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Abstract
We consider the problem of automated reasoning about dynamically
manipulated data structures. Essential properties are encoded as
predicates whose definitions are formalized via user-defined recur-
sive rules. Traditionally, proving relationships between such prop-
erties is limited to the unfold-and-match (U+M) paradigm which
employs systematic transformation steps of folding/unfolding the
rules. A proof, using U+M, succeeds when we find a sequence of
transformations that produces a final formula which is obviously
provable by simply matching terms.

Our contribution here is the addition of the fundamental principle
of induction to this automated process. We first show that some proof
obligations that are dynamically generated in the process can be
used as induction hypotheses in the future, and then we show how
to use these hypotheses in an induction step which generates a new
proof obligation aside from those obtained by using the fold/unfold
operations. While the adding of induction is an obvious need in
general, no automated method has managed to include this in a
systematic and general way. The main reason for this is the problem
of avoiding circular reasoning. We overcome this with a novel
checking condition. In summary, our contribution is a proof method
which – beyond U+M – performs automatic formula re-writing by
treating previously encountered obligations in each proof path as
possible induction hypotheses.

In the practical evaluation part of this paper, we show how the
commonly used technique of using unproven lemmas can be avoided,
using realistic benchmarks. This not only removes the current burden
of coming up with the appropriate lemmas, but also significantly
boosts up the verification process, since lemma applications, coupled
with unfolding, often induce a large search space. In the end, our
method can automatically reason about a new class of formulas
arising from practical program verification.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal methods; D.2.4 [Software/Program Verifi-
cation]: Correctness proofs; F.4.1 [Mathematical Logic]: Proof
theory

General Terms Verification

Keywords Data-structures, Induction Proofs, Separation.
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1. Introduction
We consider the automated verification of imperative programs with
emphasis on reasoning about the functional correctness of dynami-
cally manipulated data structures. The dynamically modified heap
poses a big challenge for logical methods. This is because typical
correctness properties often require combinations of structure, data,
and separation.

Automated proofs of data structure properties — usually for-
malized using Separation Logic (or the alike) and extended with
user-defined recursive predicates — “rely on decidable sub-classes
together with the corresponding proof systems based on (un)folding
strategies for recursive definitions” [24]. Informally, in the regard of
handling recursive predicates, the state-of-the-art [9, 22, 26–28], to
name a few, collectively called unfold-and-match (U+M) paradigm,
employ the basic but systematic transformation steps of folding and
unfolding the rules.

A proof, using U+M, succeeds when we find successive appli-
cations of these transformation steps that produce a final formula
which is obviously provable. This usually means that either (1)
there is no recursive predicate in the RHS of the proof obligation
and a direct proof can be achieved by consulting some generic
SMT solver; or (2) no special consideration is needed on any occur-
rence of a predicate appearing in the final formula. For example, if
p(ũ) ∧ · · · |= p(ṽ) is the formula, then this is obviously provable
if ũ and ṽ were unifiable (under an appropriate theory governing
the meaning of the expressions ũ and ṽ). In other words, we have
performed “formula abstraction” [22] by treating the recursively
defined term p() as uninterpreted.

A key feature that is missing from the U+M methodology is the
ability to prove by induction, which is often required in verifica-
tion of practical examples [2]. Without inductive reasoning, U+M
(folding/unfolding together with formula abstraction) cannot handle
proof obligations involving unmatchable predicates. Specifically, in
such obligations, there exists a recursively defined predicate in the
RHS which cannot be transformed, via folding/unfolding, to one
that is unifiable with some predicate in the LHS.

As a concrete example, consider the following definitions of list
and list of zero numbers:

vlist(x) def
= x=null ∧ emp
| (x7→_, t) * vlist(t)

zero_list(x)
def
= x=null ∧ emp
| (x7→0, t) * zero_list(t)

In Fig. 1, we present a partial proof that a list of zero elements is a list.
First, by unfolding the LHS, the original proof obligation is resolved
into (i) and (ii). The first sub-obligation can be easily discharged by
unfolding the RHS. (It is clear that U+M is inadequate for this proof.
This is because no matter how we apply folding/unfolding, there



(LEFT-UNFOLD)

(RIGHT-UNFOLD)

(OBVIOUS)
True

x=null ∧ emp |= x=null ∧ emp

x=null ∧ emp |= vlist(x) (i) (x7→0, t)∗ zero_list(t) |= vlist(x) (ii)
zero_list(x) |= vlist(x)

Figure 1: Partial Proof Tree for zero_list(x) |= vlist(x)

(LEFT-UNFOLD)

(RIGHT-UNFOLD)

(OBVIOUS)
True

x=null ∧ emp |= x=null ∧ emp

x=null ∧ emp |=zero_list(x) (1) (x 7→_, t)∗ vlist(t) |=zero_list(x) (2)

vlist(x) |=zero_list(x)

Figure 2: Partial Proof Tree for vlist(x) |= zero_list(x)

still exists a predicate vlist in the RHS, which cannot be matched
with the predicate zero_list in the LHS.)

Now let us consider the original proof obligation zero_list(x)
|= vlist(x) as an induction hypothesis. This justifies an induction
step comprising a transformation of (ii) into a simpler obligation,
as follows: weaken the LHS by replacing zero_list(t) with vlist(t),
and obtain the new proof obligation (iii). It is now easy to prove
(iii) by unfolding the RHS, followed by substituting z by t. All the
above steps are summarized below, where LEFT-WEAKEN denotes
the transformation above.

(LEFT-WEAKEN)

(RIGHT-UNFOLD)

(SUBSTITUTION)

(OBVIOUS)
True

(x7→0, t)∗ vlist(t) |= (x7→0, t)∗ vlist(t)

(x7→0, t)∗ vlist(t) |= (x7→0, z)∗ vlist(z)

(x7→0, t)∗ vlist(t) |= vlist(x) (iii)
(x7→0, t)∗ zero_list(t) |= vlist(x) (ii)

While the usefulness of having such a step is very clear, the
conditions for its correct application is not obvious. To see this,
let us use the same approach now but to prove that a list is also a
list of zero elements, something that is clearly false. See Fig. 2. We
proceed similarly as in the previous proof:

(RIGHT-STRENGTHEN)

(RIGHT-UNFOLD)

(SUBSTITUTION)

(OBVIOUS)
True

(x 7→_, t)∗ vlist(t) |= (x7→_, t)∗ vlist(t)

(x 7→_, t)∗ vlist(t) |= (x7→_, z)∗ vlist(z)

(x7→_, t)∗ vlist(t) |= vlist(x) (3)

(x7→_, t)∗ vlist(t) |=zero_list(x) (2)

Once again, we use the original proof obligation vlist(t) |=
zero_list(t) as an induction hypothesis, and this time, we trans-
form the proof obligation (2) into (3): strengthen the RHS by
replacing zero_list(x) with vlist(x). Call this transformation RIGHT-
STRENGTHEN. Clearly (3) is easily proven true, as shown.

