M, i〉
〈36〉 return [ℓ, true, 〈t,Υ, [[op]]σ〉, w, true, op∆,∆c]
end function

function COMPOSE(S1, S2)
Let S1 be [ℓ1,Ψ1,Γ1, w1, δ1,∆p1,∆c1]
Let S2 be [ℓ2,Ψ2,Γ2, w2, δ2,∆p2,∆c2]

〈37〉 w := w1 + w2

〈38〉 ∆p := ∆p1 ∧ ∆p2

〈39〉 ∆c := COMBINE-CACHES(∆c1,∆c2)
〈40〉 Ψ := Ψ1 ∧ PRE-COND(∆p1,Ψ2)
〈41〉 {Γ, δ} := COMBINE-WITNESSES(Γ1,Γ2, δ1, δ2)
〈42〉 return [ℓ1,Ψ,Γ, w, δ,∆p,∆c]
end function

function JOIN(c, S1, S2)
Let S1 be [ℓ,Ψ1,Γ1, w1, δ1,∆p1,∆c1]
Let S2 be [ℓ,Ψ2,Γ2, w2, δ2,∆p2,∆c2]

〈43〉 {Γ, w, δ} = MERGE-WITNESSES(c,Γ1,Γ2, w1, w2, δ1, δ2)
〈44〉 ∆c := MERGE-CACHES(∆c1,∆c2)
〈45〉 ∆p := ∆p1 ∨ ∆p2

〈46〉 Ψ := Ψ1 ∧ Ψ2

〈47〉 return [ℓ,Ψ,Γ, w, δ,∆p,∆c]
end function

Fig. 4: Helper Functions

single transition before calling COMPOSE.
SUMMARIZE-A-TRANS computes a summarization for a single

transition tr at state s. This can be seen as a basic step in our
algorithm. Because no infeasible path has been discovered,
the interpolant Ψ is just true. There is a single path, thus
the dominating condition is true, meaning that the cache is
unconstrained. Moreover, the cache abstract transformer for a
single path is simply generated from the reverse order of the
sequence of all memory accesses, namely acc(ℓ, op, σ), and
i, increasing from 0, which indicates the relative age of the
memory accesses in the cache state in the end of the path (lines
31-33 and 35). Note that for brevity, here we demonstrate the
steps to generate the cache abstract transformer for a fully-
associative cache. These steps can trivially be extended for set-
associative caches. The abstract transformer ∆p (for program
variables) is the operation op itself, but translated to the
language of input-output relation. As an example, x := x + 1

is translated to xout = xin + 1. We use op∆ to denote such
translated op.

We now elaborate on the computation of the witness and the
WCET w. First, the static timing t is initialized as the static ex-
ecution time of the operator op, assuming all memory accesses
are cache hits. Secondly, Υ is initialized to acc(ℓ, op, σ).
For consecutive accesses to a same memory block, only the
first access is kept, the rest are removed from Υ. This can
be achieved by iterating through Υ once. (Those removed
accesses are classified as Always Hit.) The path constraints
for the witness is computed by projecting op onto the set
of program variables w.r.t. the symbolic store σ, denoted as
[[op]]σ . Furthermore, the WCET w is initialized to the static
timing t and increased by the access time of each memory
access which can either be a cache hit or a cache miss (line 34).

Handling Loops: Lines 12-19 handle the case when the
current program point ℓ is a loop head. Let ENTRY(ℓ,P) denote
the set of transitions going into the body of the loop, and
EXIT(ℓ,P) denote the set of transitions exiting the loop.

Upon encountering a loop, our algorithm attempts to unroll
it once by calling the function TRANSSTEP to explore the
entry transitions (line 12). If the returned witness formula
is false, meaning that it is infeasible to execute another
iteration, we thus proceed with the exit branches. The returned
summarization is merged (using JOIN) with the summarization
of the previous unrolling attempt (line 14). Otherwise, we first
use the returned abstract transformer to produce a new contin-
uation context, (line 15 and 16), then we continue the analysis
from the next loop iteration onwards (line 17). The returned
information is then compounded with the summarization of the
first iteration (line 18). Note that, importantly, compounded
summarizations of the inner loop(s) can be reused in later
iterations of the outer loop.

