
Precise Cache Timing Analysis via
Symbolic Execution

Duc-Hiep Chu
National University of Singapore

Email: hiepcd@comp.nus.edu.sg

Joxan Jaffar
National University of Singapore

Email: joxan@comp.nus.edu.sg

Rasool Maghareh
National University of Singapore

Email: rasool@comp.nus.edu.sg

Abstract—We present a framework for WCET analysis of
programs with emphasis on cache micro-architecture. Such an
analysis is challenging primarily because of the timing model of
a dynamic nature, that is, the timing of a basic block is heavily
dependent on the context in which it is executed. At its core,
our algorithm is based on symbolic execution, and an analysis
is obtained by locating the “longest” symbolic execution path.
Clearly a challenge is the intractable number of paths in the
symbolic execution tree. Traditionally this challenge is met by
performing some form of abstraction in the path generation
process but this leads to a loss of path-sensitivity and thus
precision in the analysis. The key feature of our algorithm is
the ability for reuse. This is critical for maintaining a high-
level of path-sensitivity, which in turn produces significantly
increased accuracy. In other words, reuse allows scalability in
path-sensitive exploration. Finally, we present an experimental
evaluation on well known benchmarks in order to show two
things: that systematic path-sensitivity in fact brings significant
accuracy gains, and that the algorithm still scales well.

I. INTRODUCTION

Hard real-time systems need to meet hard deadlines. Static
Worst-Case Execution Time (WCET) analysis is therefore very
important in the design process of real-time systems.

Traditionally, WCET analysis is proceeded in three phases.
The first phase, referred to as low-level analysis, involves
micro-architectural modeling to determine the maximum exe-
cution time for each basic block. The second phase concerns
determining the infeasible paths and loop bounds from the
program. The third phase computes the aggregated WCET
bound, employing the results of the prior phases. In some
recent approaches, the second and third phases are fused into
one, called generally as high-level analysis. Importantly, for
scalability, in the literature low-level analysis and high-level
analysis are often performed separately.

The main difficulty of low-level analysis comes from the
presence of performance enhancing processor features such as
caches and pipeline. This paper focuses on caches, since their
impact on the real-time behavior of programs is much more
than other features [1]. Cache analysis – to be scalable – is
often accomplished using abstract interpretation (AI), e.g., [2].
In particular, we need to analyze the memory accesses of the
input program via an iterative fixed-point computation. This
process can be efficient, but the results are often not precise.
There are two main reasons for the imprecision:

(1) The cache states are joined at the control flow merge
points. This results in subsequently over-estimating
the potential cache misses.

(2) Beyond the one-iteration virtual unrolling of loops
[2], AI is unable to give different timings for a basic
block executed in different iterations of a loop.

A direct improvement would be to curtail the above-mentioned
merge points. That is, when traversing the CFG from a partic-
ular source node to a particular sink node: (a) do not visit any
intermediate node which is unreachable from the source node;
(b) perform merging once traversals are finished, only at the
sink node. This process should be performed on some, but not
necessarily all the possible source/sink node pairs.

Recent works [3], [4] fall into this class. They employ a
form of infeasible path discovery, so that unreachable micro-
architectural states can be excluded from consideration, i.e.,
via (a), thus yielding more accurate WCET bounds. We note,
however, such addition of infeasible path discovery is quite
limited. We will elaborate more in Sections VI and VII.

More importantly, in the literature, most algorithms employ
a fixed-point computation in order to ensure sound analysis
across loop iterations. Thus, they inherit the imprecision of AI,
identified as reason (2) above. That is, a fixed-point method
will compute a worst-case timing for each basic block in all
possible contexts, even though the timings of a basic block in
different iterations of a loop can diverge significantly.

To overcome the identified shortcomings, we propose a
symbolic execution algorithm where low-level analysis and
high-level analysis are synergized. In our algorithm, loops
are unrolled fully1 and summarized. The only abstraction (or
merging) performed is within and once at the end of a loop
iteration, not across loop iterations. This leads to a precise in-
spection of the timing measured from the underlying hardware
model, because the (feasibility of) micro-architectural states
can be tracked across the iterations. Clearly, our method would
produce very accurate WCET bounds since it preserves the
programs operational semantics in detail, down to the cache.

