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Abstract. Symbolic execution with interpolation is emerging as an alternative to
CEGAR for software verification. The performance of both methods relies criti-
cally on interpolation in order to obtain the most general abstraction of the current
symbolic or abstract state which can be shown to remain error-free. CEGAR nat-
urally handles unbounded loops because it is based on abstract interpretation. In
contrast, symbolic execution requires a special extension for such loops.
In this paper, we present such an extension. Its main characteristic is that it per-
forms eager subsumption, that is, it always attempts to perform abstraction in
order to avoid exploring other symbolic states. It balances this primary desire for
more abstraction with the secondary desire to maintain the strongest loop invari-
ant, for earlier detection of infeasible paths, which entails less abstraction. Occa-
sionally certain abstractions are not permitted because of the reachability of error
states; this is the underlying mechanism which then causes selective unrolling,
that is, the unrolling of a loop along relevant paths only.

1 Introduction
Symbolic execution [21] is a method for program reasoning that uses symbolic val-
ues as inputs instead of actual data, and it represents the values of program variables
as symbolic expressions as functions of the input symbolic values. A symbolic execu-
tion tree depicts all executed paths during the symbolic execution. A path condition is
maintained for each path and it is a formula over the symbolic inputs by accumulating
constraints which those inputs must satisfy in order for execution to follow that path. A
path is infeasible if its path condition is unsatisfiable. Otherwise, the path is feasible.

Symbolic execution was first developed for program testing [21], but it has subse-
quently used for bug finding [8] and verification condition generation [3, 18], among
others. Recently, symbolic execution has been used for software verification [20, 23,
15] as an alternative to existing model checking techniques based on CounterExample-
Guided Abstraction Refinement (CEGAR) [9, 2]. Essentially, the general technique fol-
lowed by symbolic execution-like tools starts with the concrete model of the program
and then, the model is checked for the desired property via symbolic execution by prov-
ing that all paths to certain error nodes are infeasible (i.e., error nodes are unreachable).

The first challenge for symbolic execution is the exponential number of symbolic
paths. The approaches of [20, 23, 15] tackle successfully this fundamental problem by
eliminating from the concrete model those facts which are irrelevant or too-specific for



`0 x=0;
`1 while(x < n) {
`2 x++;
`3 }
`4 if(x<0)
`error error()
`5

`0 lock=0;new=old+1;
`1 while(new!=old) {
`2 lock=1;old=new;
`3 if(*){
`4 lock=0;new++;}
`5 }
`6 if(lock==0)
`error error()
`7

`0 x=0;y=0;z=1;
`1 while(*) {
`2 if(*)
`3 skip;
`4 else
`5 x++;,y++;
`6 foo();
`7 x=x-y;
`8 }
`9 if(z 6= 1)
`error error()
`10

`0 assume(y>=0);
`1 x=0;
`2 while(x < 10000) {
`3 y++;x++;
`4 }
`5 if(y+x< 10000)
`error error()
`6

(a) (b) (c) (d)

Fig. 1. Programs with Loops

proving the unreachability of the error nodes. This learning phase consists of computing
interpolants in the same spirit of conflict clause learning in SAT solvers. The use of
symbolic execution with interpolants is thus similar to CEGAR approaches [16, 22], but
symbolic execution has some benefits [23]:

1. It does not explore infeasible paths avoiding the expensive refinement in CEGAR.
2. It avoids expensive predicate image computations of, for instance, the Cartesian [1,

7] and Boolean [5] abstract domains.
3. It can recover from too-specific abstractions in opposition to monotonic refinement

schemes used in CEGAR.

The main remaining challenge for symbolic execution is due to unbounded loops which
make the symbolic execution tree not just large, but infinite. This means that some of
abstraction must be performed on the symbolic states in order to obtain finiteness. Pre-
vious work [20] assumed that loop invariants are inferred automatically by other means
(e.g., abstract interpretation). The main disadvantage is the existence of false alarms.
Another solution is proposed in [15] where abstraction refinement ‘a la‘ CEGAR is per-
formed as a separate process for loops but lacking of the benefits of symbolic execution
mentioned above. Finally, [23] proposes a naive iterative deepening method which un-
winds loops iteratively performing finite symbolic execution until a fixed depth, while
inferring the interpolants needed to keep unreachable the error nodes. Amongst these
interpolants, only those which are loop invariant are kept and it is checked whether
they still prove unreachability of error nodes. If yes, the program is safe. Otherwise, the
depth is increased and the process is repeated. Although simple this approach has the
advantage of that it performs symbolic execution also within loops as [20] and without
reporting false alarms.

Example 1 (Iterative Deepening). Consider the program in Fig. 1(a). To force termina-
tion, the iterative deepening method executes the program considering one iteration of
the loop. Using interpolants, `4 is annotated with x≥ 0 by using weakest precondition.
This interpolant preserves the infeasibility of the error path. Then, the remaining step
is to check if the interpolant is invariant. Since x ≥ 0 is an inductive interpolant, the
symbolic execution is complete and we have proven the program safe.



This program illustrates the essence of the iterative deepening approach which ob-
tains generalization by interpolation and relies on the heuristics that a bounded proof
may highlight how to make the unbounded proof. However, this approach has one ma-
jor drawback: its naive iterative deepening cannot terminate in programs like the one in
Fig. 1(b) due to the impossibility of discovering disjunctive invariant interpolants. We
elaborate on the reason below. Meanwhile, we mention that this example has been often
used to highlight the strength of CEGAR [17] for handling unbounded loops. Further, its
essential characteristic is present in real programs as we will show in Sec. 5.