Next, we will elaborate on how summarizations are com-
pounded through the functions COMPOSE and JOIN in Fig. 4.

Compounding Vertically Two Summarizations: Consider-
ing subtree(s2, ℓ3) suffixing subtree(s1, ℓ2), where s2 ≡
〈ℓ2, c2, [[s2]]〉 and s1 ≡ 〈ℓ1, c1, [[s1]]〉. In other words, a path π1

from ℓ1 to ℓ2 followed by a path π2 from ℓ2 to ℓ3 corresponds
a path π in subtree(s1, ℓ3). The COMPOSE function returns a
summarization for subtree(s1, ℓ3) by compounding the two
existing summarizations, respectively for subtree(s1, ℓ2) and
subtree(s2, ℓ3).

The WCET of subtree(s1, ℓ3) is computed as the sum of
the WCET of the subtrees (line 37), the abstract transformer
∆p is computed as the conjunction of the input abstract
transformers (line 38), with proper variable renaming. Note
that in our implementation, abstract transformers are computed
using polyhedral domain. We employ ∆p to generate one
continuation context, before proceeding the analysis with sub-
sequent program fragments. Next, the desired interpolant must
capture the infeasiblity of S1, as well as the infeasibility of S2

given that we treat subtree(s1, ℓ2)) as an abstract transition,
of which the operation is ∆p. We rely on the function
PRE-COND, which in line 40 under-approximates the weakest-
precondition of the post-condition Ψ2 w.r.t. to the transition
relation ∆p. Finally, we use COMBINE-CACHES to construct the
overall cache input-output relation for subtree(s1, ℓ1) (line
39) and COMBINE-WITNESSES to compound the witnesses and
the dominating conditions of the summarizations (line 41).



function COMBINE-CACHES(∆c1,∆c2)
Let ∆c1 be 〈M1, n1〉 and Let ∆c2 be 〈M2, n2〉

〈48〉 M := M1;n := n1

〈49〉 foreach 〈m, k〉 ∈ M2 do
〈50〉 foreach 〈m′, i〉 ∈ reverse(M) do
〈51〉 if m′ 6≡ m then
〈52〉 update 〈m′, i〉 to 〈m′, i+ 1〉

else
〈53〉 Remove 〈m, k〉 from M
〈54〉 break

endfor
〈55〉 Add 〈m, 0〉 to the beginning of M

endfor
〈56〉 foreach 〈m, i〉 ∈ M do
〈57〉 if i > n then n := i + 1
〈58〉 if i ≥ A then Remove 〈m, i〉 from M; n := A

endfor
〈59〉 return 〈M, n〉
end function

function COMBINE-WITNESSES(Γ1,Γ2, δ1, δ2)
Let Γ1 be 〈t1,Υ1, π1〉 and Let Γ2 be 〈t2,Υ2, π2〉

〈60〉 t = t1 + t2
〈61〉 if (LAST(Υ1) ≡ FIRST(Υ2)) then Υ2 := REMOVE-FIRST(Υ2)
〈62〉 Υ = Υ1 · Υ2

〈63〉 π := π1 ∧ π2

〈64〉 δ′2 := true
〈65〉 foreach {AGE(mi) < k} ∈ δ2 do
〈66〉 AlwaysTrueF lag = false
〈67〉 foreach mj ∈ Υ1 do
〈68〉 if mi ≡ mj then AlwaysTrueF lag = true
〈69〉 else if CONFLICT(mi,mj) then k := k − 1

endfor
〈70〉 if AlwaysTrueF lag ≡ true then skip;
〈71〉 else if k > 0 then δ′2 := δ′2 + {AGE(mi) < k}
〈72〉 else if k ≤ 0 then δ′2 := δ′2 + false

endfor
〈73〉 foreach {AGE(mi) ≥ k} ∈ δ2 do
〈74〉 AlwaysFalseF lag = false
〈75〉 foreach mj ∈ Υ1 do
〈76〉 if k ≥ 0∧mi ≡ mj then AlwaysFalseF lag = true
〈77〉 else if CONFLICT(mi,mj) then k := k − 1

endfor
〈78〉 if AlwaysFalseF lag ≡ true then δ′2 := δ′2 + false
〈79〉 else if k ≥ 0 then δ′2 := δ′2 + {AGE(mi) ≥ k}
〈80〉 else if k < 0 then skip;