While precision is ensured, the scalability of our algorithm
becomes questionable. Obviously, a naive attempt to perform
exhaustive symbolic execution will not scale. Chu and Jaffar
demonstrated that exhaustive symbolic execution can be made
scalable, in the presence of (nested) loops, by employing the
novel concept of reuse with interpolation [5]. Their concept of
reuse [5] relies on the fact that the timing of each basic block
is determined as a constant by a prior low-level analysis.

In the setting of this paper, because of the presence of
micro-architectural features such as caches, the timing for each
basic block is no longer statically fixed. Instead, the timing
depends on the context in which the block is executed. We
refer to this as dynamic timing, and in a dynamic timing model,
reuse with interpolation alone is no longer sound. In short, one
main contribution of this paper is then, furnishing the concept
of reuse so that it is still sound and effective for the setting

1We note that our loop unrolling is done virtually and not physically, and
is different from loop unrolling done by compilers.

1



that the timing of a basic block, under different contexts, can
be arbitrarily different.

In Section VI, we demonstrate on realistic benchmarks that
our algorithm is accurate as well as scalable. Note that our
benchmarks include statemate and nsichneu, which are
often used to evaluate the scalability of WCET analyzers. In
addition to proving metrics, we will elaborate our improvement
in the context of different program characteristics such as loop
behavior and the amount of infeasible paths.

II. OVERVIEW

Fig. 1(a) informally depicts a symbolic execution tree,
where each triangle presents a subtree. The program contexts
for the left and right subtrees, i.e., the symbolic states s0 and
s1 respectively, are of the same program point. If we had
applied the algorithm in [5] on the left subtree, we would
obtain two things: an interpolant Ψ0, a generalization of s0,
encapsulating any context that would preserve the infeasible
paths (indicated with a red cross) of the subtree. We also obtain
a “representative” path, called a witness, indicated in blue,
which gives rise to the WCET (15 in this case) of the subtree.

X

s0 s1

4

X15 15

7

s1 ⊨ψ𝟎

X

4

X15 17

7

s1⊨ψ𝟎 ∧𝐃𝐎𝐌( 𝐜𝟎,𝐜𝟏)

(a) (b)

WCET: 22 WCET: 24

s0 s1

Fig. 1: Reuse of Summarizations: (a) [5] vs. (b) This Paper

The algorithm [5] now considers the right subtree, where
two tests are performed. First the context s1 is checked if it
implies the interpolant. If so, every infeasible path in the left
subtree remains infeasible in the right subtree. A second test
is whether the witness path is still feasible. If both tests are
passed, the analysis can be reused here, and the WCET of the
right subtree can now be computed without traversal.

The final analysis, at the root of the tree, can be computed
by collating the analyses of the left and right subtrees, and
we can now determine its value of 22 as indicated. Note,
importantly, that we never actually traversed the path that gives
rise to this result; instead, we inferred its value.

So far we have only briefly overviewed the previous work
[5]. Next consider Fig. 1(b) where we now focus on dynamic
timing, which arises because of cache configurations. A cache
state c0 is also part of the context s0 of the subtree on the
left. After analyzing the left subtree we obtain an interpolant
Ψ0 and a witness path (indicated in blue) as before. A
most important point of departure here from Fig. 1(a) is that
the reuse of this witness path, solely as before, is unsound
in general. To remedy this, we now compute a dominating
condition c0. Essentially, this is a formula which describes an
abstract cache configuration which is sufficient to guarantee
the witness path remains optimal, i.e., the worst-case path in
the subtree, when encountering a new context.

In Fig. 1(b), suppose the dominating condition applies, that
is, suppose that the cache context c1 is covered by c0. We
indicate this by the predicate DOM(c0, c1). Now this allows us

to reuse the witness path. We then need to proceed replaying
the witness path under the new cache configuration c1. This,
importantly, can lead to new value of the path (now 17),
which is different from the original value (15). Finally, we
can conclude the analysis on the whole tree with the value 24.

