
A Coinduction Rule for Entailment of Recursively
Defined Properties

JOXAN JAFFAR, ANDREW E. SANTOSA, AND RĂZVAN VOICU

School of Computing
National University of Singapore
Republic of Singapore 117543

{joxan,andrews,razvan }@comp.nus.edu.sg

Abstract. Recursively defined properties are ubiquitous. We present aproof meth-
od for establishing entailmentG |= H of such propertiesG andH over a set of
common variables. The main contribution is a particular proof rule based intu-
itively upon the concept ofcoinduction. This rule allows the inductive step of
assuming that an entailment holds during the proof the entailment. In general, the
proof method is based on an unfolding (and no folding) algorithm that reduces
recursive definitions to a point where only constraint solving is necessary. The
constraint-based proof obligation is then discharged withavailable solvers. The
algorithm executes the proof by a search-based method whichautomatically dis-
covers the opportunity of applying induction instead of theuser having to specify
some induction schema, and which does not require any base case.

1 Introduction

A large category of formal verification problems can be expressed as proof obligations
of the form G entails H , written G |= H , whereG and H are recursively defined
properties. Such problems appear in functional and logic programs, and specification
languages such as JML, and they usually represent verification requirements for sys-
tems with infinite, or unbounded number of states, such as parameterized, or software
systems. For instance,G might represent the semantics of a program, expressed as a
formula in a suitable theory, whereasH may express a safety assertion.

Once the proof obligationG |= H is formulated, it may be discharged with the help
of a theorem prover such as Coq [1], HOL [6], or PVS [20]. While, in general, the proof
process may be very complex, these tools provide a high levelof assistance, automating
parts of the process, and guaranteeing the correctness of the proof, once it is obtained.
While there is, currently, a sustained research effort towards automating the process of
discharging proof obligations, this process still requires, in general, a significant level
of manual input. In the case of inductive proofs, for instance, the inductive variable, its
base case, and the induction hypothesis need to be provided manually.

In this paper we present a proof method that establishes an entailment of the form
G |= H , whereG and H are two recursively defined properties over a set of com-
mon variables. The use of a coinduction principle (which does not require a base case),
coupled with the standard operation of unfolding recursivedefinitions, allows the op-
portunistic discovery of suitable induction hypotheses, and makes our method amenable
to automation. The entire framework is formalized in Constraint Logic Programming
(CLP), so that CLP predicates can be used to describe the recursive properties of inter-
est. Our method is, in fact, centered around an algorithm whose main operation is the

standard unfolding of a CLP goal. The unfolding operation isapplied to both the lhsG
and the rhsH of the entailment. The principle of coinduction allows the discovery of a
valid induction hypothesis, thus terminating the unfolding process. Through the appli-
cation of the coinduction principle, the original proof obligation usually reduces to one
that no longer contains recursive predicates. The remaining proof obligation contains
only base constraints, and can be relegated to the underlying constraint solver.

Let us illustrate this process on a small example. Consider the definition of the
following two recursive predicates

m4(0). even(0).
m4(X +4) :- m4(X). even(X +2) :- even(X).

whose domain is the set of non-negative integers. The predicatem4 defines the set of
multiples of four, whereas the predicateevendefines the set of even numbers. We shall
attempt to prove thatm4(X) |= even(X), which in fact states that every multiple of four
is even. We start the proof process by performing acomplete unfoldingon the lhs goal.
By “complete,” we mean that we use all the clauses whose head unify with m4(X)1.
We note thatm4(X) has two possible unfoldings, one leading to the empty goal with
the answerX = 0, and another one leading to the goalm4(X′),X′ = X − 4. The two
unfolding operations, applied to the original proof obligation result in the following
two new proof obligations, both of which need to be discharged in order to prove the
original one.

X = 0 |= even(X) (1)
m4(X′),X′ = X−4 |= even(X) (2)

The proof obligation (1) can be easily discharged. Since unfolding on the lhs is no
longer possible, we can only unfold on the rhs. We choose1 to unfold with clause
even(0), which results in a new proof obligation which is trivially true, since its lhs
and rhs are identical.

For proof obligation (2), before attempting any further unfolding, we note that the
lhs m4(X′) of the current proof obligation, and the lhsm4(X) of the original proof
obligation, are unifiable (as long as we considerX′ a fresh variable), which enables the
application of the coinduction principle. First, we “discover” the induction hypothesis
m4(X′) |= even(X′), as a variant of the original proof obligation. Then, we use this
induction hypothesis to replacem4(X′) in (2) by even(X′). This yields the new proof
obligation

even(X′),X′ = X−4 |= even(X) (3)

To discharge (3), we unfold twice on the rhs, using theeven(X +2) :- even(X) clause.
The resulting proof obligation is

even(X′),X′ = X−4 |= even(X′′′),X′′′ = X′′−2,X′′ = X−2 (3)

where variablesX′′ andX′′′ are existentially quantified2. Using constraint simplifica-
tion, we reduce this proof obligation toeven(X−4) |= even(X−4), which is obviously
true.

1 The requirement of a complete unfold on the lhs, and the lack of such requirement on the rhs,
is explained in Section 3.

2 In Section 3 we handle these variables formally.

At this point, all the proof obligations have been discharged and the proof is com-
plete. Informally, we have performed four kinds of operations: (a) left unfolding, (b)
right unfolding, (c) application of coinduction, and (d) constraint solving/simplification.
While we shall relegate to Section 3 the argument that all these steps are correct, we
would like to further emphasize several aspects concerningour proof method.

