Horn Clauses for Data Structures

Joxan Jaffar

National University of Singapore (NUS)

HCVS 2015, July 19, 2015

1/68

HOLY GRAIL: Automatic reasoning about Data Structures

Assertion Language (H, explicit heaps)

Horn Clauses for Data Structures (CLP(H))

Proving Horn Clauses (automatic induction)

Local Reasoning, Compositional Proofs (frame rule)

2/ 68

‘H-Language

@ DEFINITION: A heap is a finite partial map between integers
Heaps = Values —y, Values

o DEFINITION: H is a first-order language over the Heaps.

© (Empty Heap):
o ¥ Heap with no elements

@ (Singleton Heap):

def .
p—v £ aHeap with exactly one element (p, v)

© (Separation)
def Heaps Hi, .., H, are separate/disjoint
(L * Hn) {H:Hlu..UHnassets.

e NOTE: (=) # (=)
(= is partial equality w.r.t. (x))
3/68

Program Reasoning with H

o DEFINE: M € Heaps as the Program Heap
@ Standard memory operations can be mapped to H:

C Syntax ‘H Encoding
v = pl[0]; dH : M = (p—v)*H
p = malloc(1); dH,v: M = (p—v)xH
free(p); dH,v : H = (p—v)*sM

. /
pl0] = v; JH, H' ,w : f = (p=rw)H

M = (p—v)«H'

4/68

Hoare Triples (cont.)

@ Access:

(b, x = [y], I, H : M = (yr>x)xH" A ¢[x'/x])

o Assignment:

(0 =3 v G ot)

@ Allocation:

(6, x :=alloc(1),3x", v, H : M = (x—>v)xH A ¢[H /M, X' /x])

@ Deallocation:
(0, free(x),IH', v : H' = (x—~v)*M A ¢[H'/ M])

5/ 68

Symbol Execution with H

@ Hoare triples are in “Strongest Post Condition” (SPC) form

Vo : (¢, Code, SPC(Code, ¢))

e SPC = Automation via Symbolic Execution.

PROVE:
(P, Code, Q)

STEPS:

@ Use Hoare rules to compute SPC(Code, P);
@ Prove (via a theorem prover) that

SPC(Code, P) — Q

© QED

6/ 68

Symbolic Execution with H (cont.)

o EXAMPLE: prove:
(H = M, x := alloc(); free(x), H = M) (1)

@ Use Symbolic Execution to compute the SPC:

{H =M} x:=alloc(); free(x)

x:=alloc(); {H= Ho ANM = (x—_)xHy} free(x)

x := alloc(); free(x) {H = Ho A Hi = (x—_)*xHo A Hy = (x—_)« M}
x := alloc(); free(x) {H = Ho A Hi = (x—_)*Ho A Hy = (x—_)xM}

Since
H=HyNH = (Xf—),)*Ho ANHy = (Xf—),)*./\/l —H=M (2)
Triple (1) holds; QED
@ ...but how to prove (2)?

7/68

A Solver for H

@ Symbolic Execution generates Verification Conditions of the form
SPC(C,P) — Q, eg.:

H=HyNH = (Xi—),)*HO ANHp = (XH,)*H —H="H
holds iff
H= Hy N H = (XP—L)*HO ANH = (XP—L)*IH ANH#H

is UNSAT.

@ Approach:

o STEP 1: Normalization
o STEP 2: Constraint solver (hsolve) for flat H-formulae
o STEP 3: DPLL(hsolve) for the Boolean structure.

8/ 68

STEP 1: Normalization

@ W.l.o.g. we can restrict H to three basic constraints:

Description Constraint
(Heap Empty) H=Q
(Heap Singleton) H = (p—v)
(Heap Separation) H = HixH,

o THEOREM: We can normalize arbitrary H-formulae to these basic
constraints , e.g.

