
Modeling Systems in CLP with Coinductive Tabling

JOXAN JAFFAR, ANDREW E. SANTOSA, AND RĂZVAN VOICU

School of Computing
National University of Singapore

{joxan,andrews,razvan}@comp.nus.edu.sg

Abstract. We present a methodology for the modelling of complex program be-
havior in CLP. The first part of this paper is an informal description about how
to represent a system in CLP. At its basic level, this representation captures the
precise trace semantics of concurrent programs, or even high-level specifications,
in the form of a predicate transformer. Based on traces, the method can also cap-
ture properties of the underlying runtime system such as the scheduler and the
microarchitecture, so as to provide a foundation for reasoning about resources
such as time and space.

The second part of this paper presents a formal and compositional proof
method for reasoning about safety properties of the underlying system. The idea
is that a safety property is simply a CLP goal, and is proof established by exe-
cuting the goal by a CLP interpreter. However, a traditional CLP interpreter does
not suffice. We thus introduce a technique of coinductive tabling to CLP. Essen-
tially, this extends CLP so that it can inductively use proof obligations that are
assumed but not yet proven, and it can generate new proof obligations assertions
dynamically.

1 Introduction

Constraint Logic Programming (CLP) [11] has been successful as a framework for
executable specifications, and several CLP systems have been successfully deployed
widely in application areas such as artificial intelligence and combinatorial optimiza-
tion (see eg. [14]). Its competitive advantage is expressive power coupled with a pow-
erful inference method. In this paper, we present a systematic application of CLP to
reasoning about complex program behavior.

We start with an informal but broad coverage of how to model various aspects of
the operation semantics of programs. Starting with the basic concepts of strongest-
postcondition and weakest-precondition, we then consider sequential and concurrent
systems, including perpetual processes, and various synchronization mechanisms. Our
modeling of these operational concepts is exact in the sense that the trace semantics of
the underlying program is represented in the CLP model. Going further, we show how
also to model the machine in which the program executes, focusing in particular, on the
scheduler for nondeterministic actions (such as the choice of which process to execute
next) and on the microarchitecture, which is often critical in determining the cost of
execution. We thus cover reasoning not only about the values of program variables, but
also about resources. At the end of this section, we show that a safety proof of a program

is established by executing a particular goal against the CLP model of the program, thus
providing a generic and compositional methodology for program reasoning with CLP.
However, basic CLP is not quite sufficient for this purpose.

The second part of this paper contains the main technical contribution: extending
basic CLP with coinductive tabling. Essentially, this extends CLP so that it can induc-
tively use proof obligations that are assumed but not yet proven, and it can generate
new proof obligations assertions dynamically. This technique is akin to the notion of
tabling in logic programming systems (see eg. [18]) in that the main purpose is to ob-
tain termination when dealing with recursion. In standard tabling, procedure calls and
their answers are tabled so as not to repeat them. In our tabling, the main differences are
first that the setting is CLP and not just logic programming, and more importantly, that
proof obligations and not just calls are tabled. (We do not table answers.) Termination is
obtained by applying a principle of coinduction (see eg: Appendix B of [15]), that is: a
recursive proof obligation may be proved by assuming that a preceding proof obligation
is true.

Finally, we briefly discuss some important extensions that are not covered in this
paper. The most important extension concerns the use of abstraction, in the manner
of abstract interpretation [4]. We shall just explain that our proof method may be aug-
mented by a liberally applying a notion of abstraction to a goal in a proof, preserving
correctness. The advantage of abstraction is, of course, to enhance the process of ter-
mination. Another important extension is to deal with liveness or progress. Here, we
discuss briefly how to include a notion of well-founded induction. Finally, we mention
how to deal with an unbounded number of processes, ie: parameterized systems.

1.1 Related Work on CLP and Program Reasoning

There has been some recent work on using logic programs to describe concurrent pro-
grams, and which employ a systematic algorithm. Work based on the XSB and XMC
systems [17] used assertions based on the µ-calculus and executed the logic program
representations of programs and assertions using a tabling mechanism. Delzanno and
Podelski [6] showed that a transition system and its CTL-based verification conditions
can be translated into a CLP program in way that the symbolic CLP fixpoint opera-
tions can be used in the proof process. There are other works using CLP to describe
program behavior, eg. that by Flanagan [8] for imperative programs, and that by Gupta
and Pontelli [9] for timed automata, but these do not describe a systematic CLP-based
algorithm.

2 CLP Preliminaries

We first briefly overview CLP [11]. The universe of discourse is a set of terms, inte-
gers, and arrays of integers. A constraint is written using a language of functions and
relations. They are used in two ways, in the base programming language to describe ex-
pressions and conditionals, and in user assertions, defined below. In this paper, we will
not define the constraint language explicitly, but invent them on demand in accordance

with our examples. Thus the terms of our CLP programs include the function symbols
of the constraint language.

An atom, is as usual, of the form p(t̃) where p is a user-defined predicate symbol
and the t̃ a tuple of terms. A rule is of the form A:-B̃,φ where the atom A is the head
of the rule, and the sequence of atoms B̃ and the constraint φ constitute the body of the
rule. A goal G has exactly the same format as the body of a rule. We say that a rule is
a (constrained) fact if B̃ is the empty sequence. A ground instance of a constraint, atom
and rule is defined in the obvious way.