endfor
〈81〉 δ = δ1 ∧ δ′2
〈82〉 return {〈t,Υ, π〉, δ}
end function

Fig. 5: Combining (Vertically) Cache Transformers, Witnesses

Consider COMBINE-CACHES in Fig. 5. The cache abstract
transformer is first initialized to the cache abstract transformer
of the prefix subtree (line 48). Next, since the memory accesses
in the suffix subtree are more recent along the feasible paths,
before adding them to the transformer (line 55), all the
previous memory accesses in reverse(M) are aged by 1 (line
52), while m itself is not visited. If m is visited, due to a
more recent access (〈m, 0〉) it is removed from M (lines 53).
Finally, the new value for n is calculated (line 57). Note that
storing the pairs with relative age more than the associativity
A would be redundant. Such pairs are removed from M in
line 58 and the vlaue of n is updated accordingly.

In Fig. 5, COMBINE-WITNESSES produces a witness and a
dominating condition, by compounding the witnesses and the
dominating conditions of the two subtrees, where one suffixes
the other. This can be understood as a sequential composition.

The static timing of the witness t is initialized as the sum
of t1 and t2 (line 60). Let m be the last access in Υ1. If m
is also the first access in Υ2, it would always be a cache hit
and is removed from Υ2 (line 61). The combined Υ is then
the concatenation of Υ1 and Υ2 (line 62). Next, the witness
path constraint π is computed as the conjunction of π1 and π2

(line 63).
The combined dominating condition δ is computed as the

conjunction of δ1 and a condition δ′2, in line 81. Intuitively,
δ′2 describes an abstract cache state c, such that if from c we
perform all the accesses in Υ1, we will produce a cache state
c′ which satisfies δ2.

The computation of δ′2 is a precondition computation, but
in the nature of caches. More specifically, δ′2 is initialized to
true (line 64). Next, all the conditions in δ2 are updated w.r.t.
Υ1. If a condition become always true, it is not added to δ2
(lines 68 and 70 and line 80 ). Otherwise, k is decreased by
the number of conflicting memory blocks in Υ1 (line 69 and
line 77) and the condition is added to δ′2 (line 71 and 79).
There is a special case, where a condition always resolves to
false, thus, false is added to δ′2 (line 72). Lines 76 and 78 test
for another similar case. As a result, δ′2 would always resolve
to false. This scenario rarely happened in our experiments.

Compounding Horizontally Two Summarizations: Given
two summarizations rooted at two nodes which are siblings,
we want to propagate the information back and compute the
summarization for the parent node. While propagation can be
achieved by COMPOSE, we need JOIN (presented in Fig. 4) to
“merge” the contributions of the two children to the parent
node. Note that unlike COMPOSE, we need to select the longer
path between the two witnesses of the input summarizations.
Such selection depends on the current cache context. That is
why the cache context c is passed as an input to JOIN, which
subsequently pass it on to MERGE-WITNESSES. MERGE-WITNESSES

and MERGE-CACHES, which are explained below, are used to
merge witnesses, dominating conditions and cache abstract
transformers of summarizations. The abstract transformer ∆p,
however, is computed straightforwardly as the disjunction of
the input abstract transformers. All the infeasible paths in both
sub-structures must be maintained, thus the desired interpolant
is the conjunction of the two input interpolants.

MERGE-CACHES in Fig. 6 joins two cache abstract transform-
ers. Since the cache states are updated based on the semantics
of abstract cache for must analysis, similarly the intersection
of the memory accesses on both cache abstract transformers
are preserved with their maximum age. The memory access
sequence M is initialized to ∅. Next, for each memory access
m that is in the memory access sequences of the left and right
subtrees M1 and M2, it is added to M with the maximum
age from M1 and M2 (line 85). Finally, M is returned with
the maximum number of cache lines that memory accesses in
M will be loaded to MAX(n1, n2) (line 86).

In Fig. 6, MERGE-WITNESSES produces a witness and a
dominating condition, by compounding the witnesses and the
dominating conditions of two sibling subtrees. We need to
choose one witness as the dominating witness out of the two



input witnesses. Moreover, the combined dominating condition
must ensure the dominance of each witness (in its respective
subtree) and the dominance of the chosen witness over the
other witness.