Now suppose the dominating condition did not apply. Then
the path indicated by 17 may not be the worst-case path in the
right subtree. For example, there could be a path of length 18
somewhere else in the subtree. If we reuse the witness path,
we would now report, wrongly, a final value of 24.

III. GENERAL FRAMEWORK

A. Symbolic Execution with Abstract Cache

We model a program by a transition system. A transition
system P is a tuple 〈L, `0,−→〉 where L is the set of program
points, `0 ∈ L is the unique initial program point. Let
−→⊆ L × L × Ops, where Ops is the set of operations,
be the transition relation that relates a state to its (possible)
successors by executing the operations. All basic operations
are either assignments or “assume” operations. The set of
all program variables is denoted by Vars. An assignment
x := e corresponds to assign the evaluation of the expression
e to the variable x. The expression assume(cond) means: if
the conditional expression cond evaluates to true, execution
continues; otherwise it halts. We shall use `

op−→ `′ to denote a
transition relation from ` ∈ L to `′ ∈ L executing the operation
op ∈ Ops. Clearly a transition system is derivable from a
control flow graph (CFG).

Definition 1 (Symbolic State). A symbolic state s is a tuple
〈`, c, σ,Π〉 where ` ∈ L is the current program point, c is the
abstract cache state the symbolic store σ is a function from
program variables to terms over input symbolic variables, and
finally the path condition Π is a first-order formula over the
symbolic inputs.

The abstract cache is modeled following the standard
semantics of abstract cache for must analysis, formally defined
in [2]. The purpose of Π is to accumulate constraints on input
values which enable execution to reach this state.

Let s0
def
= 〈`0, c0, σ0,Π0〉 denote the unique initial sym-

bolic state, where c0 is the initial abstract cache state, usually
initialized as an empty cache. At s0 each program variable is
initialized to a fresh input symbolic variable. For every state
s ≡ 〈`, c, σ,Π〉, the evaluation [[e]]σ of an arithmetic expression
e in a store σ is defined as usual: [[v]]σ = σ(v), [[n]]σ = n,
[[e + e′]]σ = [[e]]σ + [[e′]]σ , [[e − e′]]σ = [[e]]σ − [[e′]]σ , etc.
The evaluation of the conditional expression [[cond]]σ can be
defined analogously. The set of first-order logic formulas and
symbolic states are denoted by FO and SymStates, respectively.

Our analysis is performed on LLVM IR, which is expres-
sive enough for cache analysis and where the general CFG
of the program can be readily constructed. Given a program
point `, an operation op ∈ Ops, and a symbolic store σ, the
function acc(`, op, σ) denotes the sequence of memory block
accesses by executing op at the symbolic state 〈`, c, σ, ·〉. While
the program point ` identifies the instruction cache access, the
sequence of data accesses are obtained by considering both op
and σ together.

Definition 2 (Transition Step). Given 〈L, l0,−→〉, a transition
system, and a symbolic state s ≡ 〈`, c, σ,Π〉 ∈ SymStates,
the symbolic execution of transition tr : `

op−→ `′ returns
another symbolic state s′ defined as:

2



s′
def
=

{
〈`′, c′, σ,Π ∧ cond〉 if op ≡ assume(cond)
〈`′, c′, σ[x 7→ [[e]]σ],Π〉 if op ≡ x := e

where

c′ is the new abstract cache derived from c and the sequence
of accesses.

Note that c′ is computed using the standard update function
of the abstract cache semantics for must analysis from [2].
Thus c′ is U(acc(`, op, σ), c).

Abusing notation, the execution step from s to s′ is denoted
as s tr−→ s′ where tr is a transition. Given a symbolic state
s ≡ 〈`, c, σ,Π〉 we also define [[s]] : SymStates→ FO as the
projection of the formula

[[Π]]σ ∧
∧

v∈Vars
v = [[v]]σ

onto the set of program variables Vars. The projection is per-
formed by the elimination of existentially quantified variables.