In this paper, we propose a new method to enhance symbolic execution for handling
unbounded loops but yet without losing the intrinsic benefits of symbolic execution.
This method is based on three design principles: (1) abstract loops in order for the
algorithm to attempt to terminate, (2) preserve as much as possible the inherent benefits
of symbolic execution (mainly, earlier detection of infeasible paths) by propagating
the strongest loop invariants, whenever possible, and (3) refine progressively imprecise
abstractions in order to avoid reporting false alarms.

The central idea is to unwind loops iteratively while computing speculative loop
invariants which make converge quickly the symbolic execution of the loop. The algo-
rithm attempts to minimize the loss of information (i.e., ability of detecting infeasible
paths) by computing the strongest possible invariants and it checks whether error nodes
are unreachable. If yes, the program is safe. Otherwise, a counterexample is produced
and analyzed to test if it corresponds to a concrete counterexample in the original pro-
gram.. If yes, the program is reported as unsafe. Otherwise, these speculative invariants
are too coarse to ensure the safety conditions and the algorithm introduces a refinement
phase similar to CEGAR in which it computes those interpolants needed to ensure the
unreachability of the error nodes, resulting in selective unrolling only at points where
the invariant can no longer be produced due to the strengthening introduced by the
interpolants.

Example 2 (Selective Unrolling and Path Invariants). Consider our key example pro-
gram in Fig. 1(b). We first explain why simple unrolling with iterative deepening does
not work here. Essentially, there are two paths in the loop body, and the required safety
property lock 6= 0 is not invariant along both paths. In fact, we require the disjunctive
loop invariant new 6= old ∨ lock 6= 0, and this entails far more than simple invariant
discovery. Thus loop unrolling does not terminate with successive deepenings. In more
detail, we execute first one iteration of the loop. Using interpolants, `1 is annotated with
new 6= old. We test if the interpolant new 6= old is inductive. Since it is not inductive we
cannot keep it and we execute the program considering now two iterations of the loop.
During the second iteration of the loop, both paths π1 ≡ `1 →`2 →`3 →`5 →`1 and
π2 ≡ `1 →`2 →`3 →`4 →`5 →`1 must be unrolled. From π1 the symbolic execution
proves the unreachability of `error adding the interpolant old = new∧ lock 6= 0. From
π2, simple unrolling with iterative deepening will add the interpolant new 6= old after
executing the second iteration of the loop. Since the interpolant is not inductive yet after
this second iteration, we cannot keep it and the unrolling process runs forever.



In our algorithm, we proceed as follows. We also execute the symbolic path `1→`2
→`3→`5→`1′

1. We then examine the constraints at the entry of the loop `1 (i.e., called
loop header) to discover which abstraction at `1 makes possible that the symbolic state
at `1′ can entail (be subsumed by) the state at `1. We use the notion of path-based
loop invariant. A path-based loop invariant is a formula whose truth value does not
change after the symbolic execution of the path2. Clearly, the constraints lock = 0 and
new = old + 1 at `1 are no longer path-invariants after the execution of the path. We
then decide to generalize at `1 the constraints lock = 0 and new = old + 1 to true. As
a consequence, the constraints at `1′ can entail now the constraints at `1. The objective
here is to achieve the convergence of the loop by forcing subsumption between a node
and its ancestor.

Next, we backtrack and we execute the path `3 →`4 →`5′ . The symbolic state at
`5′ is subsumed by the interpolant computed at `5 since lock = 0∧old = new + 1 triv-
ially entails true. After we have executed the loop, we execute the path `1 →`6 →`error

which is now feasible due to the abstraction we performed at `1. We then trigger a
counterexample-guided refinement phase ‘a la‘ CEGAR. First, we check that the path `0
→`1 →`6 →`error is indeed spurious due to the abstraction at `1. Next, we strengthen
the abstraction at `1 in order to make the error node unreachable. It suffices here the
interpolant new = old +1. Finally, we ensure that the interpolant new = old +1 cannot
be generalized again at `1, and it we restart the process again.

After we restart we will reach the node `1′ again and we will try to weaken the
symbolic state at `1 s.t. the state at `1′ can be subsumed, as we did before. However,
the situation has now changed since we cannot abstract the interpolant new = old + 1
added by the refinement, and hence, we decide to unroll `1′ with the symbolic state
lock = 1∧old = new. We prove that the error node is not reachable from `1′ and during
backtracking annotate both `1′ and `5 with the interpolant Ψ ≡ old = new∧ lock 6=
0. This strengthening avoids now that the path `3 →`4 →`5′ can be subsumed since
lock = 0∧ new = old + 1 does not imply Ψ. We continue the path and encounter `1′′ .
It is easy to see that `1′′ cannot be subsumed by its sibling `1′ since the symbolic state
at `1′′ (lock = 0∧new = old +1) does not entail Ψ neither. However, we can still force
`1′′ to be subsumed by its ancestor `1 by abstracting the state at `1 using the notion of
path-invariant again. Note that the subsumption already holds and hence, we can halt
exploring the path without further abstraction.

Therefore, we have shown that selective unrolling only at points where we cannot
force subsumption with an ancestor can help termination. The main advantage of se-
lective unrolling is that it may achieve termination even if disjunctive invariants are
needed. However, it also introduces some new challenges.

