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Abstract. We consider a language of recursively defined formulas aboutarrays
of variables, suitable for specifying safety properties ofparameterized systems.
We then present an abstract interpretation framework whichtranslates a paramer-
ized system as a symbolic transition system which propagates such formulas
as abstractions of underlying concrete states. The main contribution is a proof
method for implications between the formulas, which then provides for an imple-
mentation of this abstract interpreter.

1 Introduction

Automation of verification of parameterized systems are an active area of research [1–
7]. One essential challenge is to reason about the unboundedparametern representing
the number of processes in the system. This usually entails the provision of an induction
hypothesis, a step that is often limited to manual intervention. This challenge adds to
the standard one when the domain of discourse of the processes are infinite-state.

In this paper, we present an abstract interpretation [8] approach for the verification
of infinite-state parameterized systems.

First, we present a language for the general specification ofproperties of arrays of
variables, each of whom has length equal to the parametern. The expressive power
of this language stems from its ability to specify complex properties on these arrays.
In particular, these complex properties are just those thatarise from a language which
allowsrecursive definitionsof properties of interest.

Second, we present a symbolic transition framework for obtaining a symbolic ex-
ecution tree which (a) is finite, and (b) represents all possible concrete traces of the
system. This is achieved, as in standard abstract interpretation, by computing a sym-
bolic execution tree but using a process of abstraction on the symbolic states so that
the total number of abstract states encountered is bounded.Verification of a particular
(safety) property of the system is then obtained simply by inspection of the tree.

Third, the key step therefore is to compute two things: (a) given an abstract state
and a transition of the parameterized system, compute the new abstract state, and (b)
determine if a computed abstract state is subsumed by the previously computed abstract
states (so that no further action is required on this state).The main contribution of this
paper is an algorithm to determine both.

Consider a driving example of a parameterized system ofn≥ 2 process where each
process simply increments the value of shared variablex (see Figure 1 (left)). The idea
is to prove, given an initial state wherex = 0, thatx = n at termination.

Figure 1 (right) outlines the steps in generating the symbolic execution tree for this
example. The tree is constructed by letting each process proceed from an initial program
point〈0〉 to its final point〈1〉.



process(id) {
〈0〉 x = x + 1 〈1〉
}

G3 : ((1,1, . . . ,1),n)

G1 : ((0, . . . ,0,1,0, . . . ,0),1) G1 : ((0,1,1, . . .),m)

G2 : ((0,1,1, . . .),m+1)

abstract

subsumed

G 0 : ((0,0, . . . ,0),0)

Fig. 1: Abstract Computation Tree of Counting Ones

We start with a program state ofG0 = ((0,0, · · · ,0),0) where the first element is a
sequence ofn bits representing the program counter, and the second element represents
the value ofx. A first transition would bring the system to a stateG1 = ((0, · · · , 0, 1,
0, · · · , 0), 1), where the position of the “1” is anywhere in the range 1 ton, and the
value ofx is now 1. At this point, we would like to abstract this state toa stateG1 where
the counter has, not exactly one numeral 1, but some 1≤ m< n copies of the numeral
1. Further, the value ofx is not 1, but instead is equal tom. Let us denote this state
((0,1,1, · · ·),m).

There are now two possible transitions: first, corresponding to the case whereG1

has at least two 0’s, we get a new stateG2 whose counter has a mixture of 0’s and 1’s.
But this new state is already covered byG1 and hence need not be considered further.
The second case is whereG1 has exactly one 0, in which the final transition results in
the final stateG3 = ((1,1, · · · ,1),x) where the counter has all 1’s. Since the value ofx
in G3 equals the number of 1’s, it follows thatx = n in this final state.

The key points in this proof are as follow. First, we employedthe notion of an
abstract stateG1 where the counter has 1≤ m < n copies of 1 (the rest are 0), and
x = m. We then show that the concrete stateG1 emanating from the initial state is in
fact an instance ofG1. We then showed that the stateG2 emanating fromG1 is either
(a) itselfG1 (which therefore requires no further consideration), or (b) the final state
G3 : ((1,1, · · · ,1),x), and wherex= n. Thus the proof thatx= n at the end is established.

The main result in this paper, in terms of this example, is first to construct the com-
putation tree, but more importantly to provide an automaticproof of the conditions that
make the tree a true representation of all the traces of the underlying parameterized
system. In our example, our algorithm proves the entailments G1 |= G1 andG2 |= G1.
Although not exemplified, all states in discussed here are written in our constraint lan-
guage using arrays and recursive definitions, which is to be discussed in Section 2. For
instance, the stateG0 is represented usingn-element array of zeroes which is defined us-
ing a recursive definition. We provide an algorithm to prove entailments in verification
conditions which involve integer arrays and the recursive definitions.

In summary, our contributions are threefold:

• We present a language for defining recursive abstractions consisting of recursive
definitions and integer arrays. Such abstractions are to be used to represent core
properties of the parameterized system that are invariant over the parametern of
the system. The provision of these abstractions is generally restricted to be manual.

• Then we provide a symbolic traversal mechanism to constructa symbolic execution
tree which exhibits the behavior of the parameterized system, which is exemplified
in Figure 1 (left). In constructing the tree we abstract the states encountered using
the recursive abstractions. In the above example, this is exemplified with the ab-
straction ofG1 to G1. Our objective is to produce a closed tree, where all the paths



in the tree reaches the end of the program’s execution (the case ofG3 above) or ends
in a state that is subsumed by some other state in the tree (thecase ofG2, which is
subsumed byG1).