For convenience, when there is no ambiguity, we just refer
to the symbolic state s using the abbreviated tuple 〈`, c, [[s]]〉
where ` and c are as before, and [[s]] is obtained by projecting s
as described above. A path π ≡ s0 → s1 → . . . sm is feasible
if sm ≡ 〈`, cm, [[sm]]〉 and [[sm]] is satisfiable. Otherwise, the
path is called infeasible and sm is called an infeasible state.
Here we query a theorem prover for satisfiability checking on
the path condition. We assume the theorem prover is sound,
but not complete. If ` ∈ L and there is no transition from `
to another program point, then ` is called the end point of the
program. Under that circumstance, if sm is feasible, then sm
is called terminal state.

1

<1a>

<2a>

<6a>

<3a>

<7a>

<4a> <4b>

<5b> <6b>

<7b>

x = 0 x ≠ 0 

x > 1 x ≤ 1

(a)

x = 0 x ≠ 0 

<2>
m1 10

<1>
10

<3>
m1 15

<5>
m2 15

<4>
10

<6>
m1 9

<7> 
5

x > 1 x ≤ 1
x > 1 x ≤ 1

<7c>

(b)

m1 m1

m1 m1m2

<5a>

Fig. 2: (a) a CFG and (b) Its Symbolic Execution Tree

Example 1 (Symbolic Execution Tree). Consider the CFG
in Fig. 2(a). Each node abstracts a basic block. Inside the
basic blocks, the program points (〈1〉, 〈2〉, · · · , 〈7〉) are shown
and the integer constants (in blue color) are the static timings
(timings of the corresponding basic blocks while assuming
that all memory accesses are hits). We also show the memory
accesses (in red color). They are accesses to memory blocks
m1 and m2. For brevity, we might use interchangeably the
identifying program point when referring to a basic block. Two
outgoing edges signify a branching structure, while the branch
conditions are labeled beside the edges. In this example, we
assume a direct-mapped cache, initially empty; and m1 and
m2 conflict with each other in the cache.

Next, in Fig. 2(b), we depict the symbolic execution tree
of the program. Each node, shown as a circle, is identified
by the corresponding program point, followed by a letter to
distinguish the multiple visits to the same program point. Each

node is associated with a symbolic state, but for simplicity we
do not explicitly show any state content in the figure.

Now assume that none of the basic blocks modifies the
variable x. At node 〈5a〉, the projection of the path condition
over the program variables [[s5a]] is x = 0 ∧ x > 1, which
is equivalent to false. In other words, the leftmost path in
Fig. 2(b) is in fact an infeasible path. Moreover, each node
will be assigned a cache state. The cache state of a child
node is determined by the cache state of the parent node and
the memory accesses in the corresponding basic block. For
example, the cache at node 〈4b〉 contains m1, while the cache
at node 〈7b〉 contains m2, evicting m1 out of the cache.

Here we omit the standard definitions for loop, loop head,
end point of loop body and same nesting level. (However, they
are included in the Appendix, Section IX-A.) We assume that
each loop has only one loop head and one unique end point.
For each loop, following the back edge from the end point to
the loop head, we do not execute any operation. This can be
achieved by a preprocessing phase.

B. Constructing Summarizations

In our framework, a “subtree” is a portion of the symbolic
execution tree. Given a state s and program point `2 such
that (a) state s ≡ 〈`1, c, [[s]]〉 appears in the tree, and (b) `2
post-dominates `1, then subtree(s, `2) depicts all the paths
emanating from s and, if feasible, terminate at `2. (Note that
`2 may not be the end point of the whole tree.) We call `1 and
`2 the entry and exit points of the subtree.

A summarization of a subtree, intuitively, is a succinct
description of its analysis. This is formalized as a tuple
of certain important components of the analysis. These are:
the entry and exit program points, an interpolant describing
infeasible paths, a witness describing the longest path in the
subtree, a domination condition ensuring the witness represents
the appropriate worst-case path in the subtree, and finally an
abstract transformer relating the input and output program
variables and an abstract transformer relating the input and
output cache configurations. The abstract transformers are used
to generate the outgoing context at `2.