The dominating condition δ is initialized as the conjunction
of the two dominating conditions (line 87). We next compare
the two WCET values; and we select the one with higher timing
as the dominating witness. After line 89, the chosen witness
and its corresponding WCET and dominating condition are
captured by Γ1, WCET1 and δ1.

Next, we test if δ is sufficient to ensure that Γ1 dominates
Γ2. Given a condition δ, a witness dominates another witness
if its minimum timing is more than the maximum timing of the
other. The minimum timing is calculated by: (1) first determine
some accesses in the Υ component are necessary misses as the
consequence of the condition δ; (2) classifying the remaining
accesses in Υ as cache hits. Whereas the maximum timing
is calculated in the opposite manner: (1’) first determine
some accesses in the Υ component are necessary hits as the
consequence of the condition δ; (2’) classifying the remaining
accesses in Υ as cache misses. This dominance test is shown
in line 90.

If Γ1 dominates Γ2, then Γ1 is returned as the dominating
witness with δ as the dominating condition. If not, we need
to further constrain the dominating condition δ.

First, for each access mi in Υ1, if mi has not been
constrained in δ, AGE(mi) ≥ A is added to δ (lines 94). This
cache constraint might increase the the minimum timing of Γ1

and lead to passing the dominance test. If the dominance test
indeed succeeds, Γ1, WCET1 and δ are returned.

If we have not succeeded yet, we can do similarly for each

function MERGE-CACHES(∆c1,∆c2)
Let ∆c1 be 〈M1, n1〉 and Let ∆c2 be 〈M2, n2〉

〈83〉 M := ∅
〈84〉 foreach 〈m, i〉 ∈ M1 ∧ 〈m, j〉 ∈ M2 do
〈85〉 M := M+ 〈m, MAX(i, j)〉

endfor
〈86〉 return 〈M, MAX(n1, n2)〉
end function

function MERGE-WITNESSES(c,Γ1,Γ2, w1, w2, δ1, δ2)
Let Γ1 be 〈t1,Υ1, π1〉 and Let Γ2 be 〈t2,Υ2, π2〉

〈87〉 δ := δ1 ∧ δ2
〈88〉 if (w1 < w2)
〈89〉 SWAP(Γ1,Γ2), SWAP(w1, w2), SWAP(δ1, δ2)
〈90〉 if (t1 + MIN-TIME(Υ1, δ) ≥ t2 + MAX-TIME(Υ2, δ))
〈91〉 return {Γ1, w1, δ}
〈92〉 foreach mi ∈ Υ1 do
〈93〉 if (NOT-CONSTRAINED(mi, δ))
〈94〉 δ := δ ∧ {AGE(mi) ≥ A}
〈95〉 if (t1 + MIN-TIME(Υ1, δ) ≥ t2 + MAX-TIME(Υ2, δ))
〈96〉 return {Γ1, w1, δ}

endfor
〈97〉 foreach mj ∈ Υ2 do
〈98〉 if (NOT-CONSTRAINED(mj , δ))
〈99〉 δ := δ ∧ {AGE(mj) < A}
〈100〉 if (t1 + MIN-TIME(Υ1, δ) ≥ t2 + MAX-TIME(Υ2, δ))
〈101〉 return {Γ1, w1, δ}

endfor
end function

Fig. 6: Merging Cache Transformers, Witnesses

mj in Υ2. Note the difference that now we add the cache
constraint of the form AGE(mj) < A, with the hope to reduce
the maximum timing of Γ2 enough that the dominance test
can be passed (line 100).

At the end of the first for loop, MIN(Υ1, δ) would be larger
than (or equal to) the original timing of Γ1 (w.r.t. cache context
c) while at the end of the second for loop, MAX(Υ2, δ) would
be less than (or equal to) the original timing of Γ2 (w.r.t. cache
context c). In other words, eventually, we will end up with a
condition δ so that Γ1 dominates Γ2.

Finally, we conclude this section with a formal statement
about the soundness of our framework.

Theorem 1 (Soundness). Our algorithm always produces safe
WCET estimates.