This erroneous proof arises from a form of circular reasoning.
Our challenge therefore is how to use induction correctly, as in
Fig. 1, but avoid pitfalls such as in Fig. 2.

In this paper, we propose a general proof method for recursive
predicates that includes reasoning by induction. Our method is able
to use dynamically generated formulas as induction hypotheses, and
to enforce an anti-circular condition so that any application of an
induction step is guaranteed to be correct. We shall see that our
method is very different from that in traditional theorem proving
systems where, after having chosen an induction tactic, the system
will then search for appropriate induction variable(s) with a well-
founded measure and appropriate induction hypotheses. In our
framework, the predicates are defined by general recursive rules,
without any explicit restriction to any well-founded orderings, and
includes a domain of discourse that captures the mutable heap and
properties of separation. More specifically:

• We automatically and efficiently discharge all commonly-used
lemmas, extracted from a number of benchmarks used by other
systems. These systems cannot automatically discharge such
lemmas, but simply accept them as true facts.

• We demonstrate, in a different set of benchmarks in Section 5,
that with our proof method, the common usage of lemmas can be
avoided. This is because the properties of interest are covered by
our method. In contrast, these properties cannot be discharged
by the other systems without using lemmas.

The impact of this is twofold. First, it means that for
proving practical (but small) programs, the users are now free
from the burden of providing custom user-defined lemmas.
Second, it significantly boosts up the performance, since lemma
applications, coupled with folding/unfolding, often induce a
large search space.

• The proposed proof method gets us back the power of composi-
tional reasoning in dealing with user-defined recursive predicates.
While we have not been able to identify precisely the class where
our proof method would be effective1; we do believe that its po-
tential impact is huge. One important subclass that we can handle
effectively is when both the antecedent and the consequent refer
to the same structural shape but the antecedent simply makes
a stronger statement about the values in the structure (e.g., to
prove that a sorted list is also a list, an AVL tree is also a binary
search tree, a list consists of all data values 999 is one that has
all positive data, etc.).

In summary, we extend significantly the state-of-the-art proof
methods, namely U+M based methods. We are able to prove
relationships between general predicates of arbitrary arity, even
when recursive definitions and the code are structurally dissimilar.
In Section 2, we will motivate the need for our extension in more
detail. Sections 3 and 4 contain the technical core. In Section 5,
we evaluated our prototype implementation on a comprehensive
set of benchmarks, including both academic algorithms and real
programs. The benchmarks are collected from existing systems
[8, 9, 22, 25, 28], those considered as the state-of-the-art for the
purpose of proving user-defined recursive data-structure properties
in imperative languages. Section 6 discusses related work in detail
and Section 7 concludes.

2. Motivation
In this Section, we motivate the need for inductive reasoning in
proving user-defined recursive data-structure properties.

We first highlight scenarios, which are ubiquitous in realistic
programs, and often lead to proof obligations involving unmatchable

1 This is as hard as identifying the class where an invariant discovery
technique guarantees to work.



predicates. Later, we discuss the restriction of U+M paradigm in
dealing with such proof obligations.

2.1 Scenario 1: Recursion Divergence
when the “recursion” in the recursive rules is structurally

dissimilar to the program code.

This happens often with iterative programs and when the predicates
are not unary, i.e., they relate two or more pointer variables, from
which the program code traverse/manipulate the data structure in
directions different from the definition.

elm = malloc()
assume(tail!=null)
elm.next = null
tail.next = elm
tail = elm

(a) Insert Tail

assume(head!=null)
assume(head!=tail)
elm = head
head = head.next
free(elm)

(b) Remove Head

l̂s(x,y)
def
= x=y ∧ emp
| x6=y ∧ (x7→t) * l̂s(t,y)

(c) List Segment Definition

Figure 3: Implementation of a Queue

To illustrate, Fig. 3 shows the implementation of a queue using
list segment, extracted from OpenBSD/queue.h, an open source
program. Two operations of interest: (1) adding a new element into
the end of a non-empty queue (enqueue, Fig. 3(a)); (2) deleting
an element at the beginning of a non-empty queue (dequeue,
Fig. 3(b)). A simple property we want to prove is that given a list
segment representing a non-empty queue at the beginning, after each
operation, we still get back a list segment.

In the two use cases, the “moving pointers” are necessary to
recurse differently: the tail is moved in enqueue while the
head is moved in dequeue. Consequently, no matter how we
define list segments2, where head and tail are the two pointers,
at least one use case would recurse differently from the definition,
thus exhibit the “recursion divergence” scenario and lead to a proof
obligation involving unmatchable predicates. More concretely, if list
segment is defined as in Fig. 3(c), the enqueue operation would
lead to an obligation that is impossible for U+M to prove.

2.2 Scenario 2: Generalization of Predicate
when the predicate describing a loop invariant or a function

needs to be used later to prove a weaker property.

This happens in almost all realistic programs. The reason is because
verification of functional correctness is performed modularly. More
specifically, given the specifications for functions and invariants
for loops, we can first perform local reasoning before composing
the whole proof for the program using, in the context of Separation
Logic, the frame rule [32]. It can be seen that, given such divide-and-
conquer strategy, at the boundaries between local code fragments,
we would need “generalization of predicate”. A particularly im-
portant relationship between predicates, at the boundary point, is
simply that one (the consequent) is more general than the other (the
antecedent), representing a valid abstraction step.

Consider the boundaries between function calls, illustrated by
the pattern in Fig. 4(a). We start with the pre-condition Φ, calling
function func_a and then func_b. We then need to establish
the post-condition Ψ. In traditional forward reasoning, we will
write local (and consistent) specifications for func_a and func_b
such that: (1) Φ is stronger than the pre-condition of func_a; (2)

2 Typically, list segment can be defined in two ways: the moving pointer is
either the left one or the right one.

pre-condition: Φ
func_a()
func_b()

post-condition: Ψ
(a) Multiple Function Calls

pre-condition: Φ
loop: invariant I

post-condition: Ψ
(b) Iterative Loops

Figure 4: Modular Program Reasoning

the post-condition of func_a is stronger than the pre-condition
of func_b; (3) the post-condition of func_b is stronger than
Ψ. It is hard, if not impossible, to ensure that for each pair (out
of three) identified above, the antecedent and the consequent are
constructed from matchable predicates. As a concrete example, in
bubblesort program [9], a boundary between two function calls
requires us to prove that a sorted linked-list is also a linked-list.

We further argue that in software development, code reuse is
often desired. The specification of a function, especially when it
is a library function, should (or must) be relatively independent of
the context where the function is plugged in. In each context, we
might want to establish arbitrarily different properties, as long as
they are weaker than what the function can guarantee. In such cases,
it is almost certain that we will have proof obligations involving
unmatchable predicates.