Now, there are two kinds of proofs needed: one is for the correctness of the
abstraction step (represented as theentailmentG1 |= G1 of two formulas). Similarly,
we need a proof of entailment of formulas defining the subsumption of one state
over another (eg.G2 |= G1 above).

• Finally we devise a proof method where the recursive definitions and the arrays
work together in the entailment proof. In this way, theonly manual intervention
required is to provide the abstraction of a state (in our example, the provision of
the abstractionG1 to abstractG1). Dispensing with this kind of manual interven-
tion is, in general, clearly as challenging as discovering loop invariants in regular
programs. However, it is essentially dependent on knowledge about thealgorithm
underpinning the system, and not about theproof systemitself.

1.1 Related Work

Central to the present paper is the prior work [9] which presented a general method
for the proof of (entailment between) recursively defined predicates. This method is a
proof reduction strategy augmented with a principle ofcoinduction, the primary means
to obtain a terminating proof. In the present paper, the earlier work is extended first by
a symbolic transition system which models the behavior of the underlying parameter-
ized system. A more important extension is the consideration of array formulas. These
array formulas are particularly useful for specifying abstract properties of states of a
parameterized systems.

Recent work by [3] concerns a class of formulas, environmentpredicates, in a way
that systems can be abstracted into a finite number of such formulas. The essence of the
formula is a universally quantified expression relating thelocal variable of a reference
process to all other processes. For example, a formula of theform ∀ j 6= i : x[i] < x[ j]
could be used to state that the local variablex of the reference processi is less than the
corresponding variable inall otherprocesses. A separate method is used to ensure that
the relationships inside the quantification fall into a finite set eg. predicate abstraction.
An important advantage of these works is the possibility of automatically deriving the
abstract formulas from a system.

The indexed predicatesmethod [4] is somewhat similar to environment predicates
in that the formula describes universally quantified statements over indices which range
over all processes. Determining which indexed predicates are appropriate is however
not completely automatic. Further, these methods are not accompanied by an abstract
transition relation.

The paper [1] presents safety verification technique of parameterized systems us-
ing abstraction and constraints. Key ideas include the handling of existentially and
universally-quantified transition guards), and the use ofgap-order constraints. Abstrac-
tion is done by weakening the gap-order constraints.

Our method differs from the above three works because we present a general lan-
guage for the specification ofany abstraction, and not a restricted class. We further
provide a transition relation which can work with the abstraction language in order to
generate lemmas sufficient for a correctness proof. The proof method, while not decid-
able, is general and can dispense with a large class of applications.



Earlier work on counter abstraction [7] clearly is relevantto our abstractions which
is centrally concerned with describing abstract properties of program counters. Later
works on invisible invariants[6] show that by proving properties of systems with a
fixed (and small) parameter, that the properties indeed holdwhen the parameter is not
restricted. In both these classes of works, however, the system is assumed to be finite
state.

There are some other works using inductive, as opposed to abstraction, methods for
example [5]. While these methods address a large class of formulas, they often depend
on significant manual intervention.

We finally mention the work of [2] which, in one aspect, is closest in philosophy to
our work. The main idea is to represent both the system and theproperty (including live-
ness properties) aslogic programs. In this sense, they are using recursive definitions as
we do. The main method involves proving a predicate by a process of folding/unfolding
of the logic programs until the proof is obvious from the syntactic structure of the re-
sulting programs. They do not consider array formulas or abstract interpretation.

2 The Language

In this section we provide a short description of constraintlanguage allowed by the
underlying constraint solver assumed in all our examples.

2.1 Basic Constraints

We first considerbasic constraintswhich are constructed from two kinds of terms:
integer terms andarray expressions. Integer terms are constructed in the usual way,
with one addition: the array element. The latter is defined recursively to be of the form
a[i] wherea is an array expression andi an integer term. An array expression is either an
array variable or of the form〈a, i, j〉 wherea is an array expression andi, j are integer
terms.

The meaning of an array expression is simply a map from integers into integers, and
the meaning of an array expressiona′ = 〈a, i, j〉 is a map just likea except thata′[i] = j.
The meaning of array elements is governed by the classic McCarthy [10] axioms:

i = k → 〈a, i, j〉[k] = j
i 6= k → 〈a, i, j〉[k] = a[k]

A basic constraint is either an integer equality or inequality, or an equation between
array expressions. The meaning of a constraint is defined in the obvious way.

In what follows, we use constraint to mean either an atomic constraint or a con-
junction of constraints. We shall use the symbolψ or Ψ, with or without subscripts, to
denote a constraint.

2.2 Recursive Constraints

We now formalizerecursive constraintsusing the framework of Constraint Logic Pro-
gramming (CLP) [11]. To keep this paper self-contained, we now provide a brief back-
ground on CLP.

An atom is of the formp(t̃) where p is a user-defined predicate symbol andt̃ a
tuple of terms, written in the language of an underlying constraint solver. Arule is of
the formA:-Ψ, B̃ where the atomA is theheadof the rule, and the sequence of atoms



sys(N,K,X) :- 1 ≤ Id ≤ N, K[Id] = 0, K’=<K,Id,1>, X’=X+1, sys(N,K’,X’).