Let G = (B1, · · · ,Bn,φ) and P denote a goal and program respectively. Let R =
A:-C1, · · · ,Cm,φ1 denote a rule in P, written so that none of its variables appear in
G. Let A = B, where A and B are atoms, be shorthand for equations between their
corresponding arguments. A reduct of G using R is of the form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,Bi = A∧φ∧φ1)
provided Bi = A∧φ∧φ1 is satisfiable.

A derivation sequence is a possibly infinite sequence of goals G0,G1, · · · where
Gi, i > 0 is a reduct of Gi−1. If there is a last goal Gn with no atoms, notationally (�,φ)
and called a terminal goal, we say that the derivation is successful and that the answer
constraint is φ. A derivation is ground if every reduction therein is ground.

In what follows, we shall only be concerned with goals that contain at most one
atom. Thus the reduct of a goal is deterministic on the rule that is employed.

Definition 1 (Unfold). Given a program P and a goal G which contains one atom.
Then unfold(G) is the set of reducts obtained by using all the rules. An unfold operation
on G results in a subset of unfold(G); we say the operation is complete if it returns
all of unfold(G). An unfold tree of G (sometimes also called a proof tree) is a tree of
goals obtained by successively applying unfold operations on G, and then on the results
of the previous operation, etc. We say that the unfold tree is complete if all the unfold
operations used in its construction were complete1.

3 Modeling in CLP

We start by modeling the program P with variables X̃ as a predicate transformer [7]
by first identifying target variablesX̃ t corresponding to X̃ , and then establishing a con-
straint on X̃ and X̃ t .

3.1 The Logical Basis of CLP Modeling

To outline the predicate transformer aspect of a (possibly nondeterministic) program,
we express its semantics as a set of CLP clauses that define the predicate state(PP,X̃ , X̃ t),
where the logic variables X̃ and X̃ t represent values of program variables at program
point PP, and at a target program point, respectively. The state predicate realizes the
following relation: if X̃ are values of variables at program point PP, then X̃ t are possible
values of the program variables at the target program point. There are two alternatives

1 Thus a complete tree is not necessarily one where unfold operations have been exhaustively
performed; rather, it is where each unfold operation used was complete.

for implementing such a relation: bottom up, using strongest postcondition propagation,
and top-down, using weakest precondition propagation. We introduce these concepts by
example.

Consider the simple program <0> x := x + 1 <1> where 0 denotes the entry
point and 1 denotes the exit point. The bottom-up CLP model of this program is:

state(0, X, Xt) :- state(1, X + 1, Xt).
state(1, X, X).

Running a goal such as ?- state(0, X, Xt), X > 5, would return Xt > 6, the strongest
postcondition of P when run with input x > 5. Similarly, the top-down CLP model:

state(1, X, Xt) :- state(0, X - 1, Xt).
state(0, X, X).

captures the weakest precondition of P. Running ?- state(1, X, Xt), X > 5, would
return Xt > 4.

This simple idea is reminiscent of Hoare-like specifications of programs, such as
{x > 5} x := x + 1 {x > 6} or {x > 4} x := x + 1 {x > 5}, using the above
examples. However, our approach is more powerful, in the sense that it can represent
properties of nonterminating programs. Consider for example the program <0> while
(true) x := x + 1 <1> endwhile <2> where the program points 0, 1 and 2 are
displayed. The bottom-up CLP model:

state(0, X, Xt) :- state(1, X + 1, Xt).
state(1, X, Xt) :- state(1, X + 1, Xt).
state(1, X, X).

captures in Xt all the values of X that can appear at program point 1. That is, the goal
?- state(0, X, Xt), X > 5, for example, has as solutions: Xt > N for all N > 6.

Figure 1 shows a while program and both its top-down and bottom-up CLP mod-
els. The target program points are 3, for the bottom-up model, and 0 for the top-down
model. We note that for top-down models, target variables are required only by the com-
positional nature of our modeling. While this is an important feature, it is not the topic
of interest in many of our examples; thus, for clarity, we remove the target variables
from such examples.

We note that we could enhance the CLP model of a program such that the target
program point become a parameter of the state predicate. The major benefit of this
approach is that the CLP model of the program at hand allows queries on multiple
target program points. Moreover, it is rather obvious that such a CLP model could be
automatically derived for any program. While this approach is of practical importance,
and has a straightforward implementation, it would unnecessarily complicate our ex-
amples. To illustrate our points, we shall rather use specialized, manually derived CLP
models in our examples.

3.2 Concurrency

Consider our next example user program shown in Figure 2, a two-process Bakery mu-
tual exclusion algorithm. Note that the point 〈2〉 indicates the critical section. Initially,
t1 = t2 = 0. The CLP model is shown in Figure 3. Note that we now use a pair of pro-
gram points, instead of just one. Note also that we consider “blocking” concurrency

〈0〉 while (i < n) do
〈1〉 i := i + 1
〈2〉 end 〈3〉

Top-Down Model
state(0,I,N,I,N) :- I=0, N≥0.
state(1,I,N,It,Nt) :- I<N, state(0,I,N,It,Nt).
state(1,I,N,It,Nt) :- I<N, state(2,I,N,It,Nt).
state(2,I+1,N,It,Nt) :- state(1,I,N,It,Nt).
state(3,I,N,It,Nt) :- I≥N, state(0,I,N,It,Nt).
state(3,I,N,It,Nt) :- I≥N, state(2,I,N,It,Nt).