H = Hy AN H; = (X!—},)*Ho A Hp = (X>—>,)*M AH# M
Ti=QAH=HyxT1 AN Ty = (X}—),) ANHy = ToxHy N T3 = (X?—L) N Hy = T3xH A

(T4 =~ (S!—>t)/\ Ts = (S!—}U)/\H’—‘ TyxTe NH = TsxT7 At # uV
H= TgxTg AM = TgxT19g A T11 = ToxT19 A T12 = (X!—>y) A T11 = Tio% T13)

9/68

STEP 1: Normalization (cont.)
PROOF: H Normalization Rules (see paper)

H=E xE> xS
H=E xE
H=H xE

HlﬂHQ

H#El*EQ*S

H+4E *E
H# H B
H#0

H # (p—v)
H # Hy % Hy

Hi # H»

A

l

l

H =E«sEbAH=H %S

H =E AH=H %E

H = EyANH=H; «H

H =QAH; = Hy« H
V{E1ﬂ(sﬁt)*H{/\Ezﬁ(sHu)*Hé

H =EyxEbANH#H xS

H =~ E ANH#H %E»
H = EyAH# Hy+ H'
H = (sest) + H

v H=Q
{Hﬁ(s»—>t)*H’/\(p7és\/v7$t)

(E1 non-variable)

(E2 non-variable)

(E1 non-variable)

(E2 non-variable)

Hy = (s—t) x H] A Hy = (s—u) x Hj
Hli‘Hl*H2/\H#HI

{
V{Hlﬁ(sr—)t)*H{/\Hgﬁ(s»—)u)*Hé/\t;ﬁu

Hi= 1« HAHy =[x HyANH = H « HyA H' #Q

10 / 68

STEP 2: H-Solver for Flat Constraints

@ Basic idea: propagate heap membership constraints; define:

n(H.p.v) £ (pv)eH

@ Heap membership propagation rules:
e Functional Dependency:
in(H,p,v) Ain(H,p,w) = v =w
o Empty Heap:
H=QAin(H,p,v) = false
e Singleton Heap:
H = (p—v) = in(H, p,v)

H=(p—=v)Ain(H,q,w) = p=qgAv=w

11/ 68

STEP 2: #H-Solver (cont.)

@ Separation:

H = HyxHy Ain(H, p,v) = in(H1, p,v) Vin(Hz, p, v)
H = HyxHy Ain(Hy, p,v) = in(H, p, v)
H = HyxHy Ain(Ha, p,v) = in(H, p, v)

H = HyxH, Ain(Hy, p,v) Ain(Ha, g, w) = p# q

@ 7H-Solver Algorithm (hsolve) = Constraint Handling Rules with
Disjunction

“Given a constraint store S, repeatedly apply propagation
rules until a fixed point is reached.”

Disjunction is handled by branching and backtracking.

12/ 68

STEP 2: H-Solver Algorithm

in(H, p,v) Ain(H, p, w
H=QAin(H,p,v

H = (p—v

H = (p—v) Ain(H, g, w

H = HixH> Ain(H, p, v

H = HixH> Ain(Hy, p, v

H = HixH> Ain(Ha, p, v

H = HixHax Ain(H1, p, v) Ain(H2, q, w

— vVv=w

— false

= in(H, p,v)

— p=qgAv=w

= in(H1, p,v) Vin(Hz, p, V)
= in(H, p,v)

= in(H, p,v)

=pF#q

—_— — = = = — = =

H=(p—=v),H=IxJ,J=(p—w),v#w

H=(p—v),H=IxJ, J= (p—=w) ,v # w,in(H,p,v)

H=(p—v), H=IxJ ,J = (p—w),v # w,in(H, p,v), in(J, p, w)

H = (p=v),H=IxJ,J = (p=w),v # w, in(H,p,v) ,in(J, p,w), in(H, p, w)
H=(p—v),H=IxJ,J = (p—w), v#w,in(H,p,v),in(J,p,w), v=w
false

.. Goal is UNSAT.

13/ 68

STEP 2: Main H-Solver Results

Theorem (Soundness)
The H-Solver is sound.

Proof: By the correctness of the CHR rules.

Theorem (Completeness)

The H-Solver is complete.:

Proof. (see paper)
1. Assumes complete equality theory

14 / 68

STEP 3: DPLL(hsolve)

e DPLL(hsolve) for non-conjunctive goals, e.g.

Ti=QAH=HyxT1 AN Ty = (XH,)/\ Hy = ToxHy N T3 = (X}—L)/\ Hy = T3x M A
(Ta = (s—=t)ATs = (s—u) ANH = TyxTe ANM = TsxTy At #uV
H= TgxTg AM = TgxT19g A T11 = ToxT190 A T1o = (X'—)y) AT = T12*T13)

1
b1/\b2/\b3/\b4/\b5/\b6/\(b7/\bg/\bg/\blo/\—\bn\/b12/\b13/\b14)/\
b1<—)T1ﬂQ/\b2<—>H-’—‘H0*T1/\b3<—>Tgﬁ(X0—>,)/\b4<—)H1ﬁT2*Ho/\
bs < T3ﬁ(X'—>,)/\b5<—>H1ﬁT3*M/\b7<—> T4ﬁ(sl—>t)/\bgH Tsﬂ(5>—)u)/\
bg <> H= TyxTg N big <> M = TsxT7 Ab11 <>t =uANbip <> T11 = Tg*xT19 A
b1z <> Tio = (x+—>y) A bia <> Ti1 = Tio%T13

e DPLL(#) implemented in Satisfiability Modulo Constraint Handling
Rules (SMCHR).