Fig. 2: Transitions of Counting Ones

B̃ and constraintΨ constitute thebodyof the rule. The body of the rule represents
a conjunction of the atoms and constraints within. The constraint Ψ is also written
in the language of the underlying constraint solver, which is assumed to be able to
decide (at least reasonably frequently) whetherΨ is satisfiable or not. A rule represents
implication with the body as antecedent and the head as the conclusion. Aprogramis
a finite set of rules, which represents a conjunction of thoserules. The semantics of a
program is the smallest set of (variable-free) atoms that satisfy the program. Given a
CLP program, recursive constraints are constructed using recursive predicates defined
in the program.

Example 1 (Count Ones).The following program formalizes the states described in the
“counting ones” example (note thatdenotes “any” value). In the predicates below, the
numberN represents the parameter, the arrayK represents the counter, andX represents
the shared variable.Allzeroes(N,K,X) holds for anyN, K, andX whenK is an array of
lengthN with all elements zero andX is zero.Allones(N,K,X) holds when all elements
of K are one, andX=N. Finally, the meaning ofabs(N, K, M) is thatK is a bit vector
andM is the number of 1’s inK.
allzeroes(0, , 0).
allzeroes(N, 〈K,N,0〉, 0) :- N > 0, allzeroes(N-1, K, 0).
allones(0, , 0).
allones(N, 〈K,N,1〉, N) :- N > 0, allones(N-1, K, N-1).
bit(0).
bit(1).
abs(0, , 0).
abs(N, 〈K,N,B〉, M+B) :- N > 0, bit(B), abs(N-1, K, M).

3 Formalization of a Parameterized System

We now formalize a parameterized system as a transition system. We assume inter-
leaving execution of the concurrent processes, where a transition that is executed by
a process is considered atomic, that is, no other process canobserve the system state
when another process is executing a transition. Similar to the definition of recursive
constraints in the previous section, the transition systems here are also defined using
CLP, where a CLP rule models a state transition of the system.

3.1 Abstract Computation Trees

Before proceeding, we require a few more definitions on CLP. Asubstitutionθ simul-
taneously replaces each variable in a term or constrainte into some expression, and we
write eθ to denote the result. We sometimes writeθ more specificly as[e1/t1, . . . ,en/tn]
to denote substitution ofti by ei for 1≤ i ≤ n. A renamingis a substitution which maps
each variable in the expression into a variable distinct from other variables. Aground-
ing is a substitution which maps each integer or array variable into its intended universe
of discourse: an integer or an array. WhereΨ is a constraint, a grounding ofΨ results
in true or falsein the usual way.



A groundingθ of an atomp(t̃) is an object of the formp(t̃θ) having no variables. A
grounding of a goalG ≡ (p(t̃),Ψ) is a groundingθ of p(t̃) whereΨθ is true. We write
[[G ]] to denote the set of groundings ofG . We say that a goalG entailsanother goalG ′,
writtenG |= G ′, if [[G ]] ⊆ [[G ′]].

From now on we speak aboutgoalswhich have exactly the same format as the body
of a rule. A goal that contains only constraints and no atoms is calledfinal.

Let G ≡ (B1, · · · ,Bn,Ψ) and P denote a goal and program respectively. LetR≡
A:-Ψ1,C1, · · · ,Cm denote a rule inP, written so that none of its variables appear inG .
Let the equationA = B be shorthand for the pairwise equation of the corresponding
arguments ofA andB. A reductof G using a ruleR which head matches an atomBi in
G , denotedREDUCTBi (G ,R), is of the form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,(Bi = A),Ψ,Ψ1)
provided the constraint(Bi = A)∧Ψ∧Ψ1 is satisfiable.

Definition 1 (Unfold). Given a program P and a goalG , UNFOLDB(G ) is {G ′|∃R∈
P : G ′ = REDUCTB(G ,R)}.

A derivation sequencefor a goalG 0 is a possibly infinite sequence of goalsG0, G1,
· · · whereG i , i > 0 is a reduct ofG i−1. If the last goalG n is a final (hence no ruleR
of the program can be applied to generate a reduct ofG n), we say that the derivation is
successful. Since a goal can be unfolded to a number of other goals (reducts), we can
identify thederivation treeof a goal.

Definition 2 (Abstract Computation Tree). An abstract computation treeis defined
just like a derivation tree with one exception: the use of a derivation step may produce
not the reduct goalG as originally defined, but ageneralizationG of this reduct goal.
Whenever such a generalization is performed in the tree construction, we say that an
abstraction stepis performed onG obtainingG .

Our concern in this paper is primarily to compute an abstractcomputation tree
which represents all the concrete traces of the underlying parameterized system. The
following property of abstract trees ensures this.

Definition 3 (Closure).An abstract computation tree isclosedif each leaf node repre-
sents a goalG which is either terminal, ie. no transition is possible fromG , or which is
entailed by a goal labelling another node in the tree.

3.2 Symbolic Transitions

Next we describe how to represent a parameterized system as aCLP program. In doing
so, we inherit a framework of abstract computation trees of parameterized systems.
More specifically, the safety property that we seek can then be obtained by inspection
of a closed abstract computation tree that we can generate from the system.

We start with a predicate of the formsys(N,K,T,X) where the numberN rep-
resents the parameter, theN-element arrayK represents the program counter, theN-
element arrayT represents eachlocal variable of each process, and finally,X represents
a shared/global variable. Multiple copies ofT and/orX may be used as appropriate.