First, our method is amenable to automation, in the form of a non-deterministic al-
gorithm. The state of the proof is given by a proof tree, whosefrontier has the current
proof obligations, all of which have to be discharged in order to complete the proof.
Each proof step applies non-deterministically one of the four operations given above
to one of the current proof obligations. Of these four, the lhs and rhs unfolding opera-
tions expand the tree by adding new descendants. In contrast, the coinduction operation
searches the ancestors of the current goal for a matching lhs. If one is found, then a
suitable induction hypothesis is generated, and applied tothe lhs of the current goal, as
shown in the small example given above. The fourth kind of operation performs con-
straint simplification/solving, possibly discharging thecurrent proof obligation. As our
examples show, the unfolding process and the application ofthe coinduction principle
require no manual intervention.

Second, our coinductive proof step is inspired from tabled logic programming [24].
The intuition behind the correctness of this step is that, since the unfolding of the lhs is
complete, we are already exploring all the possibilities offinding a counterexample, i.e.
a substitutionθ for which Gθ is true whileH θ is false. Whenever we find an ancestor
with lhs G ′ which is variant of the lhsG (or some subgoal thereof) of the current proof
obligation, we can immediately conclude that the current proof obligation would not
contribute counterexamples that wouldn’t already be visible from its matching ancestor.
However, for this statement to be indeed true, we need to establish a similar matching
between the rhs of the two proof obligations. This conditionis expressed by the proof
obligation obtained after the application of the coinductive step.

Finally, we would like to clarify that the use of the termcoinductionpertains to the
way the proof rules are employed for a proof obligationG |= H , and has no bearing on
the greatestfixed point of the underlying logic programP. In fact, our proof method,
when applied successfully, proves thatG is a subset ofH wrt. theleastfixpoint of (the
operator associated with) the program. However, as furtherclarified in Section 4, the
success of the proof method is modeled as a property of a potentially infinite proof tree,
and thuscoinduction, rather than induction, needs to be employed to establish it.

1.1 Related Work

Variants of our proof method have been applied in more restricted settings of timed
automata verification [10] and reasoning about structural properties of programs [12].
In the current paper, we focus on the common techniques used as well as hinting towards
greater class of applications.

Among logic-programming-based proof methods, early worksof [13, 14] propose
definite clause inferenceandnegation as failure inference(NFI) which are similar to
our unfolding rules. These inferences are applied prior to concluding a proof of an im-
plication using a form of computational induction. A form ofstructural induction in
a similar framework is employed in [4]. We note that these proof methods are based
on fitting in the allowable inductive proofs into aninduction schema, which is usually
syntax-based. Mesnard et al. [18] propose a CLP proof methodfor a system of impli-
cations, whose consequents contain only constraints. Thistechnique is not completely

general. Craciunescu [3] proposed a method to prove the equivalence of CLP programs
using either induction or coinduction. The notion of coinduction here is different from
ours; they reason about thegreatestfixpoint of a CLP program, while we reason about
the least.

Among the more automated approaches, [21, 22] used unfold/fold transformation
of logic programs to prove equivalences of goals. [22] presents a proof method for
equivalence assertions on parameterized systems. Hsiang and Srivas [7, 8] propose an
inductive proof method for Prolog programs. The main feature of the proof method is a
semi-automatic generation of induction schema (in the sense, this objective is similar to
those of Kanamori and Fujita [13] mentioned above). The generation of inductive asser-
tions is by producing the reduct of the goals (unfolding). Termination of the unfolding
is implemented by a marking mechanism on the variables. Whenever an input variables
is instantiated during an unfold (in other words, we need to make a decision about its
value), it is marked. In a sense, this is similar to the use ofbomblistin the Boyer-Moore
prover [2]. As is the case with Boyer-Moore prover, the induction is structural. Here,
the method requires the user to distinguish a set ofinput variables to structurally induct
on. In comparison, we employ no induction schema. We detect the point where we ap-
ply the induction hypothesis automatically using constraint subsumption test. In other
words, we discover the induction schema dynamically using indefinite steps of unfolds.
This approach is more complete and automatable.

The work of Roychoudhury et al. [23] systematizes inductionproofs using tabled
resolution of logic programming. It is essentially based onunfolding, delaying upon de-
tection of potential infinite resolution, and finally a folding step to conclude similarity.
These serve to extend the tabled resolution engine of XSB tabled logic programming
system. Our work generalizes this idea by providing a constraint-based inductive proof
rules based on automated detection of cycles using constraints. Our rules are also based
on the notion of tabling of assertions, which are later re-used as induction hypothesis.

Another form of tabling is also employed inProlog Technology Theorem Prover
(PTTP) [25]. Here the proof process is basically Prolog’s search for refutation with sev-
eral extensions, including amodel elimination reduction(ME reduction), which mem-
oes literals, and whenever a new goal which is contradictoryto a stored literal is found,
we stop because this constitutes a refutation. The part of PTTP that is akin to our coin-
duction is the detection when there is an occurrence of the same literal in which case,
the system backtracks. Our work departs from PTTP mainly by the use of constraints.

Recursive definitions are also encountered in data structure verification area. [17]
presents an algorithm for specification and verification of data structure using equal-
ity axioms. In [19] user-defined recursive definitions are allowed to specify “shape”
properties. Proofs are carried out via fold/unfold transformations. As we will exemplify
later, our algorithm can be used to automatically perform proofs of assertions containing
recursive data structure definitions.

Finally, we mention the work in [5], which uses a coinductiveinterpretation of logic
programming rules to express properties of infinite or circular data structures. The term
coinductiveis used here to refer to the greatest fixed point of the programat hand. We
re-emphasize at this point that, in contrast with [5], our use of the term “coinductive”
refers to the way our proof rules are employed, and bears no direct relationship to the
greatest fixed point of the logic program.