We start with our notion of interpolant. The idea here is to
approximate at the root of a subtree, the weakest precondition
in order to maintain the infeasibility of all the nodes inside.
(An exact computation is in general intractable.) In the context
of program verification, an interpolant captures succinctly a
condition which ensures the safety of the tree at hand. Adapting
this to program analysis is first done in [6] which formalized a
generalized form of dynamic programming. Since all infeasible
nodes are excluded from calculating the analysis result of a
subtree, in order to ensure soundness, at the point of reuse, all
such infeasibility must also be maintained.

Next, we discuss the witness concept. Intuitively, it is a
path that depicts the WCET of a subtree. More specifically, it
is depicted by Γ

def
= 〈t,Υ, π〉 where t is the (static) execution

time of the instructions along the path assuming all the memory
accesses are cache hits, Υ is the sequence of all memory
accesses along the path, and π is the path constraints along
the witness.

In case Υ contains consecutive accesses to the same
memory block, all-but-first accesses in that subsequence can be
classified as Always Hit and, importantly they will not affect
the resulting cache state. As an optimization, we consider them

3



and redundant and remove them from Υ. This helps reducing
the size of Υ.

The timing of a witness is obtained dynamically from t
and replaying the sequence Υ under an incoming cache state
c. The feasibility of a witness w.r.t. to an incoming context
is determined by checking if [[π]]∧ [[s]] is satisfiable. In what
follows, we abbreviate [[π]]∧ [[s]] by [[Γ]].

We say that two nodes in a symbolic execution tree are
similar if they refer to the same program point. Thus two
subtrees are similar if they share the same entry and exit
program points.

We next discuss dominating condition, another component
of our analysis of a subtree. Intuitively, this is a description of
what cache configuration is needed in order that the witness
remains optimal in a similar subtree. That is, in an analysis of
the latter subtree, the witness remains the longest path. More
specifically, the constraints in the dominating condition are
either of the form mi ∈ cache, indicating the presence of
memory block mi, or mi 6∈ cache, indicating the opposite.

We now discuss an abstract transformer ∆p of a subtree
from `1 to `2 which is an abstraction of all feasible paths (w.r.t.
the incoming symbolic state s) from `1 to `2. Its purpose is to
capture an input-output relation between the program variables
In our implementation, we adopt from [5] which uses the
polyhedral domain [7].

Similarly, we also have an abstract transformer ∆c for
cache. Suppose s is at program point `1 and a summarization of
subtree(s, `1) is reused at another visit to `1 with the incoming
cache state c1, then the cache state at `2 can be generated by
applying the abstract transformer of cache to c1. That is, this
transformer captures the memory accesses along the feasible
paths, which start from s and end at `2.

We collect together the components discussed above into
a summarization.

Definition 3. A summarization of subtree(s, `2), where `1 is
the program point of s, is a tuple

[`1, `2,Ψ,Γ, δ,∆p,∆c]

where Ψ is an interpolant, Γ is the witness and δ is the
dominating condition. ∆p is an abstract transformer relating
the input and output variables and finally, ∆c is a an abstract
transformer of cache.

We now display a key feature of our algorithm: reuse
of a summarization. Suppose we have already computed a
summarization [`1, `2,Ψ,Γ, δ,∆p,∆c] where the witness is
Γ ≡ 〈t,Υ, π〉. Suppose we then encounter a symbolic state
s′ ≡ 〈`1, c, [[s′]]〉. The summarization now can be reused if:

1) [[s′]] implies the stored interpolant Ψ i.e., [[s′]] |= Ψ.
2) The context of s′ is consistent with the witness

formula, i.e., [[π]]∧ [[s′]] is satisfiable.
3) The dominating condition is satisfied by c, i.e.,

DOM(δ, c) holds.

The WCET of the subtree beneath the state s′ is then derived
from the witness Γ and the cache state c. The WCET of the
subtree is t plus the sum of the access times of all the memory
accesses in Υ. Using the context c, we resolve each memory
access in Υ to either a cache hit or a cache miss.

We now conclude this subsection by mentioning that we
only summarize at select program points. Given entry point `1,
the corresponding exit point `2 is determined as follows. It is

the program point that post-dominates `1 s.t. `2 is of the same
nesting level as `1 and either is (1) an end point of the program,
or (2) an end point of some loop body. In other words, we only
perform “merging” abstraction at loop boundaries. As `2 can
always be deduced from `1, in a summarization, we omit the
component about `2.