Details/Download:
http://www.comp.nus.edu.sg/~gregory/smchr.html

15 / 68

http://www.comp.nus.edu.sg/~gregory/smchr.html

STEP 3: DPLL(hsolve) (cont.)

o EXAMPLE (complete):

$./smchr -s heaps,linear,eq

> emp(T_1) /\ sep(H, HO, T-1) /\ one(T_2, x, v0) /\
sep(H-1, T2, H.0) /\ one(T-3, x, v1) /\ sep(H.1, T_3, Heap) /\
((one(T-4, s, t) /\ one(T5, s, u) /\ sep(H, T4, T6) /\

sep(Heap, T5, T.7) /\ t !=u) \ /
(sep(H, T8, T9) /\ sep(Heap, T8, T_10) /\ sep(T_11, T9, T_10) /\

one(T-12, x, y) /\ sep(T-11, T_12, T_13)))
UNSAT

Therefore:
Ti=QAH=HxT1 ATy = (X>—),) ANHy = ToxHy A T3 = (X>—>,) A Hy = T3x M A
(Ta = (s=t)ANTs = (s—u) AH = TyxTe AM = TsxTr At £ uV
H= TgxTg AM = TgxT19g A T11 = ToxT1og A T1o = (X'—)y) AT = Tlg*T13)
is UNSAT. Therefore:
H= Hy AN H; = (XF—L)*HO AN Hp = (X'—),)*M —H=M
is VALID.Therefore:
(H = M, x := alloc(); free(x), H = M)

16 / 68

Experimental Results

o BENCHMARKS:

© subsets_N - sum-of-subsets

@ expr_N - expression evaluation
© stack_N - stack

Q filter_N - TCP/IP filtering

@ sort_N - Bubblesort

@ search234_N - 234-tree search
@ insert234_N - 234-tree insert

TRIPLES:

(F) (M = (p—=v)xF,C,3F : M = (p—v)*F’)
(OP) (H=M,C,H OP M)

(A) (.., C,aAF v : M= (p—v)xF’)

(Q) (M =Q, C, false)

where OP € {C,J, =}

e We compare SMCHR(H) vs. Verifast (Separation Logic).

17 / 68

Experimental Results (cont.)

Heaps [Verifast |

Bench. Safety | LOC | type | time(s) #bt | time(s) Fforks |
subsets_16 F 50 | rwu- 0.00 17 10.69 65546
expr_2 F 69 | rw- 0.05 124 18.38 136216
stack_80 F 976 | rwa 8.66 320 68.20 9963
filter_1 F 192 | r—- 0.03 80 0.75 8134
filter_2 F 321 | r—- 0.11 307 - -
sort_6 F 178 | rw- 0.03 54 2.66 35909
search234_3 F 251 | r—- 0.02 46 0.67 1459
search234_5 F 399 | r—- 0.05 76 90.65 118099
insert234_5 F 839 | rwa 1.19 120 52.87 36885
expr_2 C 69 | rw- 0.20 1329 n.a. n.a.
stack_80 C 976 | rwa 8.07 322 n.a. n.a.
filter_2 oP 321 | r—- 0.00 2 n.a. n.a.
stack_80 A 976 | rwa 8.90 320 65.68 9801
insert234_5 A 839 | rwa 1.50 60 40.64 55423
subsets_16 Q 50 | rwu- 0.00 33 n.a. n.a.

18 / 68

Experimental Results (cont.)

e RESULTS:

@ Interpolation: Constraint-based approach allows for search-space
pruing a la no-good learning/interpolation.

@ Expressivity: E.g. the (heap equivalence) triple:
(H=M,C,H=M)

cannot be directly expressed in Verifast/Separation Logic.