Now consider the boundaries caused by loops. In iterative
algorithms, the loop invariants must be consistent with the code,
and yet these invariants are only used later to prove a property often
not specified using the identical predicates of the invariants. In the
pattern shown by Fig. 4(b), this means that the proof obligations
relating the pre-condition Φ to the invariant I and I to post-
condition Ψ often involve unmatchable predicates. For example,
programs manipulate lists usually have loops of which the invariants
need to talk about list segments. Assume that (acyclic) linked-list is
defined as below:

list(x) def
= x=null ∧ emp
| (x7→t) * list(t)

Though l̂s and list are closely related, U+M can prove neither of the
following obligations:

l̂s(x, null) |= list(x) (2.1)

l̂s(x, y) ∗ list(y) |= list(x) (2.2)

In summary, the above discussion connects to a serious issue
in software development and verification: without the ability to
relate predicates — when they are unmatchable — compositional
reasoning is seriously hampered.

2.3 On Unfold-and-Match (U+M) Paradigm
As stated in Section 1, the dominating technique to manipulate user-
defined recursive predicates is to employ the basic transformation
steps of folding and unfolding the rules, together with formula
abstraction, i.e., the U+M paradigm.

The main challenge of the U+M paradigm is clearly how to
systematically search for such sequences of fold/unfold transforma-
tions. We believe recent works [22, 28], we shall call the DRYAD
works, have brought the U+M to a new level of automation. The
key technical step is to use the program statements in order to guide
the sequence of fold/unfold steps of the recursive rules which define
the predicates of interest. For example, assume the definition for list
segment l̂s in Fig. 3(c) and the code fragment in Fig. 5(a).

l̂s(x,y)
assume(x != null)
z = x.next

l̂s(z,y)
(a) Code Fragment 1

l̂s(x,y) ∗ (y7→_)

z = y.next

l̂s(x,z)
(b) Code Fragment 2

Figure 5: U+M with List Segments



Here we want to prove that given l̂s(x,y) at the beginning, we
should have l̂s(z,y) at the end. Since the code touches the “foot-
print” of x (second statement), it directs the unfolding of the predi-
cate l̂s(x,y) containing x, to expose x 6= y ∧ (x7→t) ∗ l̂s(t,y).
The consequent can then be established via a simple matching from
variable z to t.

Now we consider the code fragment in Fig. 5(b): instead of
moving one position away from x, we move one away from y. To
be convinced that U+M, however, cannot work, it suffices to see
that unfolding/folding of l̂s does not change the second argument
of the predicate l̂s. Therefore, regardless of the unfolding/folding
sequence, the arguments y on the LHS and z on the RHS would
maintain and can never be matched satisfactorily.

The example in Fig. 5(b) exhibits the “recursion divergence”
scenario mentioned above and ultimately is about relating two
possible definitions of list segment (recursing either on the left
or on the right pointer), which U+M fundamentally cannot handle.
We will revisit this example in later Sections.

On Using Axioms and Lemmas: For systems that support general
user-defined predicates [9, 28], they get around the limitation
of U+M via the use, without proof, of additional user-provided
“lemmas” (the corresponding term used in [28] is “axioms”). As a
matter of fact, in the viewpoint of proof method, it is unacceptable
that in order to prove more programs, we continually add in more
custom lemmas to facilitate the proof system.

3. The Assertion Language CLP (H)

The explicit naming of heaps has emerged naturally in several
extensions of Separation Logic (SL) as an aid to practical program
verification. Reynolds conjectured that referring explicitly to the
current heap in specifications would allow better handles on data
structures with sharing [32]. In this vein, [13] extends Hoare
Logic with explicit heaps. This extension allows for strongest
post conditions, and is therefore suitable for “practical program
verification” [6] via constraint-based symbolic execution.

In this paper, we start with the existing specification language
in [13], which has two notable features: (a) the use of explicit heap
variables, and (b) user-defined recursive properties in a wrapper
logic language based on recursive rules. The language provides
a new level of expressiveness for specifying properties of heap-
manipulating programs. We remark that, common specifications
written in traditional Separation Logic, can be automatically com-
piled into this language.

Due to space limit, we will be brief here and refer interested
readers to [13] for more details. A heap is a finite partial map from
positive integers to integers, i.e., Heaps = Z+ ⇀fin Z. Given a heap
h ∈ Heaps with domainD = dom(h), we sometimes treat h as the
set of pairs {(p, v) | p ∈ D ∧ v = h(p)}. We note that when a pair
(p, v) belongs to some heap h, it is necessary that p is not null
(p 6= 0). TheH-language is the first-order language over heaps.

We use (∗) and (l) operators to respectively denote heap
disjointness and equation. Intuitively, a constraint like H l H1∗H2

restricts H1 and H2 to be disjoint while giving a name H to the
conjoined heaps H1∗H2.

As in [13], H is then extended with user-defined recursive
predicates. We use the framework of Constraint Logic Programming
(CLP) [16] to inherit its syntax, semantics, and most importantly, its
built-in notions of unfolding rules. For brevity, we just informally
explain the language. The following rules constitutes a recursive
definition of predicate list(x, L), which specifies a skeleton list.

list(x, L) :- x = 0, L l Ω.
list(x, L) :- L l (x7→t)∗L1, list(t, L1).

The semantics of a set of rules is traditionally known as the “least
model” semantics (LMS). Essentially, this is the set of groundings
of the predicates which are true when the rules are read as traditional
implications. The rules above dictates that all true groundings of
list(x, L) are such that x is an integer, L is a heap which contains
a skeleton list starting from x. More specifically, when the list
is empty, the root node is equal to null (x = 0), and the heap is
empty (L l Ω). Otherwise, we can split the heap L into two disjoint
parts: a singleton heap (x7→t) and the remaining heap L1, where L1

corresponds to the heap that contains a skeleton list starting from t.
We now provide the definitions for list segments, which will be

used in our later examples. Do note the extra explicit heap variable
L, in comparison with corresponding definitions in SL.

l̂s(x, y, L) :- x=y, L l Ω.
l̂s(x, y, L) :- x 6=y, L l (x 7→t)∗L1, l̂s(t, y, L1).

ls(x, y, L) :- x=y, L l Ω.
ls(x, y, L) :- x6=y, L l (t7→y)∗L1, ls(x, t, L1).

We also emphasize that the main advantage of this language is
the possibility of deriving the strongest postcondition along each
program path. It is indeed the main contribution of [13]. Specifically,
in order to prove the Hoare triple {φ}S{ψ} for a loop-free program
S, we simply generate strongest postcondition ψ′ along each of
its straight-line paths and obtain the verification condition ψ′ |=
ψ. Note that the handling of loops can be reduced to this loop-
free setting because of user-specified invariants. For procedure
calls, we still make use of the (standard) frame rule to generate
proof obligations. We put forward that, in all our experiments
(Section 5), the verification conditions are generated using the frame
rule (manually though) and the symbolic execution rules of [13].