Example 3 (Strongest Invariant versus Speculative Subsumption). Consider the pro-
gram in Fig. 1(c). Say we explore first the path `0 →`1 →`2 →`3 →`6 →`7 →`8
→`1′ . Assuming that foo() only changes its local variables, the symbolic state at `1′

1 Note that `1′ and `1 correspond to the same location where primed versions refer to different
symbolic states in the symbolic execution tree.

2 Do not be confused with the term “path invariants” used in [6].



is x = 0∧ y = 0∧ z = 1 which already entails the symbolic state at `1. As usual, dur-
ing backtracking we annotate the symbolic states with their corresponding interpolants.
The next path explored is `2→`4→`5→`6′ . In principle, the symbolic state at `6′ with
constraints x = 1∧y = 1∧z = 1 entails true, the interpolant at `6. We therefore can stop
the exploration of the path at `6′ avoiding exploring foo().

However, a key observation is that the constraints x = 0 and y = 0 are not path-
invariant if we would only consider the path `1 →`2 →`4 →`5 →`6′ . We face then
here an important dilemma. On one hand, one of our design principles is to compute
the strongest possible loop invariants. However, note that the constraint x = 0 is in fact
invariant if subsumption would not take place at `6′ due to the execution of x = x− y
at `7. On the other hand, we may suffer the path explosion problem if we would not
subsume other paths.

We adopt the solution of subsuming other paths whenever possible while abstracting
further the symbolic states of the loop headers even if we may lose the opportunity of
computing the strongest path-based loop invariants.

Coming back to the example, subsumption takes place at `6′ but we must also ab-
stract the symbolic state at `1 discarding the constraints x = 0 and y = 0 although we still
keep z = 1. In spite of this abstraction the transition `9→`error is infeasible. However, as
with the program in Fig. 1(b), we now may have some interpolants that strengthen the
path-based loop invariants in order to make unreachable the error nodes. For the sake
of discussion, assume the condition at `9 is x 6= 0. Then, the path `1→`9→`error would
be feasible since z = 1∧ x 6= 0 is satisfiable. We then check that the path `0 →`1 →`9
→`error is indeed spurious due the abstraction at `1 and discover that the interpolant
x = 0 suffices to make unreachable the error node. As a consequence of this refinement,
the subsumption at `6′ now cannot take place since the constraint x = 0 is not allowed
to be abstracted at `1. We therefore continue exploring the path `6′ →`7 →`8 →`1′′ .
The symbolic state at `1′′ (x = 0∧ y = 1∧ z = 1) entails the one at `1 if we abstract the
constraint y = 1 to true. As a result, the analysis of the loop can still terminate and the
error can be proved unreachable.

Example 4 (Other Benefits of Strongest Invariants: Faster Convergence). It is well-
studied that the discovery of loop invariants can speedup the convergence of loops [6].
The bounded program in Fig. 1(d) illustrates the potential benefits of propagating in-
variants by our symbolic execution-based approach wrt CEGAR.

CEGAR (e.g., [7, 24]) discovers the predicates (x = 0),(x = 1), . . . ,(x = 10000−1)
and also (y ≥ 0),(y ≥ 1), . . . ,(y ≥ 10000), and hence full unwinding of the loop is
needed. Say symbolic execution explores the path `0 →`1 →`2 →`3 →`4 →`2′ . It is
straightforward to see that y≥ 0 is invariant. The next symbolic path is `2 →`5 →`error

with the generalized constraint y ≥ 0 at `2. As a result, the symbolic path is infeasible
since the formula y≥ 0∧x≥ 10000∧y+x < 10000 is unsatisfiable, and hence, we are
done without unwinding the loop.

2 Related Work
Similar to [16, 22] our algorithm discovers invariant interpolants that prove the unreach-
ability of error nodes. However, we differ from them because we abstract only at loops



discovering loop invariants as strong as possible and hence, we still explore a signifi-
cant less amount of infeasible paths. Moreover, we avoid the expensive predicate image
computation in predicate abstraction approaches [17, 2]. A recent paper [5] mitigates
partially these problems by encoding large loop-free blocks into a Boolean formula re-
lying on the capabilities of a SMT solver, although for loops the same issues still remain.
Synergy/DASH/SMASH [14, 4, 13] use test-generation features to enhance the process of
verification. The main advantage comes from the use of symbolic execution provided
by DART [12] to make cheaper the refinement phase. The main disadvantage is that these
methods cannot recover from too-specific refinements (see program diamond in [23]).

To the best of our knowledge, the works of [19, 20] are the first in using symbolic
execution with interpolation in pursuit of verifying a target property. However, [19] does
not consider loops and [20] relies on abstract interpretation in order to compute loop
invariants, and as a result, false alarms can be reported. Alternatively, the verification
problem can be seen as a translation to a Boolean formula that can then be subjected
to a SAT or SMT solver. It is a fact that symbolic execution with interpolation can be
considered analogous to conflict clause learning in DPLL style SAT solvers. [15] adopts
this approach by mapping the verification problem of loop-free programs into a solving
SMT instance. In presence of loops, [15] allows choosing between different methods.
One is the use of abstract interpretation for discovering loop invariants that allow ter-
mination similar to [20]. Another alternative is the use of CEGAR but losing the ability
of detecting eagerly infeasible paths within loops.

Our closest related work is McMillan at el. [23]. This work can be dissected in two
parts. For loop-free fragments, this work is in fact covered by the earlier works [19, 20]
and hence, equivalent to ours here. However, we differ in the way we handle unbounded
loops. [23] follows the iterative deepening method explained in Sec. 1 and hence, may
not converge for some realistic programs as we have shown. Finally, [23] computes
summaries for functions and support recursive functions. Our implementation currently
performs function inlining and does not cover recursive functions. We consider these
extensions however to be an orthogonal issue which we can address elsewhere.