Bottom-Up Model
state(0,I,N,It,Nt) :- I≥N, state(3,I,N,It,Nt).
state(0,I,N,It,Nt) :- I<N, state(1,I,N,It,Nt).
state(1,I,N,It,Nt) :- state(2,I+1,N,It,Nt).
state(2,I,N,It,Nt) :- I<N, state(3,I,N,It,Nt).
state(2,I,N,It,Nt) :- I≥N, state(3,I,N,It,Nt).
state(3,I,N,I,N).

Fig. 1. Simple While Program

while (true) do
〈0〉 t1 := t2 + 1
〈1〉 await (t1<t2 ∨ t2=0)
〈2〉 t1 := 0

end

while (true) do
〈0〉 t2 := t1 + 1
〈1〉 await (t2<t1 ∨ t1=0)
〈2〉 t2 := 0

end

Fig. 2. Bakery-2

here, that is, we have an “await” statement, which is modelled to block until the speci-
fied condition holds. The safety property of interest, mutual exclusion, can be obtained
by proving that ?- state([2,2], T1, T2) has no solutions.

In this example, we adopted an asynchronous composition (instructions interleav-
ing) of processes. Our framework is also flexible enough to model synchronous compo-
sition, as exemplified in [13]. It is also possible to replace the awaits with busy loops,
obtaining non-blocking concurrent programs.

3.3 High-Level Specifications

Consider a timed automaton [1] in Figure 4 describing a daily schedule of a worker. In
this example, the variable y is not a clock, but a simple continuous (real or rational) vari-
able. Constraints involving both clocks and dynamically changing variables, as shown,
cannot be handled by current timed automata model checkers. This is because the stan-
dard algorithms depend on an analysis of clock regions, which use a more restrictive
class of real constraints. Here, we may query if a worker can be out of the house for
more than 20 hours, for example, by showing that ?- state(0,X,Y,Z) implies Y ≤
20.

We show our top-down CLP model in Figure 5. See [13] for more details and ex-
amples of CLP modeling of timed automata.

state([0,0], T1,T2) :- T1=0, T2=0.
state([1,P2], T1’,T2) :- T1’=T2+1, state([0,P2], T1,T2).
state([2,P2], T1,T2) :- (T1<T2; T2=0), state([1,P2], T1,T2).
state([0,P2], T1’,T2) :- T1’=0, state([2,P2], T1,T2).
state([P1,1], T1,T2’) :- T2’=T1+1, state([P1,0], T1,T2).
state([P1,2], T1,T2) :- (T2<T1; T1=0), state([P1,1], T1,T2).
state([P1,0], T1,T2’) :- T2’=0, state([P1,2], T1,T2).

Fig. 3. Bakery-2 Top-Down CLP Model

Y :=Y +Z

Y < 4,Z:=0

Office
X −Y ≤ 10

X −Y > 8,Y :=X

X :=0,Y :=0

Y :=0

Cafe
Z < 2

Home

Fig. 4. Worker Timed Automaton

We now present an example of StateCharts. There are two main versions of their
semantics: the Statemate semantics [10] and the UML semantics [16]. It is easy to
adopt any of these for modeling in CLP. Here we show how we model a train crossing
Statechart example of [3], using the Statemate semantics, in Figure 6.

We show our bottom-up CLP model in Figure 7. Here we model a state of a State-
chart by a term s(Name, Substates List). At any time, a primitive state has an empty
substates list, an OR-state has only one state in its substates list, while an AND-state has
more than one. The substates list is dynamically changing, depending on the currently
active substate. Every Statechart has a conceptual root state, which is the topmost state
in the hierarchy. We use the term configuration to denote a term of the form s(root,
Substates List), for example, the configuration

s(root,[s(train,[s(stop,[])]),s(crossing,[s(closed,[])])])
with which the execution of the Statechart begins. The state transition of a Statechart is
thus a change from one configuration to another, which is triggered by some event2.

Here we do not have program point variables (ie: there is just one point). The pred-
icate sctrans/4 implements a recursion through the hierarchical structure of the stat-
echart according to Statemate semantics: It finds a highest state in the hierarchy where
an event is enabled, and changes the configuration according to the execution of the
event defined in sctrans def/4, for which we show two sample rules. Our modeling
is flexible: Had we swapped the occurrence order of both rules, we obtain the UML
semantics, which executes an event as low in the hierarchy as possible. The modeling
is also flexible enough to be extended with history states.

2 Here we are ignoring the issue of step and superstep semantics, which is immaterial for the
example at hand.

state(0,X,Y,Z) :- E≥0, X=E, Y=0, Z=E.
state(1,X1,Y1,Z1) :- E≥0,X1=E,Y1=0,Z1=Z+E,X1-Y≤10, state(0, ,Y,Z).
state(2,X1,Y1,Z1) :- E≥0,X1=X+E,Y1=Y,Z1=E,Y<4,X-Y≤10,Z1<2, state(1,X,Y,).
state(1,X1,Y1,Z1) :- E≥0,X1=X+E,Y1=Y+Z,Z1=Z+E,Z<2,X1-Y1≤10, state(2,X,Y,Z).
state(0,X1,Y1,Z1) :- E≥0,X1=X+E,Y1=X,Z1=Z+E,8<X-Y,X-Y≤10,state(1,X,Y,Z).