IV. AN EXAMPLE ANALYSIS

Consider the CFG and symbolic execution tree in Fig. 3.
Here we assume a direct-mapped cache, initially empty, and a
cache miss penalty of 10 cycles. Consider accesses to memory
blocks m1,m2,m3, and m4, where only m1 and m3 conflict
with each other in the cache. Note that in Fig. 3(b), we have
not (fully) drawn the subtree below node 〈4b〉.

Suppose the subtree 〈7a〉 has been analyzed, and its
summarization is [〈7〉,Ψ,Γ, δ,∆p,∆c]. We now explain the
components of this summarization. The interpolant Ψ is easily
determined as true because all (two) paths of this subtree
are feasible. Next, because the incoming cache state which
contains only m1, the timing of the sub-path 〈7a〉, 〈8a〉, 〈10a〉
is 40 = (10 + 5 + 10 + 15), with both accesses are misses.
Similarly, the timing of the other sub-path 〈7a〉, 〈9a〉, 〈10b〉
is 45 = (10+ 5 +10+10+ 10). So, the sub-path 〈7a〉, 〈9a〉,
〈10b〉 is longer than the other and it is chosen as the worst-case
path2 of subtree 〈7a〉. Consequently, the witness Γ is computed
as 〈15, [m2,m3,m4], z ≥ 0〉, where 15 is the static timing
of the witness path, [m2,m3,m4] are the memory accesses
along the path, and z ≥ 0 is the (partial) path constraints
of the path. Next, we capture a dominating condition δ as
m4 6∈ cache. This condition is sufficient to ensure that the
chosen path dominates (i.e., is longer than) any other path in
the subtree.

The abstract transformer ∆p is the trivial one where
the output is the same as the input. This is because in
this example we abstract away all the instructions executed
by the basic blocks. Next, since m2 and m3 are common
along both paths, the abstract transformer for cache ∆c is
[m2,m3]. More specifically, any path from program point
〈7〉, if it reaches to program point 〈10〉, then m2 and m3
are for sure present in the cache. However, this is not
true for m4. In short, after analyzing 〈7a〉, we also have
computed a summarization [7, true, 〈15, [m2,m3,m4], z ≥
0〉,m4 6∈ cache, Id(Vars), [m2,m3]].

For brevity, in what follows, we do not detail on abstract
transformers ∆p and ∆c.

Next we propagate the analysis of 〈7a〉 to its parent 〈5a〉
whose summarization is now updated so that the witness is
stored in the form 〈20, [m1,m2,m3,m4], z ≥ 0〉, where 20 is
computed as the sum of: (1) the static timing of block 〈5〉,
which is 5; (2) the static timing of the witness for 〈7a〉, which
is 15. The dominating condition is m4 6∈ cache, as before.

We fast forward to node 〈7b〉, and consider now if the
above analysis of 〈7a〉 can be reused. That is, even though
we have depicted the subtree 〈7b〉 in full, could we in fact
have simply declared that the witness in the subtree below
〈7b〉 would remain the same as the witness in subtree below
〈7a〉? (Recall that the witness in the subtree below 〈7a〉 spans
along the program points 〈7〉, 〈9〉, 〈10〉.) Unfortunately, the
answer is negative, and the reason is that the dominating
condition, m4 6∈ cache, is not met. This non-reuse is depicted
by a red cross. We thus have to analyze 〈7b〉 fully. We get

2When it is clear, we often use “path” to mean “sub-path”.