3 Background

Syntax. We restrict our presentation to a simple imperative programming language 3,
where all basic operations are either assignments or assume operations, and the domain
of all variables are integers. The set of all program variables is denoted by Vars. An
assignment x := e corresponds to assign the evaluation of the expression e to the variable
x. In the assume operator, assume(c), if the boolean expression c evaluates to true, then
the program continues, otherwise it halts. The set of operations is denoted by Ops.

We model a program by a transition system. A transition system is a quadruple
〈Σ, I,−→,O〉 where Σ is the set of states and I ⊆ Σ is the set of initial states. −→⊆
Σ× Σ×Ops is the transition relation that relates a state to its (possible) successors
executing operations. This transition relation models the operations that are executed
when control flows from one program location to another. We shall use `

op−−→ `′ to

3 Our implementation supports most features of sequential C including function calls and point-
ers.



denote a transition relation from ` ∈ Σ to `′ ∈ Σ executing the operation op ∈ Ops.
Finally, O⊆ Σ is the set of final states.
Symbolic Execution. A symbolic state σ is a triple 〈`,s,Π〉. The symbol ` ∈ Σ corre-
sponds to the current program counter (with special program counter `end ∈O to denote
a final location). The symbolic store s is a function from program variables to terms over
input symbolic variables. Each program variable is initialized to a fresh input symbolic
variable. The evaluation JeKs of an arithmetic expression e in a store s is defined as
usual: JvKs = s(v), JnKs = n, Je+ e′Ks = JeKs + Je′Ks, Je− e′Ks = JeKs− Je′Ks, etc. The
evaluation of Boolean expression JbKs can be defined analogously. Finally, Π is called
path condition and it is a first-order formula over the symbolic inputs and it accumulates
constraints which the inputs must satisfy in order for an execution to follow the particu-
lar corresponding path. The set of first-order formulas and symbolic states are denoted
by FO and SymStates, respectively. Given a transition system 〈Σ, I,−→,O〉 and a state
σ≡ 〈`,s,Π〉 ∈ SymStates, the symbolic execution of `

op−−→ `′ returns another symbolic
state σ′ defined as:

σ
′ ,

{
〈`′,s,Π∧ JcKs〉 if op ≡ assume(c) and Π∧ JcKs is satisfiable
〈`′,s[x 7→ JeKs],Π〉 if op ≡ x := e

(1)

Note that Eq. (1) queries a theorem prover for satisfiability checking on the path
condition. We assume the theorem prover is sound but not complete. That is, the theo-
rem prover must say a formula is unsatisfiable only if it is indeed so.

Abusing notation, given a symbolic state σ≡〈`,s,Π〉we define JσK : SymStates→ FO
as the formula the projection of the formula (

V
v ∈ Vars JvKs)∧ JΠKs on the set of pro-

gram variables Vars. The projection is performed by the elimination of existentially
quantified variables.

A symbolic path π ≡ σ0 ·σ1 · ... ·σn is a sequence of symbolic states such that ∀i •
1 ≤ i ≤ n the state σi is a successor of σi−1. The set of symbolic paths is denoted
by SymPaths. A symbolic state σ′ ≡ 〈`′, ·, ·〉 is a successor of another σ ≡ 〈`, ·, ·〉 if
there exists a transition relation `

op−−→ `′. A path π ≡ σ1 · σ2 · ... · σn is feasible if
σn ≡ 〈`,s,Π〉 such that JΠKs is satisfiable. If ` ∈ O and σn is feasible then σn is called
terminal state. Otherwise, if JΠKs is unsatisfiable the path is called infeasible and σn
is called infeasible state. A state σ ≡ 〈`, ·, ·〉 is called subsumed if there exists another
state σ′ ≡ 〈`, ·, ·〉 such that JσK |= Jσ′K. If there exists a feasible path π≡ σ0 ·σ1 · ... ·σn
then we say σk (0≤ k≤ n) is reachable from σ0 in k steps. We say σ′′ is reachable from
σ if it is reachable from σ in some number of steps.

A symbolic execution tree characterizes the execution paths followed during the
symbolic execution of a transition system by triggering Eq. (1). The nodes represent
symbolic states and the arcs represent transitions between states. We say a symbolic
execution tree is complete if it is finite and all its leaves are either terminal, infeasible
or subsumed.
Bounded Program Verification via Symbolic Execution. We follow the approach
of [20].We will assume a program is annotated with assertions of the form if (!c)
then error(), where c is the safety property. Then the verification process consists of
constructing a complete symbolic execution tree and proving that error is unreach-
able from all symbolic paths in the tree. Otherwise, the program is unsafe. One of the



challenges to build a complete tree is the exponential number of symbolic paths. An
interpolation-based solution to this problem was first proposed in [20] which we also
follow in this paper. Given an infeasible state σ≡ 〈`,s,Π〉 s.t. JΠKs is unsatisfiable we
can generate a formula Ψ (called interpolant) which still preserves the infeasibility of
the state but using a weaker (more general) formula than the original JσK. The main
purpose of using Ψ rather than the original formula associated to the symbolic state σ

is to increase the likelihood of subsumption.

Definition 1 (Interpolant). Given two first-order logic formulas Π1 and Π2 such that
Π1 ∧Π2 is unsatisfiable a Craig interpolant [10] is another first-order logic formula
Ψ such that (a) Π1 |= Ψ, (b) Ψ∧Π2 is unsatisfiable, and (c) all variables in Ψ are
common variables in Π1 and Π2.