19 / 68

@ Explicit heaps for expressiveness
@ Promising Solver

@ Symbolic Execution via Strongest Postcondition — Automatic
Verification of H assertions on whole-program, straight-line code

20 / 68

Overview (Recall)

@ Assertion Language (H, explicit heaps)

@ Horn Clauses for Data Structures (CLP(#))

Proving Horn Clauses (automatic induction)

@ Local Reasoning, Compositional Proofs (frame rule)

21 /68

CLP(H): Horn Clauses for Data Structures

Example: the predicate 1ist(h, x),
specifies a skeleton list in the heap h rooted at x.

list(h,x) := h=Q,x=null.
list(h,x) := h=(x+—y) % hy, list(hy,y).

22 /68

CLP(H): Horn Clauses for Data Structures

{ list (H x), HEM }
y =
struct node { whlle W {
int data; >data++;
struct node *next; - _
}. y = y->next;

{ increment_list(H1,H,x), H1 T M }

where the predicate increment_list is defined as follows.

increment _list(hy, hy,x) :-—
hy =Q, hy = Q. x =null.
increment list(hy, hy,x) :-—
h1 = (x — (d + 1, next)) = hi,
hy = (x — (d, next)) = hj,
increment_list(hl’, h}, next).

Note: this is an example of a summary

23 /68

Overview (Recall)

Assertion Language (#, explicit heaps)

@ Horn Clauses for Data Structures (CLP(#))

Proving Horn Clauses (automatic induction)

@ Local Reasoning, Compositional Proofs (Frame Rule)

24 /68

How to prove Predicates in Assertions?

Verifying functional correctness of dynamic data structures

Properties are formalized using a logic of heaps and separation
o A core feature is the use of user-defined recursive predicates

The Problem: entailment checking, where both LHS and RHS involve
such predicates

@ A fully automatic solution is not possible

@ The state-of-the-art for automatic methods is inadequate

25 / 68

The State-of-the-Art: Unfold-and-Match

@ Performs systematic folding and unfolding steps of the recursive rules,
and succeeds when we produce a formula which is obviously provable:
e no recursive predicate in RHS of the proof obligation, and a direct
proof can be achieved by consulting some generic SMT solver;

@ no special consideration is needed on any occurrence of a predicate
appearing in the formula, i.e., formula abstraction can be applied.

e Notable systems: DRYAD and HIP/SLEEK

26 / 68

Example: Unfold-and-Match

Consider Is(x,y) d:efx:y Aemp | x£y A (x—t) * Is(t,y)

Pre: Ig(x,y)
assume(x != y)
Z = Xx.next

Post: E(z,y)

Unfold the precondition Is(x,y)
@ Case 1: holds because (x = y) and assume(x != y) implies false
@ Case 2: holds by matching z with t

27 / 68

@ Recursion Divergence: when the “recursion” in the recursive rules is
structurally dissimilar to the program code

@ Generalization of Predicate: when the predicate describing a loop
invariant or a function is used later to prove a weaker property

(occurs often in practice, especially in iterative programs)

28 / 68

Recursion Divergence

@ When the “recursion” in the recursive rules is structurally dissimilar to
the program code

Is(x,y) * (y—-)

Z = y.next

E(x,z)

Fundamentally, it is about relating two definitions of a list segment:
(recurse rightwards, and recurse leftwards)

E(X,y) = x=y A emp | x#y A (x—t) * E(t,y)

Is(x,7) = x=y A emp | x£y A (toy) * Is(x,t)

(sometimes inevitable, e.g., queue implementation using list segment)

29 / 68

Generalization of Predicate:

@ When the predicate describing a loop invariant or a function is used
later to prove a weaker property

o sorted_list(x, len, min) [= list(x, len)

o Is(x, y) * list(y) E list(x)

30 / 68

What is Needed: INDUCTION

@ Traditional works on automated induction generally require variables
of inductive type (so that the notions of base case and induction step
are well-defined)

@ Our predicates are (user-)defined over pointer variables, which are not
inductive

31/68

The Specification Language

@ We use the language H, a logic with the features of explicit heaps
and a separation operator

e It facilitates symbolic execution and therefore VC generation
o It has little/no bearing on the effectiveness of our induction method

@ E.g. the below defines a skeleton list (we inherit the CLP semantics)
list(x,L) :- x=0, L=0.
list(x,L) := L = (x—t) % Ly, list(t,Ly).