4. The Proof Method
Background on CLP: This is provided for the convenience of the
readers. An atom is of the form p(t̃) where p is a user-defined
predicate symbol and t̃ is a tuple ofH terms. A rule is of the form
A:-Ψ, B̃ where the atomA is the head of the rule, and the sequence
of atoms B̃ and the constraint Ψ constitute the body of the rule. A
finite set of rules is then used to define a predicate. A goal has
exactly the same format as the body of a rule. A goal that contains
only constraints and no atoms is called final.

A substitution θ simultaneously replaces each variable in a term
or constraint e into some expression, and we write eθ to denote the
result. A renaming is a substitution which maps each variable in
the expression into a distinct variable. A grounding is a substitution
which maps each variable into its intended universe of discourse:
an integer or a heap, in the case of our CLP(H). Where Ψ is a
constraint, a grounding of Ψ results in true or false in the usual way.

A grounding θ of an atom p(t̃) is an object of the form p(t̃θ)
having no variables. A grounding of a goal G ≡ (p(t̃),Ψ) is a
grounding θ of p(t̃) where Ψθ is true. We write [[G]] to denote the
set of groundings of G.

Let G ≡ (B1, · · · , Bn,Ψ) and P denote a non-final goal and
a set of rules respectively. Let R ≡ A:- Ψ1, C1, · · · , Cm denote
a rule in P , written so that none of its variables appear in G. Let
the equation A = B be shorthand for the pairwise equation of the
corresponding arguments of A and B. A reduct of G using a clause
R, denoted reduct(G, R), is of the form
(B1, · · · , Bi−1, C1, · · · , Cm, Bi+1, · · · , Bn, Bi = A,Ψ,Ψ1)
provided the constraint Bi = A ∧Ψ ∧Ψ1 is satisfiable.

A derivation sequence for a goal G0 is a possibly infinite
sequence of goals G0,G1, · · · , where Gi, i > 0 is a reduct of
Gi−1. A derivation tree for a goal is defined in the obvious way.



DEFINITION 1 (Unfold). Given a program P and a goal G:
UNFOLD(G) is {G′|∃R ∈ P : G′ = reduct(G, R)}.

Given a goal L and an atom p ∈ L, UNFOLDp(L) denotes the set
of formulas transformed from L by unfolding p.

DEFINITION 2 (Entailment). An entailment is of the form L |= R,
where L andR are goals.

This paper considers proving the validity of the entailment L |= R
under a given program P . This entailment means that lm(P ) |=
(L → R), where lm(P ) denotes the “least model” of the pro-
gram P which defines the recursive predicates — called assertion
predicates — occurring in L and R. This is simply the set of all
groundings of atoms of the assertion predicates which are true in
P . The expression (L → R) means that, for each grounding θ of L
andR, Lθ is in lm(P ) implies that so isRθ.

4.1 Unfold and Match (U+M)
Assume that we start off with L |= R. If this entailment can be
proved directly, by unification and/or consulting an off-the-shelf
SMT solver, we say that the entailment is trivial: a direct proof is
obtained even without considering the “meaning” of the recursively
defined predicates (they are treated as uninterpreted). When it is not
the case — the entailment is non-trivial — a standard approach is to
apply unfolding/folding until all the “frontier” become trivial. We
note that, in our framework, we perform only unfolding, but now to
both the LHS (the antecedent) and the RHS (the consequent) of the
entailment. The effect of unfolding the RHS is similar to a folding
operation on the LHS. In more detail, when direct proof fails, U+M
paradigm proceeds in two possible ways:

• First, select a recursive atom p ∈ L, unfold L wrt. p and obtain
the goals L1, . . . ,Ln. The validity of the original entailment can
now be obtained by ensuring the validity of all the entailments
Li |= R (1 ≤ i ≤ n).

• Second, select a recursive atom q∈R, unfoldRwrt. q and obtain
the goalsR1, . . . ,Rm. The validity of the original entailment
can now be obtained by ensuring the validity of any one of the
entailments L |= Rj (1≤j≤m).

So the proof process can proceed recursively either by proving all
Li |= R or by proving one L |= Rj for some j. Since the original
LHS and RHS usually contain more than one recursive atoms, this
proof process naturally triggers a search tree. Termination can be
guaranteed by simply bounding the maximum number of left and
right unfolds allowed. In practice, the number of recursive atoms
used in an entailment is usually small, thus resulting tree size is
often manageable.

4.2 Formula Re-writing with Dynamic Induction Hypotheses
We now present a formal calculus for the proof of L |= R that
goes beyond unfold-and-match. The power of our proof framework
comes from the key concept: induction.

DEFINITION 3 (Proof Obligation). A proof obligation is of the
form Ã ` L |= R where L and R are goals and Ã is a set of
pairs 〈A; p〉, where A is an assumed entailment and p is a recursive
atom.

The role of proof obligations is to capture the state of the proof
process. Each element in Ã is a pair, of which the first is an
entailment A whose truth can be assumed inductively. A acts as an
(dynamically generated) induction hypothesis and can be used to
transform subsequently encountered obligations in the proof path.
The second is a recursive atom p, to which the application of a left
unfold gives rise to the addition of the induction hypothesis A.

Our proof rules – the obligation at the bottom, and its reduced
form on top – are presented in Fig. 6. Given L |= R, our proof
shall start with ∅ ` L |= R, and proceed by repeatedly applying
these rules. Each rule operates on a proof obligation. In this process,
the proof obligation may be discharged (indicated by True); or
new proof obligation(s) may be produced. L |=SMT R denotes the
validity of L |= R is obtained by consulting a generic SMT solver.
• The substitution (SUB) rule removes one occurrence of an as-
sertion predicate, say atom p(ỹ), appearing in the RHS of a proof
obligation. Applying the (SUB) rule repeatedly will ultimately re-
duce a proof obligation to the form which contains no recursive
atoms in the RHS, while at the same time (hopefully) most exis-
tential variables on the RHS are eliminated. Then, the constraint
proof (CP) rule may be attempted by simply treating all remaining
recursive atoms (in the LHS) as uninterpreted and by applying the
underlying theory solver assumed in the language we use.

The combination of (SUB) and (CP) rules attempts, what we call,
a direct proof. In principle, it is similar to the process of “matching”
in the U+M paradigm. For brevity we then use L |=DP R to denote
the fact that the validity of L |= R can be proved directly using
only (SUB) and (CP) rules.
• The left unfold with induction hypothesis (LU+I) is a key rule.
It selects a recursive atom p on the LHS and performs a complete
unfold of the LHS wrt. the atom p, producing a new set of proof
obligations. The original obligation, while being removed, is added
as an assumption to every newly produced proof obligation, opening
the door for the later being used as an induction hypothesis. For
technical reason needed below, we do not just add the obligation
L |= R as an assumption, but also need to keep track of the atom
p. This is why in the rule we see a pair 〈L |= R; p〉 added into the
current set of assumptions Ã.