Fig. 5. Worker CLP Model

goright

goleft

Move

up

Train Crossing

Root

down

Left Right

in(Closed)
go

Stop

Open

Closed

up

Fig. 6. Train Crossing Statechart

A property such as “the train is not in the state move while the crossing in the state
open” can be obtained by showing that the ?- state(init,C), in(C,s(move,)),
in(C,s(open,)), where init is the initial configuration, has no solution.

We can also potentially model other behavioral specification such as Live Sequence
Charts [5].

3.4 Scheduling

Here we model not just the visible aspect of the user program, but also the underly-
ing scheduling mechanism. Such modeling is particularly important in the application
domain of reasoning about resources, particularly time.

Consider the 2-process concurrent program shown in Figure 8. We wish to add the
scheduling policy where Process 1 executes at least 1 and at most 3 instructions before
control is passed to Process 2. Thus we implement “k-fairness” where k = 3 in this case.

We include this scheduling policy in our top-down CLP model shown in Figure 9,
where we have a variable Q representing the state of the scheduler. Q is incremented
whenever Process 1 executes, but Process 1 can only execute while Q≤ 2. On the other
hand, execution of Process 2 is only possible when Q > 0, that is when Process 1 has
been executed after last execution of Process 2, and this resets Q to 0. We can prove, for
example, that state([P1,P2],Q,X,Y) implies X ≤ Y ×3.

Figure 10 shows a parallel Fibonacci program. The processes are run on separate
processors, and access a shared array a. Initially a[0] = 0, a[1] = 1, and a[i] =
0 for all i ≥ 2. Process 1 assigns on the array a’s even indices x the x-th Fibonacci
number, while process 2 does the same with odd indices. Here the system performs no
scheduling, but with the right timings, the program remains correct to an extent. We

state(C,Ct) :- sctrans(C,go,C,C1), state(C1,Cf).
state(C,Ct) :- sctrans(C,up,C,C1), state(C1,Ct).
state(C,Ct) :- sctrans(C,down,C,C1), state(C1,Ct).
state(C,Ct) :- sctrans(C,go right,C,C1), state(C1,Ct).
state(C,Ct) :- sctrans(C,go left,C,C1), state(C1,Ct).
state(C,C).

sctrans(C,E,s(A,L),B) :- sctrans def(C,E,s(A,L),B),!.
sctrans(C,E,s(A,L1),s(A,L2)) :- sctrans and(C,E,L1,L2).

sctrans and(, ,[],[]).
sctrans and(C,E,[X|R],[Y|S]) :- sctrans(C,E,X,Y), sctrans and(C,E,R,S).

sctrans def(C,go,s(stop,[]),s(move,[s(left,[])])) :- in(C,s(closed, [])).
sctrans def(C,up,s(move,[]),s(stop,[])).
. . .

Fig. 7. Train Crossing Bottom-Up CLP Model

while (true) do
〈0〉 x := x + 1

end

while (true) do
〈0〉 y := y + 1

end

Fig. 8. Scheduled Concurrent Program

assume that every transition takes a fixed number ε of time units, where 95 ≤ ε ≤ 105.
Under this assumption, when N ≤ 3, both process never access the same array location.
That is, the goal ?- state([4,5],T1,T2,A,X,Y,N), N≤3 implies A[N] = f ib(N).

For N > 3, however, computing a[i] could precede computing of a[i−1] for some
i, that is, correctness is not guaranteed in case N > 3.

The top-down CLP model is shown in Figure 11. Note that where A is an array, we
use the notation A[I] to denote the I-th element of A, and <A,I,J> to denote the array
resulting from replacing the I-th element in A by J.

3.5 Microarchitecture

As in the subsection above, we seek here to model an internal component of the pro-
gram’s execution, in this case: timing characteristics due to microarchitecture consider-
ations.

Consider a direct-mapped instruction cache architecture. Here, there is a fixed as-
signment of cache line to instructions. We assume the architecture has 2 cache lines:
line 0 and 1, with each line contains at most 2 instructions. For the program in Figure
12, instructions labeled with program points 〈0〉, 〈2〉 and 〈4〉 are mapped to cache line
0, while 〈1〉 and 〈3〉 to cache line 1. A cache hit costs 1 time unit, while a miss costs 5
time units.

state([0,0],Q,X,Y) :- Q=0,X=0,Y=0.
state([0,P2],Q+1,X+1,Y) :- Q≤2, state([0,P2],Q,X,Y).
state([P1,0],0,X,Y+1) :- Q>0, state([P1,0],Q,X,Y).

Fig. 9. Top-Down CLP Model with Scheduling

〈0〉 x := 2
〈1〉 while (x ≤ n) do
〈2〉 a[x] := a[x-1] + a[x-2])
〈3〉 x := x + 2

end 〈4〉

〈0〉 y := 3
〈1〉 delay(300)
〈2〉 while (y ≤ n) do
〈3〉 a[y] := a[y-1] + a[y-2]
〈4〉 y := y + 2

end 〈5〉

Fig. 10. Dangerous Fibonacci with Fixed Timing

We implement these assumptions in our CLP model shown in Figure 13. The vari-
ables K and K’ represent the cache configuration: a pair of lists (one for each cache line),
and each list contains at most two instructions. To verify that the worst-case execution
time is 30, we can show that ?- state(5,A,K,J,T,Tt) implies Tt ≤ 30.

Finally, it is also straightforward to model other architectural constraints such as
data cache.