2 Constraint Logic Programs

We use CLP [9] definitions to represent our verification conditions. To keep our paper
self-contained, we provide a minimal background on the constraint logic programming
framework.

An atomis of the formp(t̃) wherep is a user-defined predicate symbol andt̃ a tuple
of terms, written in the language of an underlying constraint solver. Aclauseis of the
form A:- Ψ, B̃ where the atomA is theheadof the clause, and the sequence of atomsB̃
and constraintΨ constitute thebodyof the clause. The constraintΨ is also written in
the language of the underlying constraint solver, which is assumed to be able to decide
(at least reasonably frequently) whetherΨ is satisfiable or not. In our examples, we
assume an integer and array constraint solver, as describedbelow.

A programis a finite set of clauses. Agoalhas exactly the same format as the body
of a clause. A goal that contains only constraints and no atoms is calledfinal.

A substitutionθ simultaneously replaces each variable in a term or constraint e into
some expression, and we writeeθ to denote the result. Arenamingis a substitution
which maps each variable in the expression into a distinct variable. A grounding is
a substitution which maps each integer or array variable into its intended universe of
discourse: an integer or an array. WhereΨ is a constraint, a grounding ofΨ results in
trueor falsein the usual way.

A groundingθ of an atomp(t̃) is an object of the formp(t̃θ) having no variables. A
grounding of a goalG ≡ (p(t̃),Ψ) is a groundingθ of p(t̃) whereΨθ is true. We write
[[G]] to denote the set of groundings ofG .

Let G ≡ (B1, · · · ,Bn,Ψ) andP denote a non-final goal and program respectively. Let
R≡ A:- Ψ1,C1, · · · ,Cm denote a clause inP, written so that none of its variables appear
in G . Let the equationA= Bbe shorthand for the pairwise equation of the corresponding
arguments ofA andB. A reductof G using a clauseR, denotedreduct(G ,R), is of the
form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,Bi = A,Ψ,Ψ1)
provided the constraintBi = A∧Ψ∧Ψ1 is satisfiable.

A derivation sequencefor a goalG0 is a possibly infinite sequence of goalsG0,G1, · · ·
whereG i , i > 0 is a reduct ofG i−1. If the last goalGn is a final goal, we say that the
derivation issuccessful. A derivation treefor a goal is defined in the obvious way.

Definition 1 (Unfold). Given a program P and a goalG , UNFOLD(G) is {G ′|∃R∈ P :
G ′ = reduct(G ,R)}.

In the formal treatment below, we shall assume, without losing generality, that goals
are written so that atoms contain only distinct variables asarguments.

2.1 An Integer and Array Constraint Language

In this section we provide a short description of constraintlanguage allowed by the
underlying constraint solver assumed in all our examples. We consider three kinds of
terms: integer and array terms. Integer terms are constructed in the usual way, with
one addition: the array element. The latter is defined recursively to be of the forma[i]
wherea is anarray expressionand i an integer term. An array expression is either an
array variable or of the form〈a, i, j〉 wherea is an array expression andi, j are integer
terms. A term is either constructed from an array “segment”:a{i.. j} wherea is an array
expression andi, j integer variables.

G1, . . . Gn

H
?
|=G

Complete

H1∨ . . .∨Hm

G1∨ . . .∨Gn |=
To Prove:

Hm

Hj

. . .

. . .

H1

. . .

. . .

Unfold
Partial

Coinduction

Unfold

Fig. 1: Informal Structure of Proof Process

The meaning of an array expression is simply a map from integers into integers, and
the meaning of an array expressiona′ = 〈a, i, j〉 is a map just likea except thata′[i] = j.
The meaning of array elements is governed by the classic McCarthy [16] axioms:

i = k → 〈a, i, j〉[k] = j
i 6= k → 〈a, i, j〉[k] = a[k]

A constraintis either an integer equality or inequality, an equation between array
expressions. The meaning of a constraint is defined in the obvious way.

In what follows, we use constraint to mean either an atomic constraint or a con-
junction of constraints. We shall use the symbolψ or Ψ, with or without subscripts, to
denote a constraint.

3 Proof Method for Recursive Assertions

3.1 Overview

In this key section, we consider proof obligations of the form G |= H wherevar(H) ⊆
var(G). The validity of this formula expresses the fact thatH θ succeeds w.r.t. the CLP
program at hand wheneverGθ succeeds, for any groundingθ of G . They are the central
concept of our proof system, by being expressive enough to capture interesting proper-
ties of data structures, and yet amenable to automatic proofprocess.

Intuitively, we proceed as follows: unfoldG completely a finite number of steps in
order to obtain a “frontier” containing the goalsG1, . . . ,Gn. Then unfoldH , but this
time not necessarily completely, that is, not necessarily obtainingall the reducts each
time, obtain goalsH 1, . . . ,Hm. This situation is depicted in Figure 1. Then, the proof
holds if

G1∨ . . .∨Gn |= H1∨ . . .∨Hm

or alternatively,Gi |= H1∨ . . .∨Hm for all 1≤ i ≤ n. This follows from the fact that
G |= G1∨ . . .∨Gn, (which is not true in general, but true in the least-model semantics
of CLP), and the factHj |= H for all j such that 1≤ j ≤ m. More specifically, but with
some loss of generality, the proof holds if

∀i : 1≤ i ≤ n,∃ j : 1≤ j ≤ m : Gi |= Hj

and for this reason, ourproof obligationshall be defined below to be simply a pair of
goals, writtenGi |= Hj .