On the other hand, the right unfold (RU) rule selects some
recursive atom q and performs an unfold on the RHS of a proof
obligation wrt. q. In the proof process, the two unfold rules will be
systematically interleaved.

EXAMPLE 1. Consider the following proof obligation:
Ã ` list(x, L) |= ls(x, y, L1), list(y, L2), L l L1∗L2.

(SUB)

(RU)

(CP)
True

Ã ` list(x, L) |= x = x, L1 l Ω, L l L1∗L
Ã ` list(x, L) |= ls(x, x, L1), L l L1∗L

Ã ` list(x, L) |= ls(x, y, L1), list(y, L2), L l L1∗L2

Figure 7: Proving with just U+M

In Fig. 7, we show how this proof obligation can be successfully
dispensed by applying (SUB), (RU), and (CP) rules in sequence. Note
how the (SUB) rule binds the existential variable y to x, simplifying
the RHS of the proof obligation.
• The induction applications, namely (IA-1) and (IA-2) rules,
transform the current obligation by making use of an assumption
which has been added by the (LU+I) rule. The two rules, also
called the “induction rules” for short, allow us to treat previously
encountered obligations as possible induction hypotheses.

Instead of directly proving the current obligation L |= R, we
now proceed by finding L and R such that L |= L |= R |= R.
The key here is to find those candidate goals where the validity of
L |= R directly follows from a “similar” assumption A, together
with θ to rename all the variables in A to the variables in the current
obligation, namely L |= R. Assumption A is an obligation which
has been previously encountered in the proof process, and Aθ
assumed to be true, as an induction hypothesis. Particularly, we
choose L and R so we can (easily) find a renaming θ such that
Aθ =⇒ L |= R ( =⇒ denotes logical implication).



(CP)
True

Ã ` L |= R
L |=SMT R, where recursive atoms are treated as uninterpreted

(SUB)
Ã ` L ∧ p(x̃) |= Rθ

Ã ` L ∧ p(x̃) |= R∧ p(ỹ)

there exists a substitution θ for
existential variables in ỹ s.t. L ∧ p(x̃) |=SMT x̃ = ỹθ

(LU+I)

⋃n
i=1{Ã ∪ {〈L |= R; p〉} ` Li |= R}

Ã ` L |= R
Select an atom p ∈ L and
UNFOLDp(L) = {L1, . . . ,Ln}

(RU)
Ã ` L |= R′

Ã ` L |= R
Select an atom q ∈ R and
R′ ∈ UNFOLDq(R)

(IA-1)
Ã ` R′θ ∧ L2 |= R

Ã ` p(x̃) ∧ L1 ∧ L2 |= R
〈p(ỹ)∧L′ |= R′; p(ỹ)〉 ∈ Ã and gen(p(x̃))≥kill(p(ỹ)),
there exists a renaming θ s.t. x̃ = ỹθ and L1 |=DP L′θ

(IA-2)
Ã ` L1 |= L′θ

Ã ` p(x̃) ∧ L1 |= R
〈p(ỹ) ∧ L′ |= R′; p(ỹ)〉 ∈ Ã and gen(p(x̃)) ≥ kill(p(ỹ))
and there exists a renaming θ s.t. x̃ = ỹθ andR′θ |=DP R

Figure 6: General Proof Rules

To be more deterministic and to prevent us from transforming to
obligations harder than the original one, we require that at least one
of the remaining two entailments, namely L |= L andR |= R, is
discharged quickly by a direct proof.

In (IA-1) rule, given the current obligation p(x̃)∧L1 ∧L2 |= R
and an assumptionA ≡ p(ỹ)∧L′ |= R′, we choose p(x̃)∧L′θ∧L2

to be our L and R′θ ∧ L2 to be our R. We can see that the
validity of L |= R directly follows from the assumption Aθ. One
restriction onto the renaming θ, to avoid circular reasoning, is that
θ must rename ỹ to x̃ where p(x̃) is an atom which has been
generated after p(ỹ) had been unfolded. Such fact is indicated by
gen(p(x̃)) ≥ kill(p(ỹ)) in our rule. While gen(p) denotes the
timestamp when the recursive atom p is generated during the proof
process, kill(p) denotes the timestamp when p is unfolded and
removed. Another side condition for this rule is that the validity of
L |= L, or equivalently, L1 |= L′θ is discharged immediately by a
direct proof.

In (IA-2) rule, given the current obligation p(x̃) ∧ L1 |= R and
an assumptionA ≡ p(ỹ)∧L′ |= R′, on the other hand, p(ỹ)θ∧L′θ
serves as our L whileR′θ serves as ourR. The validity of L |= R
trivially follows from the assumptionAθ, namely p(x̃)∧L′θ |= R′θ.
As in (IA-1), we also put similar restriction upon the renaming θ.
Another side condition we require is that the validity ofR |= R can
be discharged immediately by a direct proof. At this point we could
see the duality nature of (IA-1) and (IA-2).

Now let us briefly and intuitively explain the restriction upon
the renaming θ. Here we make sure that θ renames atom p(ỹ) to
atom p(x̃), where p(x̃) has been generated after p(ỹ) had been
unfolded (and removed). This helps to rule out certain potential
θ which does not correspond to a number of left unfolds. Such
restriction helps ensure progressiveness in the proof process before
the induction rules can take place. Otherwise, assuming the truth of
Aθ in constructing the proof for A might not be valid. This is the
reason why for each element of Ã, we not only keep track of the
assumption, but also the recursive atom p to which the application
of (LU+I) gives rise to the addition of such assumption.

It is important to note that, our framework as it stands, does
not require any consideration of a base case, nor any well-founded
measure. Instead, we depend on the Least Model Semantics (LMS)
of our assertion language and the above-mentioned restrictions on
the renaming θ. In other words, by constraining the use of the rules,

which is transparent to the user, we guarantee to achieve a well-
founded conclusion.
Least Model Semantics: Let us now give an example to illustrate
why our proof is working under the LMS. Consider the recursive
predicate p, defined as

p(x) :- p(x).

and the following two proof obligations:

p(x) |= list(x, L) (4.1)
list(x, L) |= p(x) (4.2)

We will now demonstrate that our method can prove (4.1), but not
(4.2). We remark that (4.1) holds because under the LMS, the LHS
has no model; therefore no refutation can be found regardless of
what the RHS is. In other words, false implies anything. On the
other hand, (4.2) does not hold because x = 0 (and L l Ω) is a
model of the LHS, but not a model of the RHS.