4 The Proof Method

Informally, the method is as follows. Given a safety assertion (or simply assertion) A
of the form G |= Ψ where G is a goal and Ψ a constraint, we perform unfolding toward
the objective that each derived goal G′ is either

• directly provable, ie of the form p(X̃),Ψ1 |= Ψ2 where Ψ1 |= Ψ2 can be directly
validated (and typically but not always, this is done when G′ is terminal); or

• subsumed, ie G′ is an instance of another goal in another derivation sequence, or
• coinductive, ie G′ can be proved using the assumption that some parent goal is true.

Note that the proof method is compositional, ie a proof of a program fragment (or
procedure) can be directly used in the proof of the larger program.

4.1 The Logic

We now present a calculus for proving safety assertions. We start with

Definition 2 (Proof Obligation). A proof obligation is of the form Ã ` G |= Ψ, where
G is a goal, Ψ a constraint, and Ã is a set of assertions, called the assumed assertions.

state([0,0],T1,T2,A,X,Y,N) :- T1=0, T2=0.
state([1,P2],T1’,T2,A,2,Y,N) :- inc(T1,T2,T1’), state([0,P2],T1,T2,A,X,Y,N).
state([2,P2],T1’,T2,A,X,Y,N) :-

inc(T1,T2,T1’), X≤N, state([1,P2],T1,T2,A,X,Y,N).
state([4,P2],T1’,T2,A,X,Y,N) :-

inc(T1,T2,T1’), X > N, state([1,P2],T1,T2,A,X,Y,N).
state([3,P2],T1’,T2,A’,X,Y,N) :- inc(T1,T2,T1’),

A’=<A,X,A[X-1]+A[X-2]>, state([2,P2],T1,T2,A,X,Y,N).
state([1,P2],T1’,T2,A,X+2,Y,N):- inc(T1,T2,T1’),state([3,P2],T1,T2,A,X,Y,N).
state([P1,1],T1,T2’,A,X,3,N) :- inc(T2,T1,T2’), state([P1,0],T1,T2,A,X,Y,N).
state([P1,2],T1,T2’,A,X,Y,N) :-

T2≤T1,T2’=T2+300, state([P1,1],T1,T2,A,X,Y,N).
state([P1,3],T1,T2’,A,X,Y,N) :-

inc(T2,T1,T2’), Y≤N, state([P1,2],T1,T2,A,X,Y,N).
state([P1,5],T1,T2’,A,X,Y,N) :-

inc(T2,T1,T2’), Y>N, state([P1,2],T1,T2,A,X,Y,N).
state([P1,4],T1,T2’,A’,X,Y,N) :- inc(T2,T1,T21),

A’=<A,Y,A[Y-1]+A[Y-2]>, state([P1,3],T1,T2,A,X,Y,N).
state([P1,2],T1,T2’,A,X,Y+2,N):- inc(T2,T1,T2’),state([P1,4],T1,T2,A,X,Y,N).

inc(T1,T2,T1’) :- T1≤T2, T1+95≤T1’≤T1+105.

Fig. 11. Parallel Fibonacci Top-Down CLP Model

〈0〉 j := 1
〈1〉 while (j < 3) do
〈2〉 if (a[j] > a[j+1]) then 〈3〉 swap (a[j], a[j+1])
〈4〉 j := j + 1

end 〈5〉

Fig. 12. Bubbling

Our proof rules are presented in Figure 14. Each rule operates on the (possibly
empty) set of proof obligations Π, by selecting a proof obligation from Π and attempting
to discard it. In this process, new proof obligations may be produced. The proof process
is typically centered around unfolding the goals in proof obligations.

The unfold (UN) rule performs a complete unfold on the lhs of a proof obligation,
producing a new set of proof obligations. The original assertion, while removed from
Π, is added into the set of assumed assertions of every newly produced proof obligation.
Note that the resulting proof obligations are independent of one another. In each of the
new proof obligations, the newly added assumed assertion may be used later in the
application of rule (AP).

The rule assumption proof (AP) directly proves an obligation by assuming the truth
of an assumed assertion previously created by the rule (UN). This rule therefore real-
izes the coinduction principle. The rule direct proof (DP), on the other hand, discards
a proof obligation p(· · ·),Ψ1 |= Ψ directly, if the entailment could be proven. Both

state(0,A,K,J,T,Tt) :- K = [[],[]],
update(0,K,K1,E), state(1,A,K1,1,T+E,Tt).

state(1,A,K,J,T,Tt) :- J<3, update(1,K,K1,E), state(2,A,K1,J,T+E,Tt).
state(1,A,K,J,T,Tt) :- J≥3, update(1,K,K1,E), state(5,A,K1,J,T+E,Tt).
state(2,A,K,J,T,Tt) :- A[J]>A[J+1],

update(2,K,K1,E), state(3,A1,K1,J,T+E,Tt).
state(2,A,K,J,T,Tt) :- A[J]≤A[J+1],

update(2,K,K1,E), state(4,A,K1,J,T+E,Tt).
state(3,A,K,J,T,Tt) :- swap(A,J,J+1,A1),

update(3,K,K1,E), state(4,A,K1,J,T+E,Tt).
state(4,A,K,J,T,Tt) :- update(4,K,K1,E), state(1,A,K1,J+1,T+E,Tt).
state(5,A,K,J,T,T).