We then write symbolic transitions of a parameterized systems using the following
general format:

sys(N, K, T, X) :- K[Id] = α, K’ = <K, Id, β>,
Ψ(N, K, T, X, K’, T’, X’), sys(N, K’, T’, X’).



This describes a transition from a program pointα to a pointβ in a process. The vari-
ableId symbolically represents a (nondeterministic) choice of which process is being
executed. We call such variablesindexvariables. The formulaΨ denotes a (basic or
recursive) constraint relating the current valuesK,T,X and future valuesK′,T ′,X′ of
the key variables.

Consider again the example of Figure 1, and consider its transition system in Figure
2. The transition system consists of transitions from program counter〈0〉 to 〈1〉 of a
parameterized system, where each process simply increments its local variableX and
terminates1. The system terminates when the program counter contains only 1’s, ie.
when all processes are at point〈1〉.

3.3 The Top-Level Verification Process

In this section we outline the verification process. The process starts with a goal repre-
senting the initial state of the system. Reduction and abstraction steps are then succes-
sively applied to the goal resulting in a number of verification conditions (obligations),
which are proved using our proof method.

We now exemplify using the Counting Ones example of Section 1. This goal repre-
senting the initial state isG 0 in Figure 1. Recall that we formalize the transitions of the
Counting Ones example in Figure 2. In our formalization, we represent the goalG 0 as
follows sys(N,K,X),allzeroes(N,K,X) denoting a state where all the elements of the
arrayK are zero.

We apply the transition of Figure 2 by reducingG0 into the goalG1, which in our
formalism is the goalsys(N,K′,X′),allzeroes(N,K,X),1 ≤ Id1 ≤ N,K[Id1] = 0,K′ =
〈K, Id1,1〉,X′ = X + 1. The goal represents a state where only one of the elements of
the arrayK is set to 1. Note that this reduction step is akin to strongestpostcondition
propagation [12] since given the preconditionallzeroes(N,K,X), the postcondition is
exactly(∃K,X, Id1 : allzeroes(N,K,X),1≤ Id1 ≤ N,K[Id1] = 0,K′ = 〈K, Id1,1〉,X′ =
X +1)[K/K′,X/X′].

We now abstract the goalG1 into G1, which in our formalism is represented as
sys(N,K′,X′),abs(N,K′,X′). Here one verification condition in the form of an entail-
ment is generated:

allzeroes(N,K,X),1≤ Id1 ≤ N,K[Id1] = 0,K′ = 〈K, Id1,1〉,X′ = X +1
|= abs(N,K′,X′).

The proof this obligation guarantess that the abstraction is an over approximation.
Now, the propagation fromG1 toG2 is again done by applying unfold (reduction) to

the predicatesysbased on its definition (Figure 2). As the result, we obtain the goalG2
as follows:

sys(N,K′′,X′′),abs(N,K′,X′),1≤ Id2 ≤ N,K′[Id2] = 0,K′′ = 〈K′, Id2,1〉,X′′ = X′ +1

Proving of subsumption ofG2 by G1 is now equivalent to the proof of the verification
condition

abs(N,K′,X′),1≤ Id2 ≤ N,K′[Id2] = 0,K′′ = 〈K′, Id2,1〉,X′′ = X′ +1
|= abs(N,K′,X′)[K′′/K′,X′′/X′].

The purpose of renaming in the above example is to match the system variables ofG2

with those ofG1.

1 Terminationhere means that no further execution is defined.



4 The Proof Method

In this key section, we consider proof obligations of the form G |= H for goalsG and
H possibly containing recursive constraints.

Intuitively, we proceed as follows: unfold the recursive predicates inG completelya
finite number of steps in order to obtain a “frontier” containing the goalsG1, . . . ,Gn. We
note that “completely” here means that{G1, . . . ,Gn} = UNFOLDA(G ). We then unfold
H obtaining goalsH 1, . . . ,Hm, but this time not necessarily completely, that is, we only

G1, . . . Gn

Unfold

Coinduction

Partial
Unfold

. . .

. . .

H1

. . .

. . .
H j

Hm

To Prove:
G1 ∨ . . .∨Gn |=
H1 ∨ . . .∨Hm

Complete

G
?
|= H

Fig. 3: Informal Structure of Proof Process

require that {H 1, . . . ,Hm} ⊆ UN-
FOLDB(H ). This situation is depicted in
Figure 3. Then, the proof holds if
G1∨ . . .∨Gn |= H1∨ . . .∨Hm

or alternatively,Gi |= H1 ∨ . . .∨ Hm
for all 1≤ i ≤ n. This follows from the
fact thatG |= G1 ∨ . . . ∨ Gn, (which is
not true in general, but true in the least-
model semantics of CLP), and the fact
H j |= H for all j such that 1≤ j ≤ m. If
all variables inH appear inG , we can
reduce the proof to∀i : 1 ≤ i ≤ n,∃ j :
1≤ j ≤ m : Gi |= H j . Finally, we seek
to eliminate the predicates inH j so the
remaining proof is one about basic con-

straints.
In this paper we do not go further with the proof of basic constraints. We instead

assume the use of a standard black-box solver, such as the SMTsolvers [13–15]. In our
own experiments, we use a method from [16] to convert constraints on array segments
into constraints on integers, and then dispatch the integerconstraints using the real-
number solver of CLP(R ) .

In addition to this overall idea of using left and right unfolds, there are a few more
rules, as detailed below.