Proof Outline: Our algorithm performs a depth-first traversal
of the symbolic execution tree. In all steps except when reuse
happens, what we perform only widen the execution contexts,
not narrowing them. Because of such steps, we might over-
approximate the real WCET; but this is safe.

Assume that, at symbolic state s ≡ 〈ℓ, c, [[s]]〉, we reuse
a summarization [ℓ,Ψ,Γ, w, δ,∆p,∆c] of a subtree T . Also
assume that the reuse is unsafe. Note that when reuse happens,
we employ the abstract transformers to generate a continuation
context and continue the analysis from there. This step is also
a widening step, thus it is safe. As a result, there must be
a feasible path in the avoided subtree emanating from s, of
which the timing is more than the timing of the witness Γ.
Let us call this path Γ′.

Because the first condition for reuse implies that all infea-
sible paths of T stay infeasible under the new context s, Γ′

must be feasible in T as well. Obviously, in order for Γ to be
reported as the witness, in T , the timing of Γ′ must be not
more than the timing of Γ.

The third condition for reuse ensures that the dominating
condition is satisfied. This implies that the cache configuration
at s maintains the optimality of Γ. In particular, if the timing
of Γ (in T ) is not less than the timing of some other feasible
path (in T ), it is still the case under the new context s.
Consequently, under context s, the timing of Γ′ can not be
more than the timing of Γ. This is a contradiction.

We remark here that we do not make use of the second
condition for reuse in the proof of soundness. In fact, that
condition has to do with the precision of reuse, rather than its
soundness. An important implication – which has been shown
in [6] – is that our algorithm produces “exact” analysis for
loop-free programs.

VI. EXPERIMENTAL EVALUATION

The data and instruction cache settings in our experiments is
borrowed from [8] for ARM9 target processor. Our instruction
and data caches are separate. A cache state c contains two
separate abstract caches 〈ci, cd〉, where ci is a 4KB abstract
instruction cache and cd is a 4KB abstract data cache. The
cache configurations are write-through, with no-write-allocate,
4-way set associative L1 cache with LRU replacement policy.
The cache miss and cache hit latencies are respectively 10 and
0 cycles.

Because we fully unroll loops in our analysis, it is sufficient
to employ a must analysis for precisely tracking the data



TABLE I: Comparing our Algorithm (Unroll_d) to the State-of-the-art

Benchmark
LLVM AI⊕ILP AI⊕Unroll_s

Unroll_d Unroll_d vs

w. reuse w.o. reuse AI⊕ AI⊕Un

LOC T(s) WCET T(s) WCET T(s) State WCET T(s) State WCET ILP roll_s

tcas 736 0.84 1427 9.07 1212 21.36 2389 1112 - ∞ - 22.07% 8.25%

nsichneu 12879 161.58 85845 504.88 66808 709.03 3776 48388 - ∞ - 43.63% 27.57%

statemate 3345 13.89 12382 248.41 9101 358.94 4152 7644 - ∞ - 38.27% 16.01%

ndes 1755 11.45 304369 37.95 174266 38.92 1065 148368 - ∞ - 51.25% 14.86%

fly-by-wire 2459 1.32 12171 10.97 9761 11.16 279 8751 - ∞ - 28.10% 10.35%

adpcm 2876 4.82 39088 106.53 33676 118.92 1617 31574 - ∞ - 19.22% 6.24%

compress 1334 9.18 478191 179.43 31665 204.82 1622 28670 911.38 10984 28180 94.00% 9.46%

ud 536 2.08 33515 1.87 15792 1.77 638 12132 1.96 797 12092 63.80% 23.18%

janne
119 0.13 1718 0.11 1219 0.16 98 1119 0.26 137 1119 34.87% 8.20%

complex

fft1 1346 6.43 403179 45.62 280188 48.13 966 268378 100.52 1820 268378 33.43% 4.22%

bsort100 128 0.14 752681 9.4 752630 19.34 1440 637580 - ∞ - 15.29% 15.29%

edn 1226 1.47 437158 534.28 437158 676.11 2369 321028 - ∞ - 26.56% 26.56%

cnt 269 0.17 21935 0.29 21935 0.44 230 19355 1.56 1426 19355 11.76% 11.76%

matmult 286 1.75 874348 5.38 874348 6.5 906 621458 - ∞ - 28.92% 28.92%

jfdctint 693 0.08 20332 1.02 20332 1.43 254 17572 0.9 328 17572 13.57% 13.57%

fdct 831 0.08 17442 0.05 17442 0.13 58 14572 0.04 70 14572 16.45% 16.45%

cache, as opposed to a persistence analysis. We follow the
treatment as in [9] for loading memory ranges into the cache
for persistence analysis3 when a data access cannot be resolved
to a single memory address, meaning that the blocks in the
memory address range are not loaded into the cache, but the
blocks already in the cache are relocated as if all the blocks
in the memory address range were loaded into the cache.