update(Instr,[CL0,CL1],[CL0,CL1],1) :- in(Instr, CL0), !.
update(Instr,[CL0,CL1],[CL0,CL1],1) :- in(Instr, CL1), !.
update(Instr,[CL0,CL1],[CL01,CL1],5) :-

cl assgn(Instr,0), update line(CL0,Instr,CL01).
update(Instr,[CL0,CL1],[CL0,CL11],5) :-

cl assgn(Instr,1), update line(CL1,Instr,CL11).

update line([],Instr,[Instr]). % cache line empty
update line([H1],Instr,[H1,Instr]). % cache line not full
update line([,H2],Instr,[H2,Instr]). % cache line full

Fig. 13. Bubbling Bottom-Up CLP Model

(AP) and (DP) require an entailment proof by the constraint solver of CLP or a theorem
prover. The rule assumption specialization (AS) specializes an assumption by adding
constraints on both sides of the implication. Finally, the rule split (SPL) converts a proof
obligation into several, more specialized ones. (This rule is not used in this paper, and
is included for completeness.)

Theorem 1 (Proof of Assertions). A safety assertion G |= Ψ holds if, starting with the
proof obligation Π = { /0 ` G |= Ψ}, there exists a sequence of applications of proof
rules that results in Π = /0.

The proof rules above are sufficient in principle for our purposes. However, there
is a very important principle with gives rise to an optimization: redundancy between
goals.

The essential idea is this. Similar goals may be encountered in the unfold tree, each
part of different proof obligations. For example, both obligation 1: Ã1 ` G1 |= Ψ and
obligation 2: Ã2 ` G2 |= Ψ, may be in Π, where there exists a renaming θ such that
∀̃(G2 |= G1θ). Suppose that further unfold of the goal of obligation 1 results in a proof
subtree that does not coinductively use an assumed assertion in Ã1. Hence it must be the
case that the weaker obligation 2 is provable without Ã2. However, proving obligation
2 is no longer necessary since obligation 1 is stronger. We exemplify this in the mutual
exclusion proof of the Bakery algorithm in the next section.

(UN)
Π∪{Ã ` G |= Ψ}

Π∪
Sn

i=1{Ã∪{G |= Ψ} ` Gi |= Ψ}
unfold(G) = {G1, . . . ,Gn}

(AP)
Π∪{Ã∪{G1 |= Ψ1} ` G |= Ψ}

Π
there exists a substitution θ s.t.
∀̃(G |= G1θ) and ∀̃(Ψ1θ |= Ψ)

(AS)
Π∪{Ã ∪{G1 |= Ψ1} ` G |= Ψ}

Π∪{Ã∪{G1,Ψ2 |= Ψ1 ∧Ψ3} ` G |= Ψ}
Ψ2 |= Ψ3 holds

(DP)
Π∪{Ã ` p(· · ·),Ψ1 |= Ψ}

Π
Ψ1 |= Ψ holds

(SPL)
Π∪{Ã ` G |= Ψ}

Π∪
Sk

i=1{Ã ` G,φi |= Ψ}
φ1 ∨·· ·∨φk holds

Fig. 14. Proof rules

As noted above, the result of the application of (UN), each proof obligation repre-
sents an independent path of the unfold tree. Therefore in applying the rule, we have the
freedom to unfold only partially first, and complete the unfold later. In our implemen-
tation (introduced in Section 6), we actually perform depth-first search. The CLP rule
to be unfolded is also chosen based on its occurrence order in the CLP representation.

4.2 Example Proofs

For our first example, we explain coinduction. Consider the free-standing CLP program:

p(0).
p(X + 2) :- p(X).

Consider the assertion p(X) |= even(X), call it A, and its proof in Figure 15. The proof
process starts by unfolding the p(X) goal, resulting in two new proof obligations, each
with the original goal A as an assumption. On the left branch, after unfolding with the
base-case clause, we are left with X = 0 |= even(X), which can be discharged using the
direct proof rule.

On the right branch of the proof, the unfolding rule produces the proof obligation
p(X ′),X = X ′ + 2 |= even(X). Next we use the assumption specialization (AS) rule to
modify the assumption A as follows: (a) add W = X +2 on both sides of A, where W is
new, and (b) rename X into V , resulting in p(V),W = V +2 |= even(V)∧W = V +2.

Now consider applying the assumption proof rule (AP). We note that the side condi-
tions (a) p(X ′),X = X ′ +2 |= (p(V),W = V +2)θ, and (b) (even(V)∧W = V +2)θ |=
even(X), where θ = {V 7→ X ′,W 7→ X}, are true. Since all proof obligations have been
discharged, the original assertion p(X) |= even(X) is now proved.