4.1 The Coinduction Rule

Before presenting our collection of proof rules, one of them, the coinduction rule, de-
serves preliminary explanation. Let us illustrate this rule on a small example. Consider
the definition of the following two recursive predicates

m4(0). even(0).
m4(X+4) :- m4(X). even(X+2) :- even(X).

whose domain is the set of non-negative integers. The predicatem4 defines the set of
multiples of four, whereas the predicateeven defines the set of even numbers. We
shall attempt to prove thatm4(X)|=even(X), which in fact states that every multiple
of four is even. We start the proof process by performing acompleteunfolding on the
lhs goal (see definition in Section 4). We note thatm4(X) has two possible unfoldings,
one leading to the empty goal with the answerX=0, and another one leading to the goal
m4(X’),X’=X-4. The two unfolding operations, applied to the original proof obligation
result in the following two new proof obligations, both of which need to be discharged
in order to prove the original one.



X=0 |= even(X) (1) m4(X’),X’=X-4 |= even(X) (2)

The proof obligation (1) can be easily discharged. Since unfolding on the lhs is no
longer possible, we can only unfold on the rhs. We choose1 to unfold with ruleeven(0),
which results in a new proof obligation which is trivially true, since its lhs and rhs are
identical.

For proof obligation (2), before attempting any further unfolding, we note that the
lhs m4(X’) of the current proof obligation, and the lhsm4(X) of the original proof
obligation, are unifiable (as long as we considerX’ a fresh variable), which enables the
application of the coinduction principle. First, we ”discover” the induction hypothesis
m4(X’)|=even(X’), as a variant of the original proof obligation. Then, we use this
induction hypothesis to replacem4(X’) in (2) byeven(X’). This yields the new proof
obligation

even(X’),X’=X-4 |= even(X) (3)

To discharge (3), we unfold twice on the rhs, using theeven(X+2) :- even(X) rule.
The resulting proof obligation is

even(X’),X’=X-4 |= even(X’’’),X’’’=X’’-2,X’’=X-2 (3)

where variablesX’’ andX’’’ are existentially quantified2. Using constraint simplifi-
cation, we reduce this proof obligation toeven(X-4)|=even(X-4), which is obviously
true.

In the above example,m4(X) is unfolded to a goal with answerX=0, however, in
general the proof method does not require a base case. We could remove the factm4(0)
from the definition ofm4, and still obtain a successful proof. We call our technique
“coinduction” from the fact that it does not require any basecase.

4.2 The Proof Rules

We now present a formal calculus for the proof of assertionsG |= H . To handle the
possibly infinite unfoldings ofG andH , we shall depend on coinduction, which allows
the assumption of apreviousobligation. The proof proceeds by manipulating a set of
proof obligationsuntil it finally becomes empty or a counterexample is found. Formally,
a proof obligationis of the formÃ ⊢ G |= H where theG andH are goals and̃A is a
set ofassumptiongoals whose assumption (coinductively) can be used to discharge the
proof obligation at hand. This set is implemented in our algorithm as a memo table.

Our proof rules are presented in Figure 4. The⊎ symbol represents the disjoint
union of two sets, and emphasizes the fact that in an expression of the formA⊎B, we
have thatA∩B= /0. Each rule operates on the (possibly empty) set of proof obligations
Π, by selecting one of its proof obligations and attempting todischarge it. In this pro-
cess, new proof obligations may be produced. We note that ourproof rules are presented
in the “reverse” manner than usual, where the conclusions tobe proven is written above
the horizontal line and the premise to achieve the conclusion is written below the line.
Our proof rules can be considered as a system of production ofpremises whose proofs
establish the desired conclusion.

The left unfold with new induction hypothesis(LU+I) (or simply “left unfold”) rule
performs a complete unfold on the lhs of a proof obligation, producing a new set of

2 For clarity, we sometimes prefix such variables with ’?’.



(LU+I)
Π⊎{Ã⊢ G |= H }

Π ∪
Sn

i=1{Ã∪{G |= H } ⊢ G i |= H }

UNFOLD(G ) =
{G1, . . . ,Gn}

(RU)
Π⊎{Ã ⊢ G |= H }

Π∪{Ã⊢ G |= H ′
}
H ′ ∈ UNFOLD(H )

(CO)
Π⊎{Ã⊢ G |= H }

Π∪{Ã⊢ H ′θ |= H }

G ′ |= H ′
∈ Ã and there

exists a substitutionθ s.t.G |= G ′θ

(CP)
Π⊎{Ã⊢ G ∧ p(x̃) |= H ∧ p(ỹ)}

Π⊎{Ã⊢ G |= H ∧ x̃ = ỹ}

(SPL)
Π⊎{Ã ⊢ G |= H }

Π∪
Sk

i=1{Ã⊢ G ∧ψi |= H }
ψ1∨ . . .∨ψk is valid

(EXR)
Π⊎{Ã⊢ G |= H (z)}

Π⊎{Ã⊢ G ∧z= e |= H (z)}
z is existential

Fig. 4: Proof Rules for Recursive Constraints

proof obligations. The original formula, while removed from Π, is added as an assump-
tion to every newly produced proof obligation, opening the door to using coinduction
later in the proof.

The ruleright unfold(RU) performs an unfold operation on the rhs of a proof obli-
gation. In general, the two unfold rules will be systematically interleaved. The resulting
proof obligations are then discharged either coinductively or directly, using the (CO)
and (CP) rules, respectively.