3.2 The Proof Rules

We now present a formal calculus for the proof ofG |= H . To handle the possibly infi-
nite unfoldings ofG andH , we shall depend on the use of a key concept:coinduction.
Proof by coinduction allows us to assume the truth of apreviousobligation. The proof
proceeds by manipulating a set ofproof obligationsuntil it finally becomes empty or a
counterexample is found. Formally, aproof obligationis of the formÃ⊢ G |= H where
theG andH are goals and̃A is a set ofassumptiongoals. The role of proof obligations
is to capture the state of a proof. The setÃ contains goals whose truth can be assumed
coinductively to discharge the proof obligation at hand. This set is implemented in our
algorithm using a table as described in the next section.

Our proof rules are presented in Figure 2. The⊎ symbol represents the disjoint
union of two sets, and emphasizes the fact that in an expression of the formA⊎B, we
have thatA∩B = /0. Each rule operates on the (possibly empty) set of proof obliga-
tionsΠ, by selecting one of its proof obligations and attempting todischarge it. In this
process, new proof obligations may be produced.

The left unfold with new induction hypothesis(LU+I) (or simply “left unfold”) rule
performs a complete unfold on the lhs of a proof obligation, producing a new set of
proof obligations. The original assertion, while removed fromΠ, is added as an assump-
tion to every newly produced proof obligation, opening the door to using coinduction
later in the proof.

The ruleright unfold (RU) performs an unfold operation on the rhs of a proof obli-
gation. In general, the two unfold rules will be systematically interleaved. The resulting
proof obligations are then discharged either coinductively or directly, using the (CO)
and (CP) rules, respectively.

The rulecoinduction application(CO) transforms an obligation by using an assump-
tion, and thus opens the door to discharging that obligationvia the direct proof (CP) rule.
Since assumptions can only be created using the (LU+I) rule, the (CO) rule realizes the
coinduction principle. The underlying principle behind the (CO) rule is that a “similar”
assertionG ′ |= H

′ has been previously encountered in the proof process, and assumed
as true.

Note that this test for coinduction applicability is itselfof the formG |= H . How-
ever, the important point here is that this test can only be carried out using constraints,
in the manner prescribed for theCP rule described below. In other words, this test does
not use the definitions of assertion predicates.

Finally, the ruleconstraint proof(CP), when used repeatedly, discharges a proof
obligation by reducing it to a form which contains no assertion predicates. Note that
one application of this removes one occurrence of a predicate p(ỹ) appearing in the rhs
of an obligation. Once a proof obligation has no predicate inthe rhs, adirect proof (DP)
may be attempted by simply removing any predicates in the corresponding lhs.

Given a proof obligationG |= H , a proof shall start withΠ = { /0 ⊢ G |= H }, and
proceed by repeatedly applying the rules in Figure 2 to it.

3.3 The Algorithm

We now describe a strategy so as to make the application of therules automated. Here
we propose systematic interleaving of the left-unfold (LU+I) and right-unfold (RU)
rules, attempting a constraint proof along the way. As CLP can be execution by res-
olution, we can also execute our proof rules, based on an algorithm which has some
resemblance to tabled resolution.

(LU+I)
Π⊎{Ã⊢ G |= H }

Π ∪
Sn

i=1{Ã∪{G |= H } ⊢ G i |= H }

UNFOLD(G) =
{G1, . . . ,Gn}

(RU)
Π⊎{Ã⊢ G |= H }

Π∪{Ã⊢ G |= H ′
}

H ′
∈ UNFOLD(H)

(CO)
Π⊎{Ã⊢ G |= H }

Π∪{ /0 ⊢ H ′θ |= H }

G ′ |= H ′
∈ Ã and there exists

a substitutionθ s.t.G |= G ′θ.

(CP)
Π⊎{Ã⊢ G ∧ p(x̃) |= H ∧ p(ỹ)}

Π∪{Ã⊢ G |= H ∧ x̃ = ỹ}
(DP)

Π⊎{G |= H }

Π
G |= H holds by
constraint solving

Fig. 2: Proof Rules

We present our algorithm in pseudocode in Figure 3. Note thatthe presentation
is in the form of a nondeterministic algorithm, and thus eachof the nondeterministic
operatorchooseneeds to be implemented by some form of systematic search. Note
also that when applying coinduction step, we test that some assertionG ′ |= H

′ is stored
in some table.

In Figure 3, by aconstraint proofof a obligation, we mean to repeatedly apply the
CP rule in order to remove all occurrences of assertion predicates in the obligation, in
an obvious way. Then the constraint solver is applied to the resulting obligation.

3.4 Correctness

Given a proof obligationG |= H , a proof starts withΠ = {Ã⊢ G |= H }, and proceeds
by repeatedly applying the rules in Figure 2. The omission ofnegative literals in the
body of the clauses of programP ensures that it has a uniqueleast model, denoted
lm(P).

Theorem 1 (Soundness).A proof obligationG |= H holds, that is, lm(P)→ (G |= H)
for the given program P, if, starting with the proof obligation/0 ⊢ G |= H , there exists
a sequence of applications of proof rules that results in proof obligationsÃ⊢ G ′ |= H

′

such that (a)H ′ contains only constraints, and (b)G ′ |= H
′ can be discharged by the

constraint solver.

Proof Outline. The rule (RU) is sound because by the semantics of CLP, whenH
′
∈

UNFOLD(H) thenH
′
|= H . Therefore, the proof of the obligatioñA⊢ G |= H can be

replaced by the proof of the obligatioñA ⊢ G |= H
′ sinceG |= H

′ is stronger than
G |= H . Similarly, the rule (CP) is sound becauseG |= H ∧ x̃ = ỹ is stronger than the
G ∧ p(x̃) |= H ∧ p(ỹ).