(LU+I)

(IA-1)

(CP)
True

{A} ` list(x, L) |= list(x, L)

{A} ` p(x) |= list(x, L)

∅ ` p(x) |= list(x, L)

Figure 8: Our Proof for (4.1)

Fig. 8 shows how our method would handle (4.1). We first perform
a left unfolding, adding A ≡ 〈p(x) |= list(x, L); p(x)〉 into the set
of assumptions. Note that this unfolding step kills the predicate
p(x) and generates a new predicate p(x). Thus the rule (IA-1) is
applicable now. We then re-write the LHS from p(x) to list(x, L).
Finally the proof succeeds by consulting constraint solver, treating
list(x, L) as uninterpreted.

In contrast, now consider obligation (4.2) in Fig. 9.

(RU)

(LU+I)
{A′} ` x = 0, L l Ω |= p(x)

...
∅ ` list(x, L) |= p(x)

∅ ` list(x, L) |= p(x)

Figure 9: An Unsuccessful Attempt for (4.2)



Obviously, a direct proof for this is not successful. However, if
we proceed by a right unfold first, we get back the same obligation.
Different from before, and importantly, now no new assumption
is added. We can see that the step does not help us progress and
therefore performing right unfold repetitively would get us nowhere.
Now consider performing a left unfold on the obligation. The proof
succeeds if we can discharge both

{A′} ` x = 0, L l Ω |= p(x) and
{A′} ` L l (x7→t)∗L1, list(t, L1) |= p(x),

where A′ ≡ 〈list(x, L) |= p(x); list(x, L)〉.
Focus on the obligation {A′} ` x = 0, L l Ω |= p(x).

Clearly consulting a constraint solver or performing substitution
does not help. Rule (LU+I) is not applicable since no recursive
predicate on the LHS. As before, we cannot progress using (RU)
rule. Importantly, the side conditions prevent (IA-1) and (IA-2)
from taking place. In summary, with our proof rules, this (wrong
fact) cannot be established.

4.3 Proving the Two Motivating Examples
Let us now revisit the two motivating examples introduced earlier,
on which both U+M and “Cyclic Proof” are not effective. The main
reason is that both examples involve unmatchable predicates while
at the same time exhibiting “recursion divergence”.

EXAMPLE 2. Consider the entailment relating two definitions of
list segments: l̂s(x, y, L) |= ls(x, y, L).

Our method can discharge this obligation by applying (IA-1) rule
twice. For space reason, in Fig. 10, we only show the interesting path
of the proof tree (leftmost position). First, we unfold the predicate
l̂s(x, y, L) in the LHS of the given obligation via (LU+I) rule. The
original obligation, while being removed, is added as an assumption
A1. We next make use of A1 as an induction hypothesis to perform
a re-writing step, i.e., an application of (IA-1) rule. Similarly, in
the third step, we unfold the predicate ls(t, y, L1) in the LHS via
(LU+I) rule and add the assumption A2. After unfolding in the RHS
via (RU) rule and re-writing with the induction hypothesis A2 using
(IA-1) rule, we are able to bind the existential variable z1 to z and
simplify both sides of the proof obligation using (SUB) rule. Finally,
the proof path is terminated by consulting a constraint solver, i.e.,
using (CP) rule.

EXAMPLE 3. Consider the entailment:
ls(x, y, L1), list(y, L2), L1∗L2 |= list(x, L), L l L1∗L2.

Fig. 11 shows, only the interesting proof path, how we can success-
fully prove this entailment using the (IA-2) rule. We first unfold
ls(x, y, L1) in the LHS, adding A into the set of assumptions. Then
using A as an induction hypothesis, we can rewrite the current obli-
gation via (IA-2) rule. Note that, here we use (IA-2) rule instead of
(IA-1) rule as in previous example. After applying (RU) rule, we are
able to bind the existential variable y1 to y and simplify both sides
of the proof obligation with (SUB) rule. Finally, the proof path is
terminated by consulting a constraint solver, i.e., using (CP) rule.

Let us pay a closer attention at the step where we attempt re-
writing, making using the available induction hypothesis. For the
sake of discussion, assume that instead of (IA-2) we now attempt
to apply rule (IA-1). The requirement for θ forces it to rename x
to x and y to t. However, the side condition L1 |=DP L′θ cannot be
fulfilled, since

x 6= y, L1 l (t 7→y)∗L3, list(y, L2), L1∗L2 6|=DP list(t, _).

Now return to the attempt of (IA-2) rule. The RHS of the current obli-
gation matches with the RHS of the only induction hypothesis per-
fectly. This matching requires θ to rename x back to x. On the LHS,

we further require θ to rename y to t so that ls(x, t) ≡ ls(x, y)θ.
Note that ls(x, t) was indeed generated after ls(x, y) had been un-
folded and removed (i.e., killed). The remaining transformation is
more straightforward.

THEOREM 1 (Soundness). The proof method embodied in the rules
of Figure 6 is sound.

Proof. Please see the technical report [10], where we also present a
detailed algorithm.

5. Experiments
In our modular verification framework (with the frame rule), the
problem of verifying big programs reduces to proving the kinds
of verification conditions addressed in this paper. Our experiments
are thus focused on the complexity of the program properties to be
proven instead of the size of programs.

Our evaluations are performed on a 3.2GHz Intel processor
with 2GB RAM, running Linux. We evaluated our prototype3

on a comprehensive set of benchmarks, including both academic
algorithms and real programs. The benchmarks are collected from
existing systems [8, 9, 22, 25, 28], those considered as the state-
of-the-art for the purpose of proving user-defined recursive data-
structure properties in imperative languages. Some of them are also
used in the competition SMT-COMP 2014 (Separation Logic)4.
Note that, in this competition (where lemmas are discouraged), the
benchmarks are of the same scale as ours, though ours contain
more benchmarks having shape and data properties intertwined,
making previous techniques fail to prove. We first demonstrate our
evaluation with benchmarks that the state-of-the-art can handle, then
with ones that are beyond their current supports.

5.1 Within the State-of-the-art
In this subsection, we consider the set of proof obligations where
the state-of-the-art, e.g., U+M and “Cyclic Proof”, are effective.
The purpose of this study is to evaluate the efficiency of our
implementation against existing systems. This exercise serves as a
sanity check for our implementation.

We first start with proof obligations where U+M can automati-
cally discharge without the help of user-defined lemmas. They are
collected from the benchmarks of U+M frameworks [9, 22, 28]. As
expected, our prototype proves all of those obligations; the running
time for each is negligible (∼ 0.2 second). This is because the proof
obligations usually require just either one left unfold or one right
unfold before matching (a direct proof) can successfully take place.

The second set of benchmarks are from “Cyclic Proof” [8],
which are also used in SMT-COMP 2014 (Separation Logic). They
are proof obligations which involve unmatchable predicates, thus
U+M will not be effective. We also succeed in proving all of those
obligations, less than a second for each.

In summary, the results demonstrate that (1) our prototype is
able to handle what the state-of-the-art can; (2) our implementation
is competitive enough.