A. Results

We used an Intel Core i5 @ 3.2Ghz processor having
4Gb RAM for our experiments and built our system upon
CLP(R) [11] and Z3 as the constraint solver, thus providing
an accurate test for feasibility. The analysis was performed on
LLVM IR which, while being expressive enough, a program’s
transition system can be easily constructed. The LLVM in-
structions are simulated for a RISC architecture. We use Clang
3.2 [12] to generate the IR.

Table I presents our results on three algorithms:

• AI⊕ILP implements the algorithm in [4]. It comprises the
state-of-the-art micro-architectural modeling (AI+SAT) com-
bined with an ILP formulation for WCET aggregation. This
algorithm represents the state-of-the-art method, where must
analysis and persistence analysis are used to model abstract
instruction and data cache.

• AI⊕Unroll_s implements a hypothetical algorithm, to
benefit from combining the low-level analysis in [4] and the
high-level analysis in [5]. This combined algorithm generates
static timing for each basic block before aggregating results
via a path analysis phase. More specifically, this algorithm
improves on the previous because of fully unrolling loops and
increased infeasible path detection.

• Unroll_d is the algorithm presented in this paper. This
further improves on the already quite accurate hypothetical
algorithm above because we now accomodate dynamic timing.
As explained in the earlier sections, this entails more cost. Our
results below show that this cost is bearable.

3Huynh et. al. in [10] have fixed a safety issue with the treatment of loading
memory ranges into the cache from [9]. However, this safety issue occurs in
the semantics of abstract cache for persistence analysis and does not affect the
semantics of abstract cache for must analysis, which is used by our method.

In Table I, the columns T(s) and State denote the running
time and number of states (in symbolic execution) respectively.
The symbol ∞ denotes out-of-memory. The WCET precision
improvement is computed as B−U

B
× 100%, where U is

the WCET obtained using our analysis algorithm, and B is
the WCET obtained using the baseline approach. In order to
highlight the importance of reuse, we tabulate separate results
for the cases where it is employed or not. The last two
columns, separated by a vertical double line, summarize the
improvement of Unroll_d over the other two analyses.

We have divided our benchmark programs, which are quite
standard in evaluating WCET analysis algorithms, into three
groups, separated by horizontal double lines:

Benchmarks with lots of Infeasible Paths: The first group
contains statemate and nsichneu from Mälardalen bench-
marks [13] and tcas, a real life implementation of a safety
critical embedded system. tcas is a loop-free program with
many infeasible paths, which is used to illustrate the per-
formance of our method in analyzing loop-free programs.
On the other hand, nsichneu and statemate are programs
which contain loops of big-sized bodies, also with many
infeasible paths. These benchmarks are often used to evaluate
the scalability of WCET analysis algorithms [14].

Standard Timing Analysis Benchmarks with Infeasible
Paths: This group contains standard programs from [13], and
fly-by-wire from [15].

Benchmarks with Simple Loops: This group contains a
set of academic programs from [13]. Though the loops in
these programs are simple for high-level analysis, they contain
memory accesses that a fixed-point computation might resolve
to a range of memory addresses, leading to imprecise low-level
WCET analysis.

B. Discussion on Precision

The generated WCET by Unroll_d for the first group
of benchmarks, compared to AI⊕ILP, on average is im-
proved by 34%; compared to AI⊕Unroll_s, the number
is 17%. Focussing on nsichneu and statemate, it can
be seen that part of the improvement of Unroll_d over
AI⊕ILP comes from the detection of infeasible paths



(i.e., the common improvement between Unroll_d and
AI⊕Unroll_s over AI⊕ILP). The improvement of
Unroll_d over AI⊕Unroll_s, on the other hand, is due
to infeasible path detection directly reflected in the tracking of
micro-architectural states. This avoids lossy merging of cache
states at the join points in the CFG.