We now consider the Bakery algorithm again, but now proceed informally. The mu-
tual exclusion property of the Bakery algorithm of Section 3.2 is represented by the

p(X) |= even(X) call this assertion A
(UN)

{A} `
X = 0 |= even(X)

(DP)
/0

{A} ` p(X ′),X = X ′ +2 |= even(X)
(AS)

{p(V),W = V +2 |=
even(V)∧W = V +2} `

p(X ′),X = X ′ +2 |= even(X)
(AP)

even(V)∧
W = V +2
|= even(W)/0

Fig. 15. Example Proof

T 2 = 0 |= false
state([2,2],T 1′′ ,T 2),

Coinduction using ➀

state([1,0],T 1,T 2′),

Coinduction using ➀
T 1 = 0 |= false
state([2,2],T 1,T 2′′),

(T 2 < T1∨T 1 = 0) |= false
(T 1 < T2∨T 2 = 0),
state([1,1],T 1,T 2),

Redundant to ➃

Coinduction using ➁
T 2 = 0 |= false
state([0,1],T 1′′′ ,T 2),

T 2 = 0 |= false

T 2 = 0 |= false
state([0,2],T 1′,T 2),

(T 2 < T1∨T 1 = 0) |= false

state([0,1],T 1′ ,T 2),

T 2 = 0 |= false
state([2,1],T 1′′ ,T 2),

➇

➆
➅

Redundant to ➁

T 1 = 0 |= falseT 1 = 0 |= false ➄

state([2,1],T 1′′ ,T 2),

➂

T 2 = 0 |= false
state([0,1],T 1′,T 2),

T2 = 0 |= false
(T2 < T1′ ∨T 1′ = 0)∧

➁

➃

Redundant to ➄

(T1 < T 2′ ∨T2′ = 0),
state([1,0],T 1,T 2′),

(T 1 < T2∨T 2 = 0),

T 2 = 0 |= false
state([1,1],T 1′′ ,T 2),

T 1 = 0 |= false
state([1,2],T 1,T 2′′),

T 2 = 0 |= false
state([2,1],T 1iv ,T 2),

Coinduction using ➄
T 1 = 0 |= false
state([1,0],T 1,T 2′′′),

T 1 = 0 |= false
state([1,1],T 1,T 2′′),

state([1,1],T 1,T 2),

T 1 < T 2∨T 2 = 0 |= false
state([1,2],T 1,T 2),

T 2 < T1∨T 1 = 0 |= false
state([2,1],T 1,T 2),

T 1 = 0 |= false
state([2,0],T 1,T 2′),

state([2,2],T 1,T 2) |= false ➀

Fig. 16. Mutual Exclusion Proof for Bakery Algorithm

assertion state([2,2],T1,T2) |= false. Figure 16 displays the proof sequence as
the proof rules are applied on the original assertion above. We omit display of “success-
ful” obligations in the picture where the premise has been reduced to false. The proof
also includes a number of redundancy tests. Note that the obligation ➅ is not consid-
ered redundant to obligation ➂. This is because ➂ contains in its assumed assertions the
obligation ➁, which is then used in its proof by application of coinduction at obligation
➇. On the other hand, the redundancy of obligation ➆ to ➄ is valid, since none of the
assumed assertions of ➄ is used in its proof.

5 Beyond CLP

Here we briefly and informally discuss a few important extensions to the proof method,
as our future work.

5.1 Abstraction

The use of abstract interpretation and/or inductive assertions is, in general, needed for
the verification of infinite state problems (see eg. [2]). The proof method described
above can be augmented so as to implement these concepts. Essentially, the idea is
simply this: any goal in a derivation sequence may be abstracted by replacing the con-
straint Ψ in G with a more general one Ψ1, that is, Ψ |= Ψ1. This abstraction could be
performed in accordance with the specification of an abstract domain, or in accordance
to “loop-invariant” that is associated with the program point of G.

For example, recall the assertion state(0,0,99,It,Nt) |= It=99 to be proven
on the bottom-up model of the while program shown in Figure 1. To use the loop-
invariant i ≤ n at program point 2, we could abstract every goal in the proof of the form
state([2],I,N,It,Nt), I = c, · · · , where c is a constant, into the form
state([2],I,N,If,Nf), I≤N, · · · . In doing so, the proof can be obtained without
enduring the 99 steps.

Essentially, a proof obligation G′ |= Ψ is correct implies that G |= Ψ, where G′ is an
abstraction of G, is also correct. Translating this simple but important observation into
an effective addition to our proof method is a primary direction of our ongoing work.

5.2 Liveness

Intuitively, proving liveness or progress is a statement that from an initial goal G, all
derivation sequences eventually reach a target goal Gt . Such a target goal could be
defined, for example, as one with a particular value of the program counter. Checking
liveness therefore is a matter of checking that there is a frontier of the proof tree in
which every goal is a target goal.

As in the discussion about abstraction above, proving liveness for infinite-state prob-
lems would require a form of induction. In this case, what is required is well-founded
induction, and we could proceed, informally, as follows. First identify a program point
p and a well-founded measure m on program variables X̃ . Then, when a goal of the
form (state(p, X̃), Ψ) is encountered, split the proof process into two:

• state(p, X̃), Ψ, m(X̃) = 0
• state(p, X̃), Ψ, m(X̃) > 0

Prove the first, the base case, directly. Then prove the general case by assuming, in the
proof process, that m(X̃) = c for some symbolic value c, and that liveness holds for
state(p, X̃), Ψ, m(X̃) > 0 when its proof subtree is covered by state(p, X̃ ′),
Ψ′, where 0 ≤ m(X̃ ′) < c.

Consider, for example, the program in Figure 1. To prove the liveness of
?- state(3,I,N,It,Nt), It=Nt, we first need to perform an abstraction as explained
in the previous section. In addition, for program point 2, we also provide a measure
m(I,N,It,Nt) = N-I. Further unfolding from 〈2〉 to 〈3〉 corresponds to the case
m(I,N,It,Nt) = 0, since I≤N (abstraction) and I≥N (from loop condition) holds. In
another unfolding from 〈2〉 to 〈2〉, we have a new value I’ replacing I, and I’=I+1
holds. Here, the measure N-I’ is less than that of its parent, and therefore the proof
concludes.