5.2 Beyond the State-of-the-art
We now move to demonstrate the key result of this paper: proving
what are beyond the state-of-the-art.
Proving User-Defined Lemmas: Our prototype can prove all com-
monly used lemmas, collected from [9, 22, 25, 28], which U+M and
“Cyclic Proof” cannot handle. The running time is always less than
a second for each lemma. Table 1 shows a non-exhaustive list of

3 The detailed algorithms and our prototype implementation can also be
found in our technical report [10].
4 See https://github.com/mihasighi/smtcomp14-sl



(LU+I)

(IA-1)

(LU+I)

(RU)

(IA-1)

(SUB)

(CP)
True

{A1, A2} ` x 6=y, L l (x 7→t)∗L1, t 6=y, L1 l (z 7→y)∗L2 |= x6=y, L l (z 7→y)∗(x 7→t)∗L2

{A1, A2} ` x 6=y, L l (x 7→t)∗L1, t 6=y, L1 l (z 7→y)∗L2, ls(x, z, (x 7→t)∗L2) |= x 6=y, L l (z1 7→y)∗L3, ls(x, z1, L3)

{A1, A2} ` x 6=y, L l (x 7→t)∗L1, t 6=y, L1 l (z 7→y)∗L2, ls(t, z, L2) |= x 6=y, L l (z1 7→y)∗L3, ls(x, z1, L3)

{A1, A2} ` x 6=y, L l (x 7→t)∗L1, t 6=y, L1 l (z 7→y)∗L2, ls(t, z, L2) |= ls(x, y, L)
...

{A1} ` x 6=y, L l (x 7→t)∗L1, ls(t, y, L1) |= ls(x, y, L)

{A1} ` x 6=y, L l (x 7→t)∗L1, l̂s(t, y, L1) |= ls(x, y, L)
...

∅ ` l̂s(x, y, L) |= ls(x, y, L)

where A1 ≡ 〈l̂s(x, y, L) |= ls(x, y, L); l̂s(x, y, L)〉 and A2 ≡ 〈x6=y, L l (x 7→t)∗L1, ls(t, y, L1) |= ls(x, y, L); ls(t, y, L1)〉

Figure 10: Proving l̂s(x, y, L) |= ls(x, y, L).

(LU+I)

(IA-2)

(RU)

(SUB)

(CP)
True

{A} ` x 6= y, L1 l (t 7→y)∗L3, list(y, L2), L1∗L2 |= L4 l (t7→y)∗L2, L1∗L2 l L3∗L4

{A} ` x 6= y, L1 l (t7→y)∗L3, list(y, L2), L1∗L2 |= L4 l (t7→y1)∗L5, list(y1, L5), L1∗L2 l L3∗L4

{A} ` x 6= y, L1 l (t7→y)∗L3, list(y, L2), L1∗L2 |= list(t, L4), L1∗L2 l L3∗L4

{A} ` x 6= y, L1 l (t 7→y)∗L3, ls(x, t, L3), list(y, L2), L1∗L2 |= list(x, L), L l L1∗L2

...
∅ ` ls(x, y, L1), list(y, L2), L1∗L2 |= list(x, L), L l L1∗L2

where A ≡ 〈ls(x, y, L1), list(y, L2), L1∗L2 |= list(x, L), L l L1∗L2; ls(x, y, L1)〉

Figure 11: Proving ls(x, y, L1), list(y, L2), L1∗L2 |= list(x, L), L l L1∗L2.

common user-defined lemmas. We purposely abstract them from
the original usage in order to make them general and representative
enough. The lemmas are written in traditional Separation Logic syn-
tax for succinctness. Note that due to the duality of the definitions
for list segments, e.g., ls vs. l̂s, each lemma containing them would
usually has a dual version, which for space reason we do not list
down in Table 1. Similarly, some extensions, e.g., to capture the
relationship of collective data values (using sets or sequences) be-
tween the LHS and the RHS, while can be automatically discharged
by our prototype, are not listed in the table.

Table 1. Proving Lemmas (existing systems cannot prove).
Lemma

sorted_list(x,min) |= list(x)
sorted_list1(x, len,min) |= list1(x, len)
sorted_list1(x, len,min) |= sorted_list(x,min)
sorted_ls(x, y,min,max) ∗ sorted_list(y,min2)
∧ max ≤ min2 |= sorted_list(x,min)
ls(x, y) ∗ list(y) |= list(x)
ls(x, y) |= l̂s(x, y) and l̂s(x, y) |= ls(x, y)
l̂s1(x, y, len1) ∗ l̂s1(y, z, len2) |= l̂s1(x, z, len1+len2)
ls1(x, y, len1) ∗ list1(y, len2) |= list1(x, len1+len2)
l̂s1(x, last, len) ∗ (last 7→ new) |= l̂s1(x, new, len+ 1)
dls(x, y) ∗ dlist(y) |= dlist(x)
d̂ls1(x, y, len1) ∗ d̂ls1(y, z, len2) |= d̂ls1(x, z, len1+len2)
dls1(x, y, len1) ∗ dlist1(y, len2) |= dlist1(x, len1+len2)
avl(x, hgt,min,max, balance) |= bstree(x, hgt,min,max)
bstree(x, height,min,max) |= bintree(x, height)

Let us briefly comment on Table 1. The first group talks about sorted
linked lists. As an example, the second lemma is to state that a sorted
list with length len and the minimum elementmin is also a list with
the same length. The second, third and fourth groups are related to
singly-linked lists, doubly-linked lists, and trees respectively.
Verifying Programs without Using Lemmas: Lemmas can serve
many purposes. One of its important usage in U+M systems is to
equip a proof system with the power of user-provided re-writing
rules, to overcome the main limitation of unfold-and-match. How-

ever, in the context of program verification, eliminating the usage of
lemmas is crucial for improving the performance, because lemma ap-
plications, coupled with unfolding, often induce large search space.

We now use a subset of academic algorithms and open-source
library programs5, collected and published by [9, 28], to demonstrate
that our prototype can verify these programs without even stating
the appropriate lemmas. The library programs include Glib open
source library, the OpenBSD library, the Linux kernel, the memory
regions and the page cache implementations from two different
operating systems. While Table 2 summarizes the verification of
data structures from academic algorithms, Table 3 reports on open-
source library programs.

Table 2. Verification of Academic Algorithms (existing systems
require lemmas).

DS Function T/F
Sorted
List

find_last_iter, insert_iter,
quick_sort_iter, bubble_sort <1s

Circular
List count <1s

BST insert_iter,find_leftmost_iter
remove_root_iter, delete_iter <1s

Remark #1: Using automatic induction, we have successfully elimi-
nated the requirement for lemmas in existing systems (e.g., [9, 28])
for proving the functional correctness of the programs in Table 2 and
3. As already stated in Section 1, existing systems require lemmas
in two common scenarios. First, it is when the traversal order of
the data structures is different from what suggested by the recur-
sive definitions, e.g., OpenBSD/queue.h. Second, it is due to the
boundaries caused by iterative loops or multiple function calls. One
example is append function in glib/gslist.c, where (in addition
to the list definition) the list segment, ls(head,last), is necessary
to say about the function invariant — the last node of a non-empty
input list is always reachable from the list’s head. Other examples
are to make a connection between a sorted list and a singly-linked
list (e.g., in sorting algorithms), between two sorted partitions (e.g.
in quick_sort_iter), between a circular list and a list segment
(e.g., count), etc.