The rulecoinduction application(CO) transforms an obligation by using an assump-
tion, and thus opens the door to discharging that obligationvia the direct proof (CP) rule.
Since assumptions can only be created using the (LU+I) rule, the (CO) rule realizes the
coinduction principle. The underlying principle behind the (CO) rule is that a “similar”
assertionG ′ |= H ′ has been previously encountered in the proof process, and assumed
as true.

Note that this test for coinduction applicability is itselfof the formG |= H . How-
ever, the important point here is that this test can only be carried out using basic con-
straints, in the manner prescribed for theCP rule described below. In other words, this
test does not use the definitions of (recursive) predicates.

The ruleconstraint proof(CP), when used repeatedly, discharges a proof obligation
by reducing it to a form which contains no recursive predicates. The intended use of
this rule is in case the recursive predicates of the rhs is thesubset of the recursive pred-
icates of the lhs such that repeated applications of the ruleresults in rhs containing no
recursive predicates. We then simply ignore the lhs predicates and attempt to establish
the remaining obligation using our basic constraint solver.

The rulesplit (SPL) rule is straightforward: to break up the proof into pieces.The
ruleexistential removal(EXR) rule is similarly straightforward: to remove one instance
of anexistentialvariable, one that appears only in the rhs. What is not straightforward



REDUCE(G |= H ) returns boolean

chooseone of the following:

• Constraint Proof: (CP) + Constraint Solving
Apply a constraint proof toG |= H .
If successful,return true, otherwisereturn false

• Memoize(G |= H ) as an assumption
• Coinduction: (CO)

if there is an assumptionG ′ |= H ′ such that
REDUCE(G |= G ′θ) = true∧ REDUCE(H ′θ |= H ) = true

then return true.
• Unfold:

chooseleft or right
case:Left: (LU+I)

choosean atomA in G to reduce
for all reductsGL of G usingA: if REDUCE(GL |= H ) = falsereturn false
return true

case:Right: (RU)
choosean atomA in H to reduce, obtainingGR
return REDUCE(G |= GR)

• Split:
Find an index variableId and a parameter variableN and apply the split rule usingId 6=
N∨ Id = N to splitG into G1 andG2.
return REDUCE(G1 |= H ) ∧ REDUCE(G2 |= H )

• Existential Variable Removal:
If an existential array variablez appears in the formz = 〈x, i,e〉, then simply substitutez
by 〈x, i,e〉 everywhere (inH ). If howeverz appears in the formx = 〈z, i,e〉 wherex is not
existential, then find an expression inG of the formx = 〈x′, i,e〉 and replacez by x′. Let the
result beH ′.
return REDUCE(G |= H ′)

Fig. 5: Search Algorithm for Recursive Constraints

however is precisely how we use theSPL andEXR rules: in the former case, how do we
choose the constraintsψi? And in the latter, how do we choose the expressione? We
present answers to this in the search algorithm below.

4.3 The Search Algorithm

Given a proof obligationG |= H , a proof shall start withΠ = { /0 ⊢ G |= H }, and pro-
ceed by repeatedly applying the rules in Figure 4 to it. We nowdescribe a strategy so as
to make the application of the rules automated. Here we propose systematic interleav-
ing of the left-unfold (LU+I) and right-unfold (RU) rules, attempting a constraint proof
along the way. As CLP can be executed by resolution, we can also execute our proof
rules, based on an algorithm which has some resemblance to tabled resolution.

We present our algorithm in pseudocode in Figure 5. Note thatthe presentation is
in the form of a nondeterministic algorithm, and the order executing each choice of the
nondeterministic operatorchooseneeds to be implemented by some form of systematic
strategy, for example, by a breadth-first strategy. Clearlythere is a combinatorial explo-
sion here, but in practice the number of steps required for a proof is not large. Even so,



the matter of efficiently choosing which order to apply the rules is beyond the scope of
this paper.

In Figure 5, by aconstraint proofof a obligation, we mean to repeatedly apply the
CP rule in order to remove all occurrences of predicates in the obligation, in an obvious
way. Then the basic constraint solver is applied to the resulting obligation.
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3a 3bsplit
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coinduction
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Fig. 6: Proof Tree

Next consider the split rule in Figure 5. Note that
we have specified the rather specific instance of the
SPL rule in which we replace a constraint of the form
Id ≤ N, where Id is an index variable andN repre-
sents the parameter, by (a disjunction of) two constraints
Id ≤ N, Id = N (Id = N) andId ≤ N, Id 6= N (Id < N).
The reason for this is purely technical; it is essentially
because our recursive assertions depend onId ≤ N and
since they are recursive onN, a recursive state may end
up with the situation whereId > N−1, a situation which
is not similar to the parent state.

Finally consider the existential variable elimination
rule in Figure 5. The essential idea here is simply that

an existential variable is most likely to correspond to somearray expression on the lhs.
Once again, this choice of existential variable elimination is purely technical and was
created because it works in practice.

Lemma 1 (Soundness of Rules).G |= H if, starting with the proof obligation/0 ⊢
G |= H , there exists a sequence of applications of proof rules thatresults in proof
obligationsÃ ⊢ G ′ |= H

′ such that (a)H ′ contains only constraints, and (b)G ′ |= H ′

can be discharged by the basic constraint solver.