The rule (LU+I) is partially soundin the sense that whenUNFOLD(G) = {G1, . . . ,Gn},
then provingG |= H can be substituted by provingG1 |= H , . . . ,Gn |= H . This is be-
cause in the least-model semantics of CLP,G is equivalent toG1∨ . . .∨Gn. However,
whether the addition ofG |= H to the set of assumed assertionsÃ is sound depends on
the use of the set of assumed assertions in the application of(CO).

REDUCE(G |= H) returns boolean

• Constraint Proof: (CP) + Constraint Solving (DP)
Apply a constraint proof toG |= H .
If successful,return true, otherwisereturn false

• Memoize(G |= H) as an assumption
• Coinduction: (CO)

if there is an assumptionG ′ |= H ′ such that
REDUCE(G |= G ′θ) = trueandREDUCE(H ′θ |= H) = true then return true.

• Unfold:
chooseleft or right
case:Left: (LU+I)

choosean atomA in G to reduce
for all reductsGL of G usingA:

if REDUCE(GL |= H) = falsereturn false
return true

case:Right: (RU)
choosean atomA in H to reduce, obtainingGR
return REDUCE(G |= GR)

Fig. 3: The Algorithm

Notice that in the rule (CO) we require the proofs of bothG |= G ′θ andH
′θ |= H

for some substitutionθ. These proofs establishsubsumption,that is the implication
(G ′ |= H

′
) → (G |= H).

Assume that using our method, given a programP, we managed to concludeG |= H
whereG andH are goals possibly containing atoms and it is not the case that G |= H
can be proved without the application of (LU+I) (since otherwise trivial by soundness
of (RU) and (CP)). Assume that in the proof, there are a number of assumed assertions
A1, . . . ,An used coinductively as induction hypotheses. This means that in the proof of
G |= H the left unfold rule (LU+I) has been applied at least once (possibly interleaved
with the applications of (RU) and (CP)) obtaining two kinds of assertions:

1. AssertionsC which are directly proved using (RU), (CP), and constraint solving
(DP).

2. AssertionsB which are proved using (CO) step using some assumed assertionA j
as hypothesis for 1≤ j ≤ n.

We may conclude thatG |= H holds. We now outline the proof of this.
First, define arefutation to an assertionG |= H as a successful derivation of one

or more atoms inG whose answerΨ has an instance (ground substitution)θ such that
Ψθ∧H θ is false. A finite refutation corresponds to a such derivation of finite length.
A nonexistence of finite refutation means thatlm(P) → (G |= H). A derivation of an
atom is obtainable by left unfold (LU+I)) rule only. Hence a finite refutation of lengthk
implies a correspondingk left unfold (LU+I) applications that results in a contradiction.

Due to:

1. the soundness of other rules (RU) and (CP) and the partial soundness of (LU+I)
with the fact thatAi for all 1 ≤ i ≤ n is obtained fromG |= H by applying these
rules, and

2. all assertionsC are proved by (RU), (CP) and constraint solving (DP) alone,

we have:G |= H holds if Ai holds for all 1≤ i ≤ n, and this holds iff for alli such that
1≤ i ≤ n, and for allk≥ 0 : Ai has no finite refutation of lengthk.

We prove inductively:

• Base case:When k = 0, for all i such that 1≤ i ≤ n, Ai trivially has no finite
refutation of length 0.

• Inductive case:Assume that for alli such that 1≤ i ≤ n, Ai has no finite refutation
of lengthk or less(∗), we want to prove that for alli such that 1≤ i ≤ n, Ai has no
finite refutation of lengthk+1 or less(∗∗).
Notice again in our assumptions above that assertionsB are proved by applying
(CO) usingA j for some 1≤ j ≤ n. Because subsumption holds in every application
of (CO), this means that for suchB, A j → B. (∗∗∗).
The proof is by contradiction. Now suppose that(∗∗) is false, that is,Ai for some
i such that 1≤ i ≤ n has a finite refutation of lengthk+ 1 or less. But due to our
hypothesis(∗), Ai has no finite refutation of lengthk or less. Therefore it must be
the case thatAi has a finite refutation of lengthk+1.

Again, note that we have applied (LU) to Ai at least once on the resulting assertions,
possibly interleaved with applications of (RU) and (CP) obtaining the following two
kinds of assertions:
1. AssertionsC which are proved by applications of (RU) and (CP) and constraint

solving alone.
2. AssertionsB which are proved by (CO) using someA j for 1≤ j ≤ n in the set

of assumed assertions as induction hypothesis.
Then in the above set of assertions, either:
1. Some assertion of typeC is a refutation toAi of lengthk+1. However, regard-

less of the length, since all such assertionsC are already proved by (RU), (CP),
and constraint solving, this case is not possible.

2. SinceAi has to have a finite refutation of lengthk+1, therefore there has to be
at least one assertion of typeB that is reached ink or less unfolds. Therefore,
B has to have a refutation of lengthk or less. Now since subsumption(∗ ∗ ∗)
holds, then it should be the case that someA j for 1≤ j ≤ n such thatA j → B
also has a finite refutation of lengthk or less. But this contradicts our hypothesis
(∗) thatAi for all 1≤ i ≤ n has no finite refutation of lengthk or less.