For a loop-free program like tcas, the improvement of
Unroll_d over the other two analyses is clearly not
advantaged by tighter loop bounds in unrolling, nor dis-
advantaged by fixed-point computation in AI⊕ILP. Next,
consider the fact that the (high-level) infeasible paths detected
by Unroll_d and AI⊕Unroll_s are the same. Even so,
Unroll_d is more accurate by 8%. Once again, this improve-
ment comes from our integration of low-level analysis with
high-level analysis, making infeasible path detection reflected
in the precise tracking of micro-architectural states.

For benchmarks in the second group, Unroll_d pro-
duces significantly more accurate WCET than AI⊕ILP, on
average 42%, peaking at 94%. In compress, ud and ndes,
many infeasible paths have to do with loops, and being able
to detect them improves the WCET estimates dramatically.
AI⊕Unroll_s performs relatively well on this group of
benchmarks. However, for ud, ndes and fly-by-wire, the
accuracy improvement of Unroll_d over AI⊕Unroll_s is
still noticeable. Further investigation reveals that two of these
benchmarks contain memory accesses which are resolved to
address ranges in the AI component – ultimately is still a
fixed-point computation – leading to imprecise analysis results
from the combined algorithm.

The effect of such memory accesses on analysis precision
can be seen more clearly by examining the third benchmark
group. Unroll_d is still better than the other two algorithms
by 18% on average. These benchmarks do not contain many
infeasible paths nor complicated loops and that is the rea-
son why AI⊕Unroll_s does not produce better estimates
than AI⊕ILP. However, these benchmarks contain memory
accesses which are resolved to address ranges in a fixed-
point computation, leading to the imprecision of AI⊕ILP.
In contrast, Unroll_d performs loop unrolling, thus it can
precisely resolve the addresses of the accesses, leading to
superior precision.

In summary, in terms of precision, Unroll_d outperforms
the other two algorithms in all benchmarks. The WCET es-
timations from Unroll_d have improved 33% on average
compared to AI⊕ILP and 14% on average compared to
AI⊕Unroll_s. These improvements clearly uphold our pro-
posal that performing WCET analysis in one integrated phase in
the presence of dynamic timing will enhance the precision over
modular approaches. However, the scalability of our method
is not yet discussed.

C. Discussion on Scalability

As expected, reuse is important for scalability. For most
of the benchmarks (8 out of 12) the analysis cannot fin-
ish without reuse. Between the benchmarks in the first
group which contain many infeasible paths (tcas, nsichneu
and statemate), none of the benchmarks can be analyzed
without reuse. The two largest benchmarks, nsichneu and
statemate, are used as an indicator of the scalability of
the WCET tools. The WCET analysis for nsichneu and
statemate, uses at most 53% and 40% of the 4GB available.

It is worth noting that, for nsichneu, the overhead of the anal-
ysis time and memory usage compared to AI⊕Unroll_s is
31% and 40%, respectively, while the precision is improved
by 27%.

In conclusion, our analysis framework relies a lot on reuse
for scalability. From these experiments we can infer that only
small size programs where the number of paths is limited can
be analyzed without reuse.

VII. RELATED WORK

WCET analysis has been the subject of much research, and
substantial progress has been made in the area (see [16], [14]
for surveys of WCET). As discussed before, WCET analysis
is often conducted by separating low-level analysis and high-
level analysis into different phases.

High-level analysis: Among the works on high-level analysis,
our most important related work is [5]. The origin of this
approach dates back to [6], which introduced the concept of
summarization with interpolation, to harness better “reuse” in
the setting of dynamic programming and address the scala-
bility issue of the resource-constrained shortest path (RCSP)
problem. RCSP, though NP-hard, is still simpler than WCET

analysis. In [6], reuse was limited to loop-free programs.
Chu and Jaffar [5] have advanced [6] by introducing com-

pounded summarizations, so that reuse can be effective in
the presence of loops and nested loops. Specifically, [5] has
demonstrated that exhaustive symbolic execution for WCET

analysis can be made scalable. Given the effect of caches on
the basic block timings, making the timings dynamic, [5] is no
longer applicable. One key contribution of this paper is that,
by capturing the dominating condition, we enable reuse, now
under the existence of caches.