The symbolic execution of a program can be augmented by annotating each sym-
bolic state with its corresponding interpolant such that the interpolant represents the
sufficient conditions to preserve the unreachability of the error nodes. Then, the notion
of subsumption can be redefined as follows.

Definition 2 (Subsumption with Interpolants). Given two symbolic states σ and σ′

such that σ is annotated with the interpolant Ψ, we say that σ′ is subsumed by σ if Jσ′K
implies Ψ (i.e., s.t. Jσ′K |= Ψ).

4 Algorithm
A full description of our algorithm is given in Fig. 2 and Fig. 3. For clarity and making
the reader familiar with our algorithm, we start by explaining only the parts correspond-
ing to the bounded symbolic execution engine used in [20, 23]. Having done this, we
will explain how this basic algorithm can be augmented for supporting unbounded pro-
grams which is the main technical contribution of this paper.

The input of the algorithm is an initial symbolic state σk ∈ SymStates, the transition
system P , an initial empty path π, and an empty subsumption table M . We use the
key k to refer unambiguously to the symbolic state σ in the symbolic execution tree. In
order to perform subsumption tests our algorithm maintains the table M stores entries
of the form 〈`,k〉 : Ψ, where Ψ is the interpolant at program location ` associated to
a symbolic state k in the symbolic execution tree. The interpolants are generated by a
procedure Interp : FO×FO→FO that takes two formulas and computes a Craig inter-
polant following Def. 1, Sec. 3. The output of the algorithm is the subsumption table if
the program is safe. Otherwise, the algorithm aborts..

Bounded Verification via Symbolic Execution with Interpolation. The algorithm for
bounded verification using symbolic execution with interpolants consists of building a
complete symbolic execution tree while testing error nodes are not reachable.
The algorithm starts by testing if the path is infeasible at line 1. If yes, an interpolant
is generated to avoid exploring again paths which have the same infeasibility reason.
Next, if the error node is reachable (line 3) then the error must be real since for bounded
programs no abstraction is done and hence, the program is reported as unsafe at line 7.
The next case is when the end of a path (i.e, terminal node) has been encountered.



UNBOUNDEDSYMEXEC(σk ≡ 〈`,s,Π〉,P ,π,M )

1: if JΠKs is unsat then /* infeasible path */
2: return M ∪{〈`,k〉 : false}
3: else if (` = `error) then
4: if ∃ σh ≡ 〈`h, ·, ·〉 in π s.t. `h is a loop header and

JσhK∧ JΠKs is unsat then /* spurious error */
5: return REFINEANDRESTART(σh,σk,P ,π,M )
6: else
7: printf(“The program is unsafe”) and abort() /* real error */
8: else if (` = `end) then /* end of path */
9: return M ∪{〈`,k〉 : true}
10: else if Ψ := (SUBSUMED(σk,M ) 6=⊥) then /* sibling-sibling subsumed */
11: return M ∪{〈`,k〉 : Ψ}
12: else if ∃ 〈`, ·, ·〉 in π then /* cyclic path */
13: foreach σh in π s.t. σh ≡ 〈`, ·, ·〉 do
14: if (NONPATHINV(σh,σk,M ) 6=⊥) then /* child-ancestor subsumed */
15: return M ∪{〈`,k〉 : true}
16: endfor
17: goto 19
18: else
19: Ψ := true
20: foreach transition relation `

op−−→ `′ ∈ P do /* forward symbolic execution */
21:

σ
′
k′ ,

{
〈`′,s,Π∧ JcKs〉 if op ≡ assume(c) and fresh k′

〈`′,s[x 7→ JeKs],Π〉 if op ≡ x := e and fresh k′

22: M := UNBOUNDEDSYMEXEC(σ′k′ ,P ,π ·σk,M )

23: Ψ := Ψ∧ (
V
〈·,k′〉:Ψ′

∈M ŵp(op,Ψ
′)) /* backward symbolic execution */

24: endfor
25: return M \{〈`,k〉 : Ψ

′′}∪{〈`,k〉 : Ψ∧Ψ
′′}

Fig. 2. Algorithm for Unbounded Symbolic Execution with Interpolation

The algorithm simply adds an entry in the subsumption table whose interpolant is true
(line 9) since the symbolic path is feasible and hence, there is no false paths to preserve.
Otherwise, a subsumption test at line 10 is done in order for the symbolic execution
to attempt at halting the exploration of the path. For bounded programs, this test is
quite straightforward because it suffices whether the current symbolic state entails any
interpolant computed previously at the same program location following Def. 2, Sec. 3.
This is done at line 46, Fig. 3. If the test holds, it returns the interpolant associated with
the subsuming node (line 50). Otherwise, it returns ⊥ at line 51 to point out that the
subsumption test failed.

In the remaining case, the symbolic execution moves forward one level in the sym-
bolic execution tree. The foreach loop (lines 20-24) executes one symbolic step for each
successor node 4 and it calls recursively to the main procedure UNBOUNDEDSYMEXEC

4 Note that the rule described in line 21 is slightly different from the one described in Sec. 3
because no satisfiability check is performed. Instead, this check is postponed and done by
line 1.