5 Examples

5.1 Counting Ones

In Figure 1, the tree is closed is due to state subsumption formalized asG2 |= G1 :
1: 1≤ Id2 ≤ N,K′[Id2] = 0 |= abs(N,〈K′, id2,1〉,X′ +1)
A complete proof tree is outlined in Figure 6. The algorithm left unfolds Obligation 1
into 2a and 2b (not shown). Obligation 2a can be proved directly. Obligation 2b is now
split into 3a and 3b. For 3a, we add the constraintId 6= N, and for 3b we add the com-
plementary constraintId = N. We omit detailing 3b, and we proceed with explaining
the proof of 3a. Obligation 3a is as follows:
3a:abs(N−1,K′′,X′−B),bit(B),K′′[Id2] = 0,1≤ Id2 < N

|= abs(N,〈〈K′′,N,B〉, Id2,1〉,X′ +1)
We now perform the crucial step of applying coinduction to Obligation 3a. This is
permitted because the lhs of 1 is entailed by the lhs goal 3a. To see this, perform the
substitutions[N−1/N,X′−B/X′] on Obligation 1. The result of applying coinduction
is:
4: abs(N−1,〈K′′, Id2,1〉,X′−B+1),bit(B),K′′[Id2] = 0,1≤ Id2 < N

|= abs(N,〈〈K′′,N,B〉, Id2,1〉,X′ +1)
We now right unfold this into Obligation 5, and prove Obligation 5 by constraint rea-
soning, which is omitted.



process(id) {
〈0〉 t[id] = max(t[1],. . .,t[N]) + 1;
〈1〉 await(forall j!=id : t[id]==0 ∨ t[id]<t[j]);
〈2〉 t[id] = 0; goto 〈0〉 }

sys(K,T,N) :- K[Id]=0, 1≤Id≤N, max(T,N,X), sys(〈K,Id,1〉, 〈T,Id,X+1〉, N).
sys(K,T,N) :- K[Id]=1, 1≤Id≤N, crit(T,N,Id), sys(〈K,Id,2〉,T,N).
sys(K,T,N) :- K[Id]=2, 1≤Id≤N, sys(〈K,Id,0〉, 〈T,Id,0〉,N).

abs(K,T,1) :- (K[1] = 0,T[1] = 0)∨ (K[1] = 1,T[1] > 0).
abs(K,T,N) :- N > 1,((K[N] = 0,T[N] =)∨ (K[N] = 1,T[N] > 0)),abs(K,T,N−1).

max(T,1,X) :- X ≥ T[1].
max(T,N,X) :- N > 1,X ≥ T[N],max(T,N−1,X).

crit(T,1, Id) :- Id = 1∨T [1] = 0∨T [1] > T[Id].
crit(T,N, Id) :- N > 1,(Id = N∨T[N] = 0∨T [N] > T[Id]),crit(T,N−1, Id).

Fig. 7: Transitions and Predicates for Bakery

5.2 Bakery Algorithm (Atomic Version)

To show a more substantial example, consider the bakery mutual exclusion algorithm
[17]. Here we consider, somewhat unrealistically, a simplified presentation where the
test for entry into the critical section, which considers the collection of all processes, is
assumed to be performed atomically.

We represent the transitions and the recursive abstractions used in Figure 7.
A closed computation tree is depicted in Figure 8. The initial stateG0 is where the

counter is all zeroes, and the local variablesT[] (the “tickets”) are also all zero. The
stateG1 denotes one transition of one process, symbolically denoted by Id, from point
〈0〉 to 〈1〉. At this point we perform an abstraction to obtain a stateG1 which contains
not one but a number of program points at 1. This abstraction also constrains the tickets
so that if a counter is zero, then the corresponding ticket isalso zero.

No further abstraction is needed. That is, the computation tree underG1 is in fact
closed, as indicated. Note that mutual exclusion then follows from the fact that from
stateG 2b or G 3a, the only states in which a process is in the critical section, there is no
possible transition by a different process to enter the section. This is emphasized by the
the notation “infeasible” in Figure 8.

One of the conditions to show closure is that the (leaf) stateG 3a is subsumed byG 2b.
(There are several others, eg. thatG 3c is subsumed byG1. We shall omit considering
these.) This is formalized as:

D.1 : abs(K′,T ′,N),crit(T ′,N, Id1),max(T ′,N,X),1≤ Id1 ≤ N,
K′[Id1] = 1,1≤ Id2 ≤ N,〈K′, Id1,2〉[Id2] = 0
|= abs(?S,〈T ′, Id2,X +1〉,N),crit(〈T ′, Id2,X +1〉,N,?Id3),
1≤?Id3 ≤ N,?S[?Id3] = 1,〈〈K′, Id1,2〉, Id2,1〉 = 〈?S,?Id3,2〉

In the above, the prefix ’?’ denotes existentially-quantified variables. For space reasons,
we omit the detailed proof. Instead, we depict in the proof tree of Figure 8 the major
steps that can be used in the proof.



G 1 : ((0, . . . ,0,1,0, . . . ,0),(0, . . . ,0,v,0, . . . ,0))

G 3c : ((0,1,1,0, . . .),(0,v1,0,0, . . .))

G 2a : ((0,1,1,1, . . .),(0,v1,v2,v3, . . .))

G 3a : ((0,1,2,1, . . .),(0,v1,v2,v3, . . .))

G 3b : ((0,2,2,0, . . .),(0,v1,v2,0, . . .))

abstract

(infeasible)

G 0 : ((0,0, . . . ,0),(0,0, . . . ,0))

G 1 : ((0,1,1,0, . . .),(0,v1,v2,0, . . .))