5 See http://www.cs.uiuc.edu/∼madhu/dryad/sl



Table 3. Verification of Open-Source Libraries (existing systems
require lemmas).

Program Function T/F

glib/gslist.c
Singly
Linked-List

find, position, index,
nth,last,length,append,
insert_at_pos,merge_sort,
remove,insert_sorted_list

<1s

glib/glist.c
Doubly
Linked-List

nth, position, find,
index, last, length <1s

OpenBSD/
queue.h
Queue

simpleq_remove_after,
simpleq_insert_tail,
simpleq_insert_after

<1s

ExpressOS/
cachePage.c

lookup_prev,
add_cachepage <1s

linux/mmap.c insert_vm_struct <1s

Remark #2: The verification time for each function is always less
than 1 second. This is within our expectation because whenever
our proof method succeeds, the size of the proof tree is relatively
small. For example, in order to prove the functional correctness
of append function in glib/gslist.c, we only need to prove 3
obligations, each of which requires no more than two left unfolds,
two right unfolds and two inductions6. In fact, the maximum
number of left unfolds, right unfolds and inductions used in our
system are 5, 5 and 3 respectively, even for the functions that
take U+M frameworks much longer time to prove. For example,
consider simpleq_insert_after, a function to insert an element
into a queue. This example requires reasoning about unmatchable
predicates: to prove it DRYAD needs 18 seconds and the help from a
lemma. Such inefficiency is due to the use of a complicated lemma7,
which consists of a large disjunction. Though efficient in practice,
SMT solvers still face a combinatorial explosion challenge as they
dissect the disjunction. In other words, in addition to having a higher
level of automation, our framework has a potential advantage of
being more efficient than existing U+M systems.

6. Related Work
There is a vast literature on program verification considering data
structures. The well known formalism of Separation Logic (SL) [33]
is often combined with a recursive formulation of data structure
properties. Implementations, however, are incomplete, e.g., [2, 14],
or deal only with fragments [1, 23]. There is also literature on
decision procedures for restricted heap logics; we mention just
a few examples: [3, 4, 18, 29–31]. These have, however, severe
restrictions on expressivity. None of them can handle the VC’s of
the kind considered in this paper.

There is also a variety of verification tools based on classical
logics and SMT solvers. Some examples are Dafny [20], VCC [11]
and Verifast [15] which require significant ghost annotations, and
annotations that explicitly express and manipulate frames. They
do not automatically verify the general and complex obligations
addressed in this paper; but such obligations are often resorted to
interactive theorem provers, e.g., Mona, Isabelle or Coq, enabling
manual guidance from the users.

Navarro and Rybalchenko showed that significant performance
improvements can be obtained by incorporating first-order theorem
proving techniques into SL provers [24]. However, the focus of
that work is about list segments, not general user-defined recursive
predicates. On a similar thread, [27] advances the automation of

6 Since the number of rules (disjuncts) in a predicate definition is fixed and
usually small, the size of proof tree mainly depends on the number of unfolds
and inductions.
7 We believe that the lemmas in [28] are unnecessarily complicated, because
the authors want to reduce the number of them, by grouping a few into one.

SL, using SMT, in verifying procedures manipulating list-like data
structures. The works [9, 22, 28, 36, 37] are also closely related:
they form the U+M paradigm which we have carefully discussed in
Section 1 and 2.

In the literature, there have been works on automatic induction [5,
12, 21, 35]. They are concerned with proving a fixed hypothesis,
say h(x̃), that is, to show that h() holds over all values of the
variables x̃. The challenge is to discover and prove h(x̃) =⇒ h(x̃′),
where expression x̃ is less than the expression x̃′ in some well-
founded measure. Furthermore, a base case h(x̃0) needs to be
proven. Automating this form of induction usually relies on the fact
that some subset of x̃ are variables of inductive types. In contrast, our
notion of induction hypothesis is completely different. First, we do
not require that some variables are of inductive (and well-founded)
types. Second, the induction hypotheses are not supplied explicitly.
Instead, they are constructed implicitly via the discovery of a valid
proof path. This allows much more potential for automating the
proof search. Third (and this also applied to the “Cyclic Proof”
method mentioned below), multiple induction hypotheses can be
exploited within a single proof path. Without this, as a concrete
example, we would not be able to prove l̂s(x,y) |= ls(x,y).

We further highlight the work of Lahiri and Qadeer [19], which
adapts the induction principle for proving properties of well-founded
linked list. The technique relies on the well-foundedness of the heap,
while employing the induction principle to derive from two basic
axioms a small set of additional first-order axioms that are useful
for proving the correctness of several simple programs.

We now mention works on “Cyclic Proof”, e.g., [7, 8]; and
also a somewhat related concept called “Matching Logic” [34].
“Cyclic Proof” replaces explicit induction reasoning by detecting
well-founded infinite descent over the cyclic proof graphs. (We note
that the current implementations of “Cyclic Proof” [7, 8], however,
are very limited.) The crucial departure from our work in this paper
is that the above-mentioned methods do not deal with the notion of
applying an induction step in order to generate a new and different
proof obligation. The power of our methodology comes from the
fact that the induction step can be applied repetitively along a proof
path, as in the proof of l̂s(x,y) |= ls(x,y).

We finally mention the work [17], from which the concept of
our automatic induction originates. The current paper extends [17]
first by refining the original single coinduction rule into two more
powerful rules, to deal with the antecedent and consequent of a VC
respectively. Secondly, the application of the rules has been system-
atized so as to produce a rigorous proof search strategy. Another
technical advance is our introduction of timestamps (a progressive
measure) in the two induction rules as an efficient technique to avoid
circular reasoning. Finally, the present paper focuses on program
verification and uses a specific domain of discourse involving the
use of explicit symbolic heaps and separation.

7. Concluding Remarks
We presented a framework for proving recursive properties of data
structures providing a new level of automation across a wider
class of programs. Its key technical feature is the automatic use
of induction. More specifically, the framework allows for selecting a
dynamically generated proof obligation as an induction hypothesis,
and then using this formula in an induction step in order to generate
a new proof obligation. The main technical challenge of avoiding
circular reasoning was overcome by an intricate restriction on
variable renamings. Finally, experimental evidence was presented to
show that many real-life proofs, including those of lemmas whose
unproved use has been necessary in previous systems, can now be
fully automated.
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