NONPATHINV(σh ≡ 〈`,s, ·〉,σk,M )

26: let Ψ be s.t. 〈`,h〉 : Ψ ∈M . Otherwise, let Ψ be true
27: let I ≡ c1∧ . . .∧ cn be JσhK
28: i := 1, NonInv := /0

29: repeat
30: if JσkK |= I |= Ψ then
31: foreach σ≡ 〈·,s, ·〉 s.t. σ is k-reachable (k > 0) from σh
32: replace s with HAVOC(s,MODIFIES(NonInv))
33: endfor
34: return
35: else
36: I = I − ci /* delete from I the constraint ci */
37: NonInv := NonInv∪{ci}
38: i := i+1
39: until (i > n)
40: return ⊥

REFINEANDRESTART(σh ≡ 〈`, ·, ·〉,σk,P ,π,M )

41: let π be σ0 · · ·σh−1 ·σh · · ·
42: Ψ := INTERP(JσhK,JσkK)
43: M := M \ {〈`′,k′〉 : Ψ

′ | 〈`′,k′〉 : Ψ
′
, σk′ is k-reachable (k > 0) from σh}

44: M := M \{〈`,h〉 : Ψ
′}∪{〈`,h〉 : Ψ∧Ψ

′}
45: return UNBOUNDEDSYMEXEC(σh,P ,σ0 · · · ·σh−1,M )

SUBSUMED(σk ≡ 〈`, ·, ·〉,M )

46: if ∃ 〈`′,k′〉 : Ψ ∈M s.t. (` = `′) and (JσkK |= Ψ) then
47: if k and k′ have a common loop header ancestor σh in the tree then
48: if (NONPATHINV(σh,σk,M ) 6=⊥) then return Ψ

49: else return ⊥
50: else return Ψ

51: return ⊥

Fig. 3. NONPATHINV, REFINEANDRESTART and SUBSUMED Procedures

with each successor state (line 22). Once the recursive call returns the key remain-
ing step is to compute an interpolant that generalizes the symbolic execution tree at
the current node while preserving the unreachability of the error nodes. The procedure
ŵp : Ops×FO→ FO computes ideally the weakest precondition (wp) [11] which is
the weakest formula on the initial state ensuring the execution of an operation in a final
state, assuming it terminates. In practice, we approximate wp by making a linear num-
ber of calls to a theorem prover following the techniques described in [20]. The final
interpolant Ψ added in the subsumption table is a first-order logic formula consisting of
the conjunction of the result of ŵp on each child’s interpolant (line 23).

Unbounded Verification via Symbolic Execution with Interpolation. For handling
unbounded loops we need to augment the basic algorithm described so far in several
ways.



Loop abstractions. The main abstraction is done whenever a cyclic path is detected by
forcing subsumption between the current node and any of its ancestors. The mechanism
to force subsumption takes the constraints from the symbolic state associated with the
loop header (i.e., entry point of the loop) and it abstracts any non-invariant constraint
for that particular path. By doing this, we ensure that the symbolic state of the current
node entails the symbolic state of its ancestor. Here, we use the concept of path-based
loop invariant. Using Floyd-Hoare notation, given a path π and a constraint c, we say c
is path-based invariant along π if {c} π {c}. That is, whenever c holds of the symbolic
state before the execution of path, then c will hold afterward.

Let us come back to the algorithm in Fig. 2. In line 12 we have detected a cyclic
path. The foreach loop (lines 13-16) forces subsumption between the current symbolic
state and any of its ancestors. The procedure NONPATHINV in Fig. 3 attempts the cur-
rent state σk to entail some generalization of its ancestor state σh. This generalization
is basically to discover a loop invariant at the symbolic context of the loop header.
Clearly, this procedure has a huge impact in the symbolic execution since our ability
of detecting infeasible paths depends on the precision of this generalization. This task
is, in general, undecidable and even if the strongest invariants can be computed it is, in
general, exponential.

Our method followed in NONPATHINV is quite simple but it works well in practice
and it requires a linear number of calls to a theorem prover. The invariant is a subset of
the constraints at the symbolic state σh, called I . Initially, I contains all constraints σh
(line 27). At each iteration of the repeat loop (lines 29-39), we test if the symbolic state
at σk entails I (line 30). If yes, we are done. Otherwise, we delete one constraint from
I and repeat the process.

If we discover a generalization of the symbolic state of the loop header in order
for the test at line 30 to hold then NONPATHINV needs to propagate it to all reachable
states from the header by abstracting their symbolic stores at line 31. For this pur-
pose, we use HAVOC(s,Vars) , ∀v ∈ Vars • s[v 7→ z], where z is a fresh variable, and
MODIFIES(c1 . . .cn) which takes a sequence of constraints and it returns the set of vari-
ables that may be modified during its execution. Note that this generalization is a bit
more elaborated since it needs to be propagated from the symbolic state of the loop
header to all symbolic states reachable from it both in the current path and also in fu-
ture paths. We omit this process from our description since although trivial it is quite
tedious. We assume that whenever a generalization for a loop header is done all reach-
able symbolic states update their symbolic stores accordingly.

It is also important to notice that the invariance property is not closed under inter-
section since the intersection of two invariants may not be an invariant, in general. How-
ever, we construct loop invariants by testing path-by-path and discarding non-invariant
constraints from the symbolic state of the loop header. This is equivalent to compute
path-based loop invariants for each path within a loop and then intersect them at the loop
header. This is correct because NONPATHINV keeps only invariants which are closed
under intersection. This limitation, in principle, preclude us to compute the strongest
invariants but based on our experience it is not a problem and it is vital for an efficient
implementation.