G 2b : ((0,1,2,0, . . .),(0,v1,v2,0, . . .))
split

unfold

right
unfold

left
unfold

existential
removal

left
unfold

left
unfold

D.3a D.3b

D.2

D.1

D.4

D.5

D.6a D.6b

D.7a D.7b

D.8

D.9

D.10

split

coinduction

direct proof

right

Fig. 8: Computation and Proof Trees of Bakery Algorithm

5.3 Original Bakery Algorithm

We finally discuss the original version of the bakery algorithm [17]. Our purpose here is
to demonstrate abstraction beyond an array of variables. Here, abstraction is needed be-
cause there is an additional loop implementing the incremental request for entry into the
critical section. To our knowledge, we provide the first systematic proof of the original
bakery algorithm. Our proof technique is semiautomatic, where the user only provide
the declarative specification of loop invariants.

We show the program in Figure 9. We focus on the replacement oftheawaitblock-
ing primitive in Figure 7 by a loop from〈3〉 to 〈8〉, which itself contains two internal
busy-waiting loops. Figure 9 also shows the transition system of the loop, and the pred-
icate that is used. In the program and elsewhere, the operator ≺ is defined as follows:
when(a,b) ≺ (c,d) holds, then eithera < b or whena = b, thenb < d.

Figure 10 depicts an abstract computation tree. The stateG2 represents entry into the
outerloop, andG2 its abstraction.G 3a is its exit. The statesG 3b andG ba represent the
two inner loops. The interesting aspect is the abstraction indicated. It alone is sufficient
to produce a closed tree. More specifically, we abstractG 2 : sys(K′,C,T,J′,N),K[Id1] =

3,K′ = 〈K, Id1,4〉,J′ = 〈J, Id1,1〉 intoG 2 : sys(K′,C,T,J′,N),K′[Id1] = 4,crit(C,T,J′, Id1),1≤
J′[Id1] ≤ N+1.

The state subsumption is formalized as the entailmentG 6 |= G 2 as follows:
K′[Id1] = 4,crit(C,T,J′, Id1),1≤ J′[Id1] ≤ N+1,K′[Id2] = 4,
K′′ = 〈K′, Id2,5〉,K′′[Id3] = 5,K′′′ = 〈K′, Id3,6〉,C[J′[Id3]] = 3,
T[J′] = 0∨ (T[Id4], Id4) ≺ (T[J′[Id4]],J′[Id4]),K′′′[Id4] = 6,K iv = 〈K′′′, Id4,7〉,



process(id) {
〈0〉 c[id] = 1;
〈1〉 t[id] = 1 + maximum(t[1],. . .,t[n]);
〈2〉 c[id] = 0;
〈3〉 j[id] = 1;
〈4〉 while (j ≤ N) {
〈5〉 if (c[j]!=0) goto 〈5〉;
〈6〉 if (t[j]!=0 && (t[j],j) ≺ (t[i],i)) goto 〈6〉;
〈7〉 j = j+1; }
〈8〉 goto 〈0〉; }

sys(K,C,T,J,N) :- K[Id]=3, sys(〈K,Id,4〉,C,T,〈J,Id,1〉,N)
sys(K,C,T,J,N) :- K[Id]=4, J[Id]≤ N, sys(〈K,Id,5〉,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=4, J[Id]>N, sys(〈K,Id,8〉,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=5, C[J]6= 0, sys(K,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=5, C[J]=0, sys(〈K,Id,6〉,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=6, T[J]6=0, ((T[J],J)≺(T[Id],Id)), sys(K,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=6, (T[J]=0∨((T[Id],Id)≺(T[J],J)),

sys(〈K,Id,7〉,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=7, sys(〈K,Id,4〉,C,T,〈J,Id,J[Id]+1〉,N)

crit(C,T,1, Id) :- Id = 1∨ (C[1] = 0,(T [Id], Id) ≺ (T[1],1))
crit(C,T,N, Id) :- Id = N∨ (C[N] = 0,(T [Id], Id) ≺ (T[N],N)),crit(C,T,N−1, Id).

Fig. 9: Original Bakery with Transitions of the Entry Loop and Predicate

K iv[Id5] = 7,Kv = 〈K iv, Id5,4〉,J′′ = 〈J′, Id,J′[Id5]+1〉
|= crit(C,T,J′′,?Id6),Kv[Id1] = 4,1≤ J′′[?Id6] ≤ N+1

abstract

G 6

G 1

G 2
G 2

G 3a
G 3b

G 4a

G 4b

G 5a
G 5b

Fig. 10: Abstract Computation
Tree for Entry Loop

which can be proven along the lines indicated
above. We omit the details.

6 Concluding Remarks

We presented a language of recursively defined
formulas about arrays of variables for the pur-
pose of specifying abstract states of parameter-
ized systems. We then present a symbolic tran-
sition framework for these formulas. This can
produce a finite representation of the behaviour
of the system from which safety properties can
be ascertained. The main result is a two step al-
gorithm for proving entailment of these formu-
las. In the first step, we employ a key concept of
coindunction in order to reduce the recursive def-
initions to formulas about arrays and integers. In
the second, we reduced these formulas to integer
formulas.

Though we considered only safety properties
in this paper, it is easy to see that our notion of



closed abstract tree does in fact contain the key information needed to argue about
termination and liveness. Essentially, this is because ourframework is equiped with
symbolic transitions. What is needed is to show that in everypath ending in a subsumed
state, that the execution from the parent state decreases a well founded measure.
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