Recently, there are CEGAR-like methods, which start by
generating a rough WCET estimate and then gradually refine
it. “WCET squeezing” [17] is built on top of the Implicit
Path Enumeration Technique (IPET) [18]. A solution to the
given integer linear programming (ILP) formula corresponds
to number of program traces, of which the feasibility will
be checked (one-by-one) via SMT solving. If such a trace
is infeasible, additional ILP constraints are added to exclude
it from further consideration. Subsequently, [19] proposes
hierarchical segment abstraction, thus allows the computation
of WCET by solving a number of independent ILP problems,
instead of one large global ILP problem. Since the abstract
segment trees can store more expressive constraints than ILP,
better refinement procedure can be implemented.

We also mention the recent work [20], which also employs
the concept of interpolation, but under the SMT framework, to
avoid state explosion in WCET analysis. Like [6], this approach
is formulated for loop-free programs, and not yet suitable for
analyzing programs with loops.

In summary, we can see a trend of research where recent
advances in software verification are employed for WCET high-
level analysis. However, it is unclear if these approaches will
remain scalable when extended towards low-level analysis,
under the presence of loops and/or many infeasible paths.

Low-level analysis: Low-level analysis, with emphasis on
caches, has always been an active research topic in WCET

analysis. Initial work on instruction cache modeling uses in-
teger linear programming (ILP) [21]. However, the work does



not scale due to a huge number of generated ILP constraints.
Subsequently, the abstract interpretation framework (AI) [22]
for low-level analysis, proposed in [2], has made an important
step towards scalability. The solution has also been applied in
commercial WCET tools (e.g., [23]). For most existing WCET

analyzers, AI framework has emerged to be the basic approach
used for low-level analysis. Additionally, static timing analysis
with data cache has been investigated in [24], [9], [10].

Recent approaches [3], [4] by the same research group
– combining AI with verification technology – have shown
some promising results. In the more recent work [4], a partial
path is tracked together with each micro-architectural state µ.
This partial path captures a subset of the control flow edges
along which the micro-architectural state µ has been propa-
gated. If a partial path was infeasible, its associated micro-
architectural state can be excluded from consideration. To be
tractable, micro-architectural states are merged at appropriate
sink nodes. (In fact, the partial path constraints are merged to
true.) As a result, the approach is only effective for detecting
infeasible paths whose conflicting branch conditions appeared
relatively close to each other in the CFG.

In a similar spirit as [17] and [3], Nagar and Srikant [25]
propose the concept of cache miss paths. The method employs
IPET formulation, using the information from the worst-
case solution of the ILP problem (which corresponds to a
number of program paths) to improve the precision of AI-based
cache analysis. However, it is reported that for benchmarks
statemate and nsichneu – which contain a large number
of program paths – little improvement is obtained.

It is important to note that, in general, the above-mentioned
approaches still employ a fixed-point computation in order to
ensure sound analysis across loop iterations. Thus, they inherit
the imprecision of AI, because the timings of a basic block in
different iterations of a loop often can diverge significantly.

Other Related Work: We remark that the idea of cou-
pling low-level analysis with high-level analysis (with loop
unrolling) dates back to [26]. However, to counter state
explosion, the only solution of [26] is to perform merging
frequently. In the end, the approach forfeits its intended
precision, while at the same time, does not scale well.

Finally, we remark on the issue of timing anomaly [27].
In general, timing anomaly can make abstraction (and there-
fore AI) unsound. Custom solutions are often employed. For
example, [28] can compute a constant bound to be added to
the local worst-case path to safely handle timing anomalies,
provided they are not of “domino-effect” type. This approach
is also applicable to us. Extension towards integrating such
method is left as future work.

VIII. CONCLUSION

We have presented a framework for WCET analysis of
programs with consideration of a cache micro-architecture. At
its core is a symbolic execution algorithm. Its key feature is
the ability for reuse. This is critical for maintaining a high-
level of path-sensitivity, which in turn produces significantly
increased accuracy. In other words, reuse allows scalability in
path-sensitive exploration.
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