Refine and Restart. Clearly, the use of abstractions can mitigate the termination prob-
lems of symbolic execution but it may introduce false alarms. We therefore add a new
case at line 4 in our algorithm to test whether abstract counterexamples correspond
to counterexamples in the concrete model of the program. Clearly, this case resembles
to the refinement phase in CEGAR. Whenever a counterexample is found, we test if its
constraints are indeed satisfiable. If yes, the error must be real. Otherwise, we inspect
all loop headers in the counterexample and find out which one introduced an abstraction
that cannot keep unreachable the error node. Once we have found the loop header, the
procedure REFINEANDRESTART, described in Fig. 3, infers an interpolant that excludes
that particular counterexample (line 42) and restarts the symbolic execution from that
loop header at line 45. It is worth mentioning that although our algorithm can then
perform expensive refinements as CEGAR, the refinements are confined only to loop
headers as in opposition to CEGAR where refinements may involve any program point.
This is an important feature for performing more efficient refinements.

Interestingly now, the interpolants added by REFINEANDRESTART can affect the
abstractions done by procedure NONPATHINV explained so far. Let us come back to
NONPATHINV. In principle, we can always find a path invariant true by deleting all con-
straints. However, note that the test at line 30 is restrained by ensuring that the candidate
invariant must entail the interpolant associated with the loop header obtained possibly
from a previous refinement. If this entailment does not hold, the procedure NONPATHINV

fails. This is, in fact, our mechanism to unroll selectively those points where the invari-
ant can no longer be produced due to the strengthening introduced by the interpolants.

Subsumption. The program of Fig. 1(c) in Sec. 1 illustrated that in presence of loops the
subsumption test (SUBSUMED, Fig. 3) cannot be simply an entailment test. Whenever we
attempt at subsuming a symbolic state within a loop, we need additionally to be aware
of which constraints may not be path-invariant anymore and generalize the symbolic
state of the nearest loop header accordingly. That is the reason of SUBSUMED calling
NONPATHINV at line 48. If NONPATHINV fails (i.e., it could not generalize the state of
the loop header) then subsumption cannot take place.

Moreover, the correctness of SUBSUMED assumes that whenever a loop header h is
annotated with its interpolant Ψ, the subsumption table M is updated in such way that
all entries associated with program points within the loop with entry h must conjoin
their interpolants with Ψ.

Example 5 (Running example). We finally show how our algorithm executes the pro-
gram in Fig 1(b), Sec. 1 and proves the program is safe. The initial algorithm state is
σ0 ≡ 〈`0, [lock 7→ Slock,old 7→ Sold ,new 7→ Snew], true〉, π≡ nil, and M ≡ /0.

First iteration. We first execute the successor of σ0 obtaining σ1≡ 〈`1, [lock 7→ 0,old 7→
Sold ,new 7→ Sold + 1], true〉. Then, we continue augmenting the path by running the
foreach loop (lines 20-24) and calling recursively to UNBOUNDEDSYMEXEC (line 22)
until we find a cyclic path (line 12) `0→`1→`2→`3→`5→`1 with π≡σ0 ·σ1 ·σ2 ·σ3 ·
σ5, M ≡ /0, and σ1′ ≡ 〈`1, [lock 7→ 1,old 7→ Sold +1,new 7→ Sold +1],Sold +1 6= Sold〉.
We call NONPATHINV(σ1,σ1′ ,M ). The formulas Jσ1K ≡ lock = 0∧ new = old + 1 and
Jσ1′K ≡ lock = 1∧ old = new are obtained by projecting the symbolic states of σ1
and σ1′ onto the variables lock, old and new. The test at line 30 holds after deleting



from I the constraints lock = 0 and new = old + 1, since these two constraints are not
path-invariant. We backtrack up to σ3 which after the loop abstraction is 〈`3, [lock 7→
1,old 7→ Snew,new 7→ Snew], true〉. We then execute `3 →`4 →`5, obtaining the state
σ5′ ≡ 〈`5, [lock 7→ 0,old 7→ Sold ,new 7→ Sold + 1], true〉 but M contains now two new
entries {〈`1,1′〉 : true,〈`5,5〉 : true}. As a result, SUBSUMED(σ5′ ,M ) (line 10) succeeds
since the interpolant associated with `5 is true. In addition, since the symbolic states σ5
and σ5′ are within a loop whose header is denoted by σ1 we call NONPATHINV(σ1,σ5′ ,M )
which also succeeds without making further generalization.

We continue backtracking up to σ1 with M ≡ {〈`2,2〉 : true,〈`3,3〉 : true,〈`4,4〉 :
true,〈`5,5〉 : true,〈`5,5′〉 : true,〈`1,1′〉 : true}. Prior to executing `1→`6 recall that the
symbolic state σ1 was generalized, and hence, the reachable state σ6 is, in fact, σ6 ≡
〈`6, [lock 7→ Slock,new 7→ Snew,old 7→ Sold ],Snew = Sold〉. Then, we continue execut-
ing symbolically until we finally reach `error with σerror ≡ 〈`error, [lock 7→ Sold ,new 7→
Snew,old 7→ Sold ],Snew = Sold ∧Slock = 0〉. We test at line 4 whether Jσ1K≡ lock = 0∧
new = old+1∧JσerrorK≡ old = new∧lock = 0 is satisfiable. We then call REFINEANDRESTART

(line 5) with σ1, σerror, π ≡ σ0 ·σ1 ·σ6, and M . We compute the interpolant (line 42)
new = old + 1 calling INTERP(Jσ1K,JσerrorK), delete all elements from M which were
added by any state reachable from σ1 (line 43), add a new element with the new inter-
polant (i.e., M ≡ {〈`1,1〉 : new = old +1}) (line 44), and finally, we restart by calling
UNBOUNDEDSYMEXEC (line 45).