(note that « applies to terms, and not predicates as in traditional
Separation Logic)

32 /68

General Cut-Rule

ﬁl):'Rl £2/\R1':R
El/\ﬁg):R

(cuT)

@ Trivial from the deduction point of view (top to bottom)

@ For proof derivation (bottom to top), obtaining an appropriate R; is
tantamount to a magic step

o In manual proofs, we perform this magic step all the time

o Automating this step is extremely hard

33 /68

Induction Rule 1

L2A Ry ER

L1N Lo ':’R

° is “the same” as some obligation encountered in the proof

path (which acts as an induction hypothesis), thus it will be
discharged immediately

(INDUCTION-1)

@ We discover R1 and proceed with the other obligation

34 /68

Induction Rule 2

El):Rl ﬁg/\Rl):R

L1N Lo ':’R

@ | L2 AR1=TR|is “the same” as some obligation encountered in the

proof path (which acts as an induction hypothesis), thus it will be
discharged immediately

(INDUCTION-2)

@ We discover R1 and proceed with the other obligation

35 /68

@ Our automated induction rules allow for

e a systematic method to discover Ry (in the cut-rule)
e application of induction to discharge a proof obligation

@ A significant technicality is to ensure induction applications do not
lead to circular (i.e., wrong) reasoning

36 / 68

Example (simplified by ignoring heaps)

even(x) :- x=0.

even(x) :- y=x—2, even(y).
m4d(x) :- x=0.

m4(x) :- z=x-—4, nd(z).

m4(x) = even(x)

@ Unfold-and-Match will not work: there always remains obligation with
predicate m4 in the LHS and predicate even in the RHS

37 /68

Example: Induction Works

True

oM
z=x—4, even(z) = y=x—2,t=y—2, even(t) ()

True z=1x—4,even(z) =y =x—2, even(y) (x0)

(smT) T’:x:o m4(z) | even(z) z = x — 4, even(z) |= even(x) ()
(=) x=0 = even(x) z = x — 4,m4(z) |= even(x) "
(o) m4(x) |= even(x)

38 / 68

Example: Induction Works

TRUE
o y—
x=0 |= even(x)
m4(x) = even(x)

39 / 68

Example: Induction Works

True

(svr) z=x—4,even(z) = y=x—2,t=y—2, even(t)

(rU)

z=x—4,even(z) Fy=x—2, even(y)
‘(RU)

‘m4(z) E even(z) z = x — 4, even(z) | even(x)

(--1)

z = x — 4,m4(z) | even(x)
(L)

m4(x) = even(x)

@ Applying induction rule 1, we discover even(z) as a candidate for a
cut point.

This step allows us to “flip” the predicate even(z) into the LHS so
that subsequently Unfold-and-Match can work.

40 / 68

@ Proving commonly-used “lemmas” (or “axioms”); many existing
systems simply accept them as facts from the users

sorted_list(x, min) k= list(x)

sorted_listy (x, len, min) = listy(x, len)

sorted_listy (x, len, min) = sorted_list(x, min)

sorted_Is(x, y, min, max)xsorted_list(y, miny) A max < min, =sorted_list(x, min)
El(x,y, leny) El(y,z7 leny) = I;l(x,z7 leny+lens)

Is1(x, y, leny) * listy(y, leny) [= listy(x, leny+leny)

Is1 (x, last, len) * (last — new) = El(x, new, len + 1)

avl(x, hgt, min, max, balance) |= bstree(x, hgt, min, max)

bstree(x, height, min, max) = bintree(x, height)

(running time ranges from 0.2 — 1 second per benchmark)

41 /68

@ Eliminate the usage of lemmas: it indeed runs faster
o we only look at the available induction hypotheses (0 — 3)
o other systems look at all the “lemmas” (or “axioms”)

Table: Verification of Open-Source Libraries.

| Program | Function | T/F]

. . find, position, index,

glilll:élg;llst.c Zl’.lth, last,length,append, “1s
.) insert_at_pos,merge_sort,

Linked-List . .

remove,insert_sorted_list

glib/glist.c nth, position, find,

Doubly index, last, length s

Linked-List ’ ’

OpenBSD/ simpleq_remove_after,

queue.h simpleq_insert_tail, <ls

Queue simpleq-insert_after

ExpressOS/ lookup prev, 1

cachePage.c add_cachepage <is

linux/mmap.c | insert_vm struct <1s

42 /68

@ Improve the robustness

e e.g. works for A |= B, but might fail if we strengthen A (or weaken B)
e having too strong antecedent (or too weak consequent) is an obstacle
to the usage of induction

43 /68

Overview (Recall)

Toward automatic reasoning about Data Structures

Assertion Language (#, explicit heaps)

Horn Clauses for Data Structures (CLP(H))

Proving Horn Clauses (automatic induction) ?