Automating this process, and to include the case where liveness/progress depends
just on the fairness of the scheduler, is a major challenge.

5.3 Parameterized Systems

A parameterized system means that the number of processes is not fixed, but rather
specified by a symbolic parameter. We choose to implement this idea as follows.

We first have a special Variable Id, which represents a static, unique process id to
be referenced by its process code. The program counter shall also be an array PC of
individual counters, such that PC[Id] represents the program counter of process Id.
Program P[Id] denotes the infinite system P[1],P[2], · · · . As an example, we may define
the parameterized program P[Id] ::= 〈0〉 if (Id < n) then x := x + 1 〈1〉.

We can represent the above parameterized program in CLP as follows:
state(Id,PC,X,N) :- PC[Id]=0, X=0.
state(Id,<PC,Id,1>,X+1,N) :- Id<N, state(Id,PC,X,N).

where PC is an array of program counters of length N.
We now explain some idea on how the parameterized system can be verified. As-

suming there are N processes with Id ranging from 0 to N-1, for the above parameter-
ized system we may want to prove the assertion state(Id,PC,X,N), PC=[1,. . .,1]
|= X=N, that is, at the end of execution X=N. The verification proceeds using induction
on the number of processes (N). We first prove the base case for N=1, and the inductive
case exemplified here: assuming state(Id,PC,X,k), PC=[1,. . .,1] |= X= k holds,
we prove state(Id,PC,X,k + 1), PC=[1,. . .,1] |= X= k + 1. From our hypothesis
and other assumptions on the program, state(Id,PC,X,k +1), PC=[1,. . .,1,0] |=
X= k. We unfold state(Id,PC,X,k + 1), PC=[1,. . .,1] |= X= k + 1, obtaining the
goal state(Id,PC’,X’,k +1), X’=X-1, PC’=[1,. . .,1,0] |= X= k +1. Using the
hypothesis replacing state(Id,PC’,X’,k + 1) with X’= k the assertion is directly
proven.

6 Experiments

W have implemented a prototype version of our proof method as a regular CLP(R) [12]
program, with no special consideration for important features such as indexing to deal
with the generally large number of generated assertions. The execution of our imple-
mentation is basically a call to state predicate. However, in addition we insert a tabling
mechanism at every transition rule. Whenever a new proof obligation is generated by a
call to the state predicate, the tabling mechanism will check whether the proof obli-
gation is subsumed by another proof obligation already tabled. If so, it fails causing
backtracking. Otherwise, it saves the new proof obligation in the table and continue.

The implementation uses a restricted form of coinduction, and verifies assertions
only of the form state(X̃), φ |= false. A more general implementation of the future
likely requires interfacing with a theorem prover.

7 Conclusion

We have presented a methodology for the modeling of complex program behavior in
CLP. Our many examples demonstrated expressive elegance and power. We then pre-
sented a crucial extension to basic CLP, coinductive tabling, to facilitate execution of
the model. We believe that our general approach, coupled with its potential for exten-
sion to deal with abstraction and liveness, can provide a significant advance in the state
of the art of program reasoning.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, April 1994.

2. K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs. Graduate
Texts in Computer Science. Springer, 2nd edition, 1997.

3. G. Behrmann, K. G. Larsen, H. R. Andersen, H. Hulgaar d, and J. Lind-Nielsen. Verification
of hierarchical state/event systems using reusabi lity and compositionality. In R. Cleaveland,
editor, 5th TACAS, volume 1579 of LNCS, pages 163–177. Springer, 1999.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis.
In 4th POPL, pages 238–252. ACM Press, 1977.

5. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. J. FMSD,
19(1):45–80, 2001.

6. G. Delzanno and A. Podelski. Constraint-based deductive model checking. Int. J. STTT,
3(3):250–270, 2001.

7. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Series in Automatic Computa-
tion. Prentice-Hall, 1976.

8. C. Flanagan. Automatic software model checking using CLP. In P. Degano, editor, 12th
ESOP, volume 2618 of LNCS, pages 189–203. Springer, 2003.

9. G. Gupta and E. Pontelli. A constraint-based approach for specification and verification of
real-time systems. In 18th RTSS, pages 230–239. IEEE Computer Society Press, 1997.

10. D. Harel and A. Naamad. The STATEMATE semantics of Statecharts. ACM TOSEM,
5(4):293–333, October 1996.

11. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. J. LP, 19/20:503–581,
May/July 1994.

12. J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R) language and system.
ACM TOPLAS, 14(3):339–395, 1992.

13. J. Jaffar, A. Santosa, and R. Voicu. A CLP proof method for timed automata. In 25th RTSS,
pages 175–186. IEEE Computer Society Press, 2004.

14. K. Marriott and P. J. Stuckey. Programming with Constraints. MIT Press, 1998.
15. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 1999.
16. Object Management Group, Inc. OMG Unified Modeling Language Specification, March

2003. Version 1.5 formal/03-03-01.
17. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. Swift, and

D. S. Warren. Efficient model checking using tabled resolution. In O. Grumberg, editor, 9th
CAV, volume 1254 of LNCS, pages 143–154. Springer, 1997.

18. D. S. Warren. Memoing for logic programs. Communications of the ACM, 35(3):93–111,
March 1992.