We finally mention that the proof rules are notcomplete. For example, when we have a
program

p(X) :- 0≤ X ≤ 3.

q(X) :- 0≤ X ≤ 2.

q(X) :- 1≤ X ≤ 3.

obviouslyp(X) |= q(X) holds, but we cannot prove this using our rules. The reason is
that 0≤ X ≤ 3 (obtained from the unfold ofp(X)) does not imply either 0≤ X ≤ 2 or
1≤ X ≤ 3 (both obtained by right unfoldingq(X)). It is possible, however, to introduce
new rules toward achieving completeness. For proving the above assertion, we could
introduce a splitting of an assertion. For instance, we may split G |= H into G ,φ |= H
andG ,¬φ |= H (φ in our example would be, say,X ≤ 1). However, this is beyond the
scope of this paper.

4 On the Coinduction Rule

Consider again the predicateevenpresented in Section 1. We now demonstrate a sim-
ple application of our rules to prove a property on the predicate. Consider proving the

X = X′ +2,X′ = 2×Z |= X = 2×?Y
Direct proof

X = X′ +2,even(X′) |= X = 2×?Y

Coinduction
Direct proof
X = 0 |= X = 2×?Y

Unfold

even(X) |= X = 2×?Y

Fig. 4: Proof Tree Example

assertioneven(X) |= X = 2×?Y, call it A (we denote existentially-quantified variables
with the query symbol “?”). The proof process starts by applying the (LU+I) rule un-
folding theeven(X) goal, resulting in two new proof obligations, each with the original
goalA as its assumption. On the left branch, after unfolding with the base-case clause,
we are left withX = 0 |= X = 2×?Y, which can be discharged by direct proof using a
constraint solver. On the right branch of the proof, the unfolding rule produces the proof
obligationeven(X′),X = X′+2 |= X = 2×?Y. Here we apply the coinduction (CO) rule
usingeven(X) |= X = 2×?Y as induction hypothesis, spawning an obligation to prove
X′ = 2×Z,X = X′ +2 |= X = 2×?Y. This can then be proved using constraint solving.

Let us now recall our example in Section 1. In Section 1 we haveapplied (LU+I) to
unfold the predicatem4(X) resulting in the two obligations (1) and (2). We apply (RU)
to perform right unfold on (1). We apply (CO) to (2) obtaining (3). We then apply (RU)
to (3) twice to establish it.

Our system does not require the user to manually specify induction hypothesis
and/or construct induction schema. Instead, any inductionhypothesis used is obtained
dynamically during the proof process. Let us now exemplify this concept by consider-
ing the program

p(X) :- q(X).
q(X) :- q(X).
r(X).

Here we want to provep(X) |= r(X). Call thisA1. We first apply (LU+I) to the assertion
obtainingq(X) |= r(X). Call this assertionA2. At this point, our algorithm tests whether
A1 can be used as a induction hypothesis to establishA2. This fails, and we again apply
(LU+I) obtaining another assertionA3 which is equivalent toA2. Upon obtainingA3,

the set of assumed assertions contain bothA1 andA2. The algorithm now tests whether
any of these can be used in a (CO) application. Indeed, we can use the assertionA2
which is identical toA3. In this way induction hypotheses are chosen dynamically.

In the preceding examples we have demonstrated the use of therule (CO) to con-
clude proofs. Moreover, the last example illustrates the fact that, in contrast to most
inductive proof methods, our proof process may be successful even in the absence of a
base case. While the lack of a base case requirement justifiesthe qualifier “coinductive”
being applied to our proof method, the fact that this term hasbeen somewhat overused
in the logic programming community warrants further clarification.

In our view, induction and coinduction are two flavours of onegeneral proof scheme,
which is used to prove properties of objects defined by means of recursive rules. This
general scheme proves properties of such objects by assuming that the property of inter-

Program:
F(x) ⇐ if p(x) then x

elseF(F(h(x)))

CLP Model:
s(X,X) :– X = error.
s(X,Xf) :– X 6= error, p(X) = 1,Xf = X.

s(X,Xf) :– X 6= error, p(X) = 0,s(h(X),Y),s(Y,Xf).

Fig. 5: Idempotent Function

est already (inductively) holds for the “smaller” object onwhich the definition recurses.
Now, recursive definitions may be interpreted in an inductive or coinductive manner,
and each of these interpretations would lead to the general proof scheme being con-
strued as either induction or coinduction.

The crux of our proof method is to automatically generate an induction hypothesis
for the goal at hand, in an attempt to produce a successful application of the general
proof scheme mentioned above. The method works correctly irrespective of whether
the rules defining the properties of interest are intepretedinductively or coinductively3.
Since our proof method does not explicitly look for base cases, and since it can also
handle the situation where a recursive definition of a property would be interpreted
coinductively, we have chosen to use the qualifier “coinductive.” However, this qualifier
bears no direct relationship to the greatest fixed point of the logic program at hand.
Throughout this paper, our recursive definitions are meant to be interpreted inductively,
and the meaning of the goalG |= H is that whenever a groundingGθ lies in theleast
fixed point of the program at handP, it follows that the groundingH θ is also inlfp(P).
Our proof method will be successful only when this interpretation of a goal holds.

5 Proof Examples

In our driving examples area of program verification, most ofthe entailment problems
we have encountered can be proved by our algorithm automatically. We believe they
cannot be automatically discharged by any existing systematic method. In this section,
we present two examples.