Second iteration. After restart, we detect again the cyclic path `0 →`1 →`2 →`3 →`5
→`1 with σ1 and σ1′ as before, and call NONPATHINV. The key difference is that M ≡
{〈`1,1〉 : new = old + 1}. Therefore, the test at line 30 always fails and the procedure
returns ⊥ (line 40) without performing any generalization.

We then execute `1→`2 (second loop unroll) obtaining the infeasible symbolic state
σ2′ ≡ 〈`2, [lock 7→ 1,old 7→ Sold +1,new 7→ Sold +1],Sold +1 6= Sold ∧Sold +1 6= Sold +
1〉. We then backtrack and execute the path `1→`6→`error. The state at `error is infeasi-
ble now. We backtrack again, adding in M ≡ {〈`1,1′〉 : old = new∧ lock 6= 0,〈`5,5〉 :
old = new∧ lock 6= 0, . . .}, until we execute the path `3 →`4 →`5 again (first loop un-
roll). We call SUBSUMED as we did in the first iteration but now the symbolic state σ5′

cannot be subsumed because the formula Jσ5′K ≡ lock = 0∧ new = old + 1 does not
entail the interpolant 〈`5,5〉 ∈M . We execute another transition reaching `1 and detect
again a cyclic path with the state σ1′′ ≡〈`1, lock 7→ 0,old 7→ Sold ,new 7→ Sold +1],Sold +1 6= Sold〉.
We call NONPATHINV(σ1,σ1′′ ,M ). The formulas associated with σ1 and σ1′′ are Jσ1K≡
lock = 0∧ new = old + 1 and Jσ1′′K ≡ lock = 0∧ new = old + 1. Therefore, it is easy
to see that NONPATHINV succeeds without any further abstraction and hence, we can
obtain a complete symbolic execution tree without error nodes.

5 Results

We report the results of the evaluation of our prototype implementation called TRACER
on several real-world C programs, commonly used in the verification community and
compared with the iterative deepening algorithm used in McMillan at el. [23]. The first
two programs are Linux device drivers: qpmouse and tlan. The next four programs are
Microsoft Windows device drivers: kbfiltr, diskperf, floppy, and cdaudio. The program



tcas is an implementation of a traffic collision avoidance system. The program is in-
strumented with ten safety conditions, of which five are violated. We omit the unsafe
cases since there is no differences between TRACER and iterative deepening. Finally,
ssh clnt.1 and ssh srvr.2 are a client and server implementation of the ssh protocol.

TRACER models the heap as an array. A theorem prover is used to decide linear
arithmetic formulas over integer variables and array elements in order to check the
satisfiability and entailment of formulas. Functions are inlined and external functions
are modeled as having no side effects and returning an unknown value.

ITERDEEP TRACER

Program LOC S T(s) S T(s) R
qpmouse 400 1033 1.5 1033 1.99 1
tlan 8069 4892 12.3 4892 13.5 0
kbfiltr 5931 1396 1.56 1396 2.59 0
diskperf 6984 5465 16.8 5465 18.46 0
floppy 8570 4965 8.33 4995 13.26 2
cdaudio 8921 13512 27.98 13814 34.48 3
tcas-1a 394 5386 6.59 5386 7.08 0
tcas-1b 394 5405 6.42 5405 6.89 0
tcas-2a 394 5386 6.36 5386 6.84 0
tcas-3b 394 5375 6.33 5375 6.87 0
tcas-5a 394 5386 6.38 5386 6.88 0
ssh clnt.1 2521 ∞ ∞ 47825 593 77
ssh srvr.2 2516 ∞ ∞ 44213 462 63

Table 1. Iterative Deepening vs TRACER.

The results on Intel 2.33Ghz
3.2GB are summarized in Ta-
ble. 1. We present two set of
numbers. For ITERDEEP (Itera-
tive Deepening) the number of
nodes of the symbolic execution
tree (S) and the total time in sec-
onds (T), and for TRACER these
two numbers and also the col-
umn R that shows the number of
restarts performed by TRACER.
A restart occurs when an ab-
straction for a loop discovered
by TRACER is too coarse to
prove the program is safe.

Based on the numbers shown
in Fig. 1 we can conclude that
the overhead of our approach
pays off. The main overhead
comes basically from the fre-

quent use of the procedure NONPATHINV since this procedure is used whenever the
algorithm attempts at subsuming a node. In spite of this, the overhead is quite reason-
able. More importantly, the key difference is that our approach can terminate with the
programs ssh clnt.1 and ssh srvr.2. However, an iterative deepening cannot terminate
the proof after 2 hours or 2.5Gb of memory consumption. The reason is similar to the
one present in the program of Fig. 1(b) in Sec. 1: disjunctive invariant interpolants are
needed for the proof.

Finally, it is worth mentioning that in the current version of TRACER we have not
implemented any heuristics in the refinement phase. It is well known that heuristics
can have a huge impact in the convergence of the algorithm reducing the number of
refinements.

6 Conclusions
We extended symbolic execution with interpolation to address unbounded loops in the
context of program verification. The algorithm balances eager subsumption in order to
prune symbolic paths with the desire of discovering the strongest loop invariants, in
order to detect earlier infeasible paths. Occasionally certain abstractions are not permit-
ted because of the reachability of error states; this is the underlying mechanism which



then causes selective unrolling, that is, the unrolling of a loop along relevant paths only.
Moreover, we implemented our algorithm in a prototype called TRACER and presented
some experimental evaluation.
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