Local Reasoning, Compositional Proofs (Frame Rule)

44 / 68

Local / Compositional Reasoning

The Rule in Separation Logic which allows local reasoning:

{o}P{v}
{oxm}P{dxm}

the premise { ¢ } P { ¢ } ensures that the implicit heap arising from the
formula ¢ captures all the heap accesses, read or write, in the program
fragment P.

45 / 68

The Frame Rule does not Apply with Explicit Heaps

o if { » } P{ 4 }is established because 1 follows from the strongest
postcondition of P executed from ¢, it is not the case that any heap
separate from 1 remains unchanged by the execution of P.

@ because there are multiple heaps, only those which are affected by the
program must be isolated.

Our new Frame Rule:
@ used by specifying explicitly named subheaps in order to elegantly
isolate relevant portions of the global heap.

o As a significant result, our frame rule is concerned only on heap
updates, as opposed to being concerned about all heap references as
in traditional SL.

46 / 68

Why do we need a Frame Rule?

So far, only straight-line verification
@ Loop invariants

Procedure calls

Local Reasoning / Compositional Proofs

47 / 68

All Heaps are Ghost except for the Global Heap M

The postconditions shown are the strongest postconditions:

{ ¢ } x =malloc(1) { alloc(¢, x) } (Heap allocation)

{ ¢} free(x) { free(¢, x) } (Heap deallocation)
{o}x=xy{ accgss(qb,y,x) } (Heap acc.ess)

{ ¢} *x=y {assign(¢,x,y) } (Heap assignment)

where the auxiliary macros alloc, free, access, and assign expand as follows:

alloc(¢, x) L M= (x s v) « HAGH/M, vi/x]
free(, x) L Y= (x> v) * MA G/ M]
access(¢, y, x) L M= (y = x) * HAolv/x]
assign(¢, x, y) def M= (x—y)* HiA

H = (x+—v)*x Hi A Q[H/M]

where H and H; are fresh heap variables, and v and vy are fresh value
variables. [J

48 / 68

Ghosts and Heap Reality

@ User-defined Predicates use only ghost variables

@ Connection the global heap is by means of H C M
(“heap reality” of H)

@ User-defined Predicates in an assertion can always be framed.

@ What is interesting, therefore, is the preservation of heap reality

49 / 68

{ list(H,x), HC M }

y = %5
struct node { while (y) {
int data;
y—>data++;
struct node *next;
}‘ y = y—>next;

{ increment_list(H1,H,x), H1C M }
where the predicate increment_list is defined as follows.

increment_list (hy, hy,x) :-—
hy =Q, hy = Q, x = null.
increment_list(hy, hy,x) :-—
hi = (x — (d + 1, next)) = hi,
hy = (x — (d, next)) = hj,
increment_list(hl’, h}, next).

Note: [ist(H,x) frames through, but not necessarily H C M.

50 / 68

Heap Evolution

Let T={ ¢} P {1} where H appears in ¢ and ' appears in).
Then:

T~—~H > H

means that the largest H' can be is # plus any new cells allocated by P,
and minus any that are freed by P.

Usage: if T~H > ' then any heap that is separate from 7 at the
point of the precondition of T (i.e., before P is executed) will be separate

from 71’ at the point of the postcondition (i.e., after P is executed).

51 /68

EVOLUTION RULES (Basic)

i MALLOC
dlE=HCM Y EHCM dom(H') C dom(H) U {x}
{¢}x =malloc(1) { ¢}~ Hr>H

FREE
pEHCM =R CM dom(H) C dom(H)\ {x}
{ ¢} free(x) {dz}wf[p?—rzl

- OTHER;STATEMENT?
pEHCM PEHCM dom(H') C dom(H)
{¢}s{v}~HA>H
SEQ-COMPOSITION
{o}P{y}~HDH {v}Q{r}~HrH
{6YP;Q{~y}~H>H

R CQMPOSITION B
{etP{v}~HE>H {¢}P{w}wﬁ>yg
{0} P{v}~H>HUH)

52 / 68

EVOLUTION RULES (Structural)

IF-THEN-ELSE . ~
{ ¢} assume(b); P1 { Y1 } ~ 7-L~> Hy 7:[: CH,
{ ¢} assume(=b); P> { 12 } > HI>H), H T H)
{ ¢ }if (b) then Py else Py { 1 Vahp } ~ H > H'

NARROYVINNG—POST B .
(6} P {0} HAeH, =
(6} P {0} —HOH
WIDENING-PRE
(6} P {4} —thao# GEACM HCH

(¢} P{v}~H>H
CALL

{o}ypO){v}~H>H €Specs ¢ =¢
{¢' Yeall p() { -}~ A H

53 / 68

Evolution Theorem

{o}P{y}—~H > H
{6 NHxHo}P{Y N H Mo}

54 / 68

Update Enclosure (Our version of Memory Safety)

Suppose that P is of the form Py;s; P».