5.1 Function Idempotence

Suppose that we have the function in Figure 5 [15] with its CLPrepresentation. Note
that error represents the return value of the function on divergent termination. Here
we want to prove idempotence, that isF(x) = F(F(x)), or that both the assertions A)
s(X,Y),s(Y,Xf) |= s(X,Xf) and B)s(X,Xf) |= s(X,?Y),s(?Y,Xf) holds. The mechan-
ical proof of Assertion A requires coinduction and will be exemplified here. The algo-
rithm first applies (LU+I) obtaining the assertions 1)s(error,Xf) |= s(error,Xf), 2) X 6=
error, p(X) = 1,X = Y,s(Y,Xf) |= s(X,Xf), and 3)X 6= error, p(X) = 0, s(h(X),Z),
s(Z,Y), s(Y,Xf) |= s(X,Xf). Assertions 1 and 2 are proved by (CP) and (DP), and the
algorithm attempts to apply (CO) to Assertion 3 using the ancestor Assertion A as hy-
pothesis.

The application of (CO) obtains the obligationX 6= error, p(X) = 0, s(h(X),Y),
s(Y,Xf) |= s(X,Xf). This assertion cannot be proved by constraint proof nor by coin-
duction (since the set of assumed assertions are empty), andthe algorithm proceeds

3 Nevertheless, the complete unfold of the left goal ensures that correct base case proofs are
generated whenever the current recursive definition provides such base cases.

to proving by unfolding. Here it applies right unfold (RU) rule obtainingX 6= error,
p(X) = 0, s(h(X),Y), s(Y,Xf) |= X 6= error, p(X) = 0, s(h(X),?Z), s(?Z,Xf), which
can be proved directly. Since the application of (CO) to Assertion 3 has been successful,
the proof concludes.

5.2 A Pointer Data Structure Example: List Reset

We represent pointers as indices in an array which we call theheap. We write[p] to refer
to the location referenced by the pointerp. To implement a linked list, we shall assume
that a list element is made up of two adjacent heap cells. Thus, for the list element
referenced byp, the data field is[p], and the reference to the next element is[p+ 1].
In the CLP program, given an arrayH, which typically denotes the heap, we denote by
H[I] the element referenced by indexI in the array. We also denote by〈H, I ,J〉 the array
that is identical toH for all indices, exceptI , where the original value is replaced byJ.
The steps for solving constraints containing these constructs are discussed in [11].

Figure 6 shows a program which “zeroes” all elements of a given linked list with
headp. We prove that the program produces a nonempty null-terminating list with zero
values. Note that in Figure 6,h is a program variable denoting the current heap. The
predicate takes into consideration the memory model of the program and expresses the
relationship between the heapH before the execution of the program, and the heapH ′

obtained after the program has completed. Thus, the predicate allz(H,H ′
,L,R) states

that the heapH ′ differs fromH only by having zero elements in the non-empty sublist
from L to R.

In Figure 6 we provide atail-recursivedefinition of allz which defines a zeroed
list segment(L,R) as one whose head contains zero, and its tail is, recursively, the
zeroed list segment(H[L+1],R)4. We could have used asublist-recursivespecification:
a zeroed list segment(L,R) is defined to be a zeroed list segment(L,T) appended by
one extra zero elementR. Clearly the program behaves in consistency with the latter
definition, and not the former. We show that despite this, ourmethod automatically
discharges the proof.

Here we want to prove thatΨ ≡ allz(h0,h, p0,p) is a loop invariant. Formally,
allz(H0,H,P0,P),H[P+1] > 0 |= allz(H0, 〈H,H[P+1],0〉,P0,H[P+1]). (Z.1)

For this assertion, constraint proof fails and coinduction(CO) is not applicable due to
an empty set of assumed assertions. The algorithm applies left unfold (LU+I) using the
definition ofallz obtaining two new obligations, of which one is:
allz(H0,H1,H0[P0 +1],P),P0 > 0,H1[P+1] > 0 |=

allz(H0, 〈〈H1,P0,0〉,H1[P+1],0〉,P0,H1[P+1]).
(Z.2)

Now the algorithm applies (CO) usingZ.1 as the hypothesis. As required by (CO), the
algorithm spawns two sub-obligations, one of which proves
allz(H0,H1,H0[P0 +1],P),P0 > 0,H1[P+1] > 0 |= allz(H0,H1,H0[P0 +1],P),H1[P+1] > 0

This is established by eliminating the predicates using (CP) and applying constraint
solving to the following assertion:
P0 > 0,H1[P+1] > 0 |= H0 = H0,H1 = H1,H0[P0 +1] = H0[P0 +1],P= P,H1[P+1] > 0.

The second sub-obligation is
allz(H0, 〈H1,H1[P+1],0〉,H0[P0 +1],H1[P+1]) |=

allz(H0, 〈〈H1,P0,0〉,H1[P+1],0〉,P0,H1[P+1]).
(Z.3)

4 Note that we do not require that the list is acyclic (L 6= R).

Program:
{h = h0,p = p0 > 0}

〈0〉 while (p>0) do
[p] := 0 〈1〉
p := [p+1] 〈2〉 end 〈3〉

{∃y.allz(h0,h, p0,y),h[y+1] = 0}

Assertion Predicate:

allz(H, 〈H,L,0〉,L,L) :- L > 0.

allz(H1, 〈H2,L,0〉,L,R) :-
L > 0,allz(H1,H2,H1[L+1],R).

Fig. 6: List Reset

Here again the application of constraint proof and coinduction fails, and the algorithm
performs a right unfold using the second clause ofallz resulting in
allz(H0, 〈H1,H1[P+1],0〉,H0[P0 +1],H1[P+1]) |=

allz(H0,?H2,H0[P0 +1],H1[P+1]), 〈〈H1,P0,0〉,H1[P+1],0〉 = 〈?H2,P0,0〉
(Z.4)

By an application of (CP) proof rule, the algorithm removes the predicates and then
solves the following implication by constraint solving (DP):
true |= H0 = H0,H0[P0 +1] = H0[P0 +1],

H1[P+1] = H1[P+1], 〈〈H1,P0,0〉,H1[P+1],0〉 = 〈〈H1,H1[P+1],0〉,P0,0〉.
(Z.5)

6 Conclusion

We presented an automatic proof method which is based on unfolding recursive CLP
definitions of user-specified program properties. The novelaspect is a principle of coin-
duction which is used in conjunction with a set of unfold rules in order to efficiently
dispense recursive definitions into constraints involvingintegers and arrays. This prin-
ciple is applied opportunistically and automatically overa dynamically generated set of
potential induction hypotheses. As a result, we can now automatically discharge many
useful proof obligations which previously could not be discharged without manual in-
tervention. We finally demonstrated our method, assuming the use of a straightforward
constraint solver over integers and integer arrays, to automatically prove two illustrative
examples.

References

1. B. Barras, S. Boutin, C. Cornes, J. Courant, J. Filliatre,E. Giménez, H. Herbelin, G. Huet,
C. M. Noz, C. Murthy, C. Parent, C. Paulin, A. Saı̈bi, and B. Werner. The Coq proof assistant
reference manual—version v6.1. Technical Report 0203, INRIA, 1997.

2. R. S. Boyer and J. S. Moore. Proving theorems about LISP functions. J. ACM, 22(1):129–
144, 1975.

3. S. Craciunescu. Proving equivalence of CLP programs. In18th ICLP, volume 2401 ofLNCS.
Springer, 2002.

4. L. Fribourg. Automatic generation of simplification lemmas for inductive proofs. InISLP
1991, pages 103–116. MIT Press, 1991.

5. G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coinductive logic programming and
its applications. In23rd ICLP, volume 4670 ofLNCS, pages 27–44. Springer, 2007.

6. J. Harrison. HOL light: A tutorial introduction. In M. K. Srivas and A. J. Camilleri, editors,
1st FMCAD, volume 1166 ofLNCS, pages 265–269. Springer, 1996.

7. J. Hsiang and M. Srivas. Automatic inductive theorem proving using Prolog.TCS, 54(1):3–
28, 1987.

8. J. Hsiang and M. K. Srivas. A PROLOG framework for developing and reasoning about data
types. In1st TAPSOFT Vol. 2, volume 186 ofLNCS, pages 276–293. Springer, 1985.

9. J. Jaffar and M. J. Maher. Constraint logic programming: Asurvey. J. LP, 19/20:503–581,
May/July 1994.

10. J. Jaffar, A. Santosa, and R. Voicu. A CLP proof method fortimed automata. In25th RTSS,
pages 175–186. IEEE Computer Society Press, 2004.

11. J. Jaffar, A. E. Santosa, and R. Voicu. Recursive assertions for data structures. Available
from http://www.comp.nus.edu.sg/˜joxan/papers/rads.pdf .

12. J. Jaffar, A. E. Santosa, and R. Voicu. Relative safety. In E. A. Emerson and K. S. Namjoshi,
editors,7th VMCAI, volume 3855 ofLNCS, pages 282–297. Springer, 2006.

13. T. Kanamori and H. Fujita. Formulation of induction formulas in verification of Prolog
programs. In8th CADE, volume 230 ofLNCS, pages 281–299. Springer, 1986.

14. T. Kanamori and H. Seki. Verification of Prolog programs using an extension of execution.
In E. Y. Shapiro, editor,3rd ICLP, volume 225 ofLNCS, pages 475–489. Springer, 1986.

15. Z. Manna, S. Ness, and J. Vuillemin. Inductive methods for proving properties of programs.
Comm. ACM, 16(8):491–502, August 1973.

16. J. McCarthy. Towards a mathematical science of computation. In C. M. Popplewell, editor,
IFIP Congress 1962. North-Holland, 1983.

17. S. McPeak and G. C. Necula. Data structure specificationsvia local equality axioms. In17th
CAV, volume 3576 ofLNCS, pages 476–490. Springer, 2005.

18. F. Mesnard, S. Hoarau, and A. Maillard. CLP(X) for automatically proving program proper-
ties. In F. Baader and K. U. Schulz, editors,1st FroCoS, volume 3 ofApplied Logic Series.
Kluwer Academic Publishers, 1996.

19. H. H. Nguyen, C. David, S. C. Qin, and W. N. Chin. Automatedverification of shape and
size properties via separation logic. In B. Cook and A. Podelski, editors,8th VMCAI, volume
4349 ofLNCS. Springer, 2007.

20. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: combining specifica-
tion, proof checking, and model checking. In R. Alur and T. A.Henzinger, editors,8th CAV,
volume 1102 ofLNCS, pages 411–414. Springer, 1996.

21. A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs using un-
fold/fold proofs.J. LP, 41(2–3):197–230, 1999.

22. A. Roychoudhury, K. N. Kumar, C. R. Ramakrishnan, and I. V. Ramakrishnan. An un-
fold/fold transformation framework for definite logic programs.ACM TOPLAS, 26(3):464–
509, 2004.

23. A. Roychoudhury, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A. Smolka. Tabulation-
based induction proofs with application to automated verification. In1st TAPD, pages 83–88,
April 1998. URL http://pauillac.inria.fr/˜ clerger/tapd.html.

24. K. Sagonas, T. Swift, D. S. Warren, J. Freire, P. Rao, B. Cui, E. Johnson, L. de Castro,
S. Dawson, and M. Kifer.The XSB System Version 2.5 Volume 1: Programmer’s Manual,
June 2003.

25. M. E. Stickel. A Prolog technology theorem prover: A new exposition and implementation
in prolog. TCS, 104(1):109–128, 1992.