We say H encloses the update s of P if {o}tPi{v}~ H > H' holds,
and for each model Z of v, x € dom(Z(#')) holds.

T~ H > P.
denotes that H encloses all the updates of P.

Usage: Heap reality H C M falsified only if program updates a cell in
dom(#), or deallocates a cell in M whose address is also in dom(H).

55 / 68

Rules for Update Enclosure (Basic)

~ HEAP-ASSIGN _
pEHCEM x € dom(H)
{orrx=y{-}wHA>*x=y

- FREE .
pEHLCM x € dom(H)
{ ¢} free(x) { -} ~ H > free(x)

OTHER—ST’ATEMENTS
pEHEM
(6)s{ -} —A>s

) SEQ-COMPOSITION)
{pYP{Y}~HSP {d}P{v}~HAH {v}Q{y}~H >Q
{6} PiQ{v}~H>(P:Q)

56 / 68

Rules for Update Enclosure (Structural)

WIDENINC-PRE
{oIP{v}~H>P sET CM
{pP{p}~(HUA)>P

IF-THEN-ELSE
{ ¢ } assume(b); P1 { 1 } ~ ?Zt > (assume(b); P1)
{ ¢ } assume(—b); P> { 12 } ~ H > (assume(—b); P2)
{¢} P=if (b) then Py else Py { 1 Vipp } ~ H > P

B CALL
{o}pO){w}~H> [p’s bodyl) € Specs ¢’ = ¢
{¢'}call p() { - } ~ H > call p()

57 / 68

The New Frame Rule

{o}P{y}~H>P
{6 ANHxHo N HoTMIP{p A HoT M}

58 / 68

Solves Two Problem Areas

For the first time, we have a systematic method for automatic proof
in two settings:

@ Summaries

@ Structure Sharing

59 / 68

Cyclic Graph (Basic Setup)

Consider a generic predicate which describes a general, possibly cyclic, graph.
We assume that each node has exactly two successors “left” and “right”.
Some key points:

@ the subheaps h; and h, are separate and together house a graph rooted at x
and where the “visited” nodes are kept in the set of values t.

@ t represents a set of locations, “visited” during previous processing of a
predecessor node. By construction t will be disjoint from
dom(hy) U dom(hy),

@ the heap h; represents the nodes the left subtree of x that are visited for the
first time in a left-to-right preorder traversal.

@ Similarly, the second heap h, represents the nodes the right subtree of x
that are visited for the first time.

60 / 68

Cyclic Graph

graph root (hy, hy,x) :- graph(hy, hy, x, () .

graph(hy, ho, x, t) :-
h1 =Q, hh =Q, x=nullvxet.

graph(hy, hy, x, t) :-
hy = (x — (-, left, right)),
x¢t, =t U {x},
graph(hla, hip, /eft, t1), hi = he * hiz * hip,
th =1t U dom(hla) U dom(hlb)
graph (hoa, hop, right, t2) , ho = hoy * hop.

61 /68

Cyclic Graph

This graph is a model for graph_root(hy, ha, x).

Variable x is node 0. The heap h; comprises nodes 0,1,3,4; while h
comprises just node 2. Consider graph(haa, hap, right, t2) where right is
node 2. This is in fact an expression obtained by unfolding

graph(hy, ho, x,0). Now hy, comprises just node 2, while hyp = Q.

62 /68

Marking a Cyclic Graph

struct node {
int m;
struct node *left, *right;

}s

void mark(struct node *x) {
if ('x || x->m == 1) return;
struct node *1 = x->left, *r = x->right;
x->m = 1; mark(l); mark(r);

}

63 /68

Marking a Cyclic Graph

mgraph (hy, hp, x, t) :-
hh =Q hh=Q x=nullVxet.

mgraph(hy, ho, x,t) :- // marked
he = (x — (1, left, right)), x & t,t1 =t U {x},
mgraph (h1a, hip, left, t1), h1 = hy * hia * hyp,
th =t U dom(hla) @] dom(hlb),
mgraph (hog, hop, right, t2) , hy = hoy * hyp, h1 * ho.

pmgraph(hy, hp, x,t) :— mgraph(hy, ho, x, t).
pmgraph(hy, hp, x,t) :- // unmarked
he = (x — (0, left, right)), x&t, ti=t U {x},
pmgraph (hi,, hip, left, t1), h1 = hy * hiz * hyp,
th = t1Udom(hla) U dom(hlb),
pmgraph(hZa,hzb,right,), ho = hyy * hop, h1 * ho.

64 / 68

Marking a Cyclic Graph

requires: pmgraph(Hi, Ho, x,t), H1E M, Ho T M

ensures: mgraph(H], Hb, x,t), H{C M, H,C M,
dom(H1) = dom(H]), dom(H2) = dom(H})

frame: (H1UH2) >, Hi>Hi, Ha>H)

void mark(struct node *x) {

{ pmgraph(Hi, H2,x,t), HiEM, HoE M }

1 assume(x && x->m != 1); 1 = x->left; r = x->right;

{ He=(x—=(0,1,r)), x&t, =t U {x}, pmgraph(Hia, H1p, !, t1),
Hi=Hx * Hia * Hip,
to =ty Udom(Hi1a) U dom(Hip), pmgraph(Hoa, Hop,r, t2),
Ho = Hoa * Hop, Hi * Hay HIEM, H2EM }

2 x->m = 1;

{ pmgraph(Hia, Hip, I, t1) s Hia* Hip * Hoa * Hop* (x = (1,1,r)) EM,
Hi=Hx * Hia * Hip, Ho=THza * Hop,
pmgraph(Hoa, Hop, rit2) s x€t, i =t U {x}, to=tiUdom(His) U dom(Hip) }

65 / 68

Marking a Cyclic Graph

3 mark(l);

{ mgraph(H},, H 1b,l t1), H,CM, 'H CM,
dom(H1a) = dom(H,,), dom(?-[lb) = dom(?-[lb) // postcondition
7‘[1 Hy * 7‘[13 * Hlb: Hg =~ Hga * H2b, // Rule (HOARE—FR)
pmgraph(H2a, Hop, 1, t2),
X € t, 1=t U {X}, th =t U dom(Hla) U dom(Hlb),

1o ® Hip * Hoa * Hopx (x> (1,1,r)),

H{lb * Hla * H2a * H2b*(X'_>(1:l7r))’ // Rule (EV)
Hos * Hopx (x = (1,1,r)) EM } // Rule (FR)
4 mark(r);

{ mgraph(H},, H 1b, I,t1), dom(Hia) = dom(H},), dom(Hip) = dom(H],)
x&t, ti=t {X}, th =t U dom("Hla) @] dom(’Hlb)
mgraph(H5,, Hyp, rit2), Hy, EM, Hy T M,

dom(Ha2,) = dom(?-lb) , dom(HMap) = dom(H},) // postcondition
92 * Hi, * Mip * Hopx (x> (1,1,r)),

)
'sz ® My, * Hia * Hoax(x—(1,/,r)), // Rule (EV)

LM, H,CM, (x> (1,,r))EM } // Rule (FR)
} { mgraph(Hy, Hy, x, t), Hi T M, Hy T M,
dom(H1) = dom(H}), dom(Hz) = dom(H}) }

66 / 68

Conclusion

Expressive assertion language for dynamic data structures

Strongest Postcondition semantics

Automatic Induction for a Class of VC's

New Frame Rule for Local Reasoning / Compositional Proofs

All the above in (regular) Hoare Logic

67 / 68

Some References

@ HIP/SLEEK
W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. In SCP, 10061036, 2012

@ DRYAD
X. Qiu, P. Garg, A. Stefanescu, and P. Madhusudan. Natural proofs for structure, data,
and separation. In PLDI, pages 231242, 2013

@ H Language
G. Duck, J. Jaffar, and N. Koh. A constraint solver for heaps with separation. In CP,
pages 282-298, 2013

@ Auto Induction
D. H. Chu, J. Jaffar, and M. T. Trinh, Automatic induction proofs of data-structures in
imperative programs, In PLDI, 2015

@ New Frame Rule

D.H. Chu and J. Jaffar, Local Reasoning with First-Class Heaps and a new Frame Rule,
draft, www.comp.nus.edu.sg/~joxan/papers/frame.pdf

68 / 68

	Experiments
	Introduction