4



(a)

x < 0 x ≥ 0

y < 0 y ≥ 0

<2>
m1 10

<1>
10

<3>
m1 , m2 15

<5>
m1  5

<4>
10

<6>
m4   11

<7>
m2 5

<8>
m3 15

<9>
m3, m4 10

<10>

z < 0 z ≥ 0

<1a>

<5a>

<2a>

<8b><9a>

<6a>

<9b>

<10b> <10c> <10d>

<3a>

<7b><7a> X

reuse
<4a> <4b>

(b)

<8a>

<10a>

<6b>

<8c>

<10e>

<7c>
δ: m4 ∈ cache
Γ: ‹20, [m2, m3], z < 0›

δ: m4 ∉ cache Ʌ true Ʌ m1 ∈ cache
Γ: ‹41, [m4, m2, ,m3], y ≥ 0 Ʌ z < 0›

δ: m4 ∉ cache
Γ: ‹20, [m1, m2, m3, m4] , z ≥ 0›

δ: m4 ∉ cache
Γ: ‹15, [m2, m3,m4], z ≥ 0›

δ: true
Γ: ‹31, [m4, m2, m3],z < 0›

Fig. 3: (a) a CFG (with memory accesses and static instruction timing shown in each block); and (b) Our Analysis Tree

a different longest sub-path this time, 〈7b〉, 〈8b〉, 〈10c〉, with
the witness 〈20, [m2,m3], z < 0〉. The dominating condition
is also different: δ : m4 ∈ cache.

Finally, this analysis of 〈7b〉 is propagated for its parent
〈6a〉. The dominating condition is m4 ∈ cache which always
holds due to the access of m4 at 〈6〉. Thus the dominating
condition for 〈6a〉 is simply true.

Having now analyzed both 〈5a〉 and 〈6a〉, we can now
compute an analysis for their common parent 〈4a〉. Here the
observed longest sub-path is 〈4a〉, 〈6a〉, 〈7b〉, 〈8b〉, 〈10c〉, and
the witness is stored as 〈41, [m4,m2,m3], y ≥ 0∧z < 0〉. The
dominating condition is conjoined from: (a) the dominating
condition of its left child 〈5a〉; (b) the dominating condition
of its right child 〈6a〉; and (c) the reason for the dominance
of the above observed longest path over the other path. In
particular, δ is m4 6∈ cache ∧ true ∧m1 ∈ cache.

Now we can exemplify reuse on the subtree 〈4b〉. We
first check if the context of 〈4b〉 implies the interpolant
computed for 〈4a〉. Because all paths from 〈4a〉 are feasible,
the interpolant is true, thus, it trivially holds. We then check if
the dominating condition holds. Examining the cache context
of 〈4b〉, indeed m1 is in the cache and m4 is not in the cache.
Furthermore, the witness is still feasible w.r.t. the incoming
context (x ≥ 0). So we can reuse the witness of 〈4a〉, yielding
the timing of 61. We remark here that the timing of the sub-
path 〈4b〉, 〈6b〉, 〈7c〉, 〈8c〉, 〈10e〉 is less than the timing of
〈4a〉,〈6a〉, 〈7b〉, 〈8b〉, 〈10c〉 because now m2 is present in the
cache at 〈4b〉.

Finally, we easily arrive at the WCET of the entire tree,
thus, the entire example program, to be 106 cycles (= 10 + 10
+ 10 + 15 + 61, since the accesses to m1 and m2 at 〈3a〉 are
cache miss).

Let us reconsider the same example using a pure abstract
interpretation (AI) framework such as [2]. A pure AI method
would typically perform merging at the three join points: 〈4〉,
〈7〉, 〈10〉. Importantly, it discovers that at 〈4〉, m1 must be in
the cache. Thus, the access to m1 at 〈5〉 is hit. However, at
〈7〉, AI has to conservatively declare that m4 is not in the
cache. As a result the access to m4 at 〈9〉 will be cache
miss. Consequently, the final worst case timings for the basic
blocks that have some memory accesses are: (〈2〉,20), (〈3〉,35),
(〈5〉,5), (〈6〉,21), (〈7〉,15), (〈8〉,25), (〈9〉,30).

If we aggregate using a path-insensitive high-level analysis,
the WCET estimate is 121 (= 10 + max(20, 35) + 10 + max(5,

21) + 15 + max(25,30)). If we aggregate using a path-sensitive
high-level analysis [5], we cannot improve the estimate for this
example, because the program contains no infeasible paths.

V. SYMBOLIC EXECUTION FOR DYNAMIC TIMING

Algorithm 1 consists of two important functions. The
function ANALYZE takes as input the initial symbolic state s0
and the transition system P of an input program. It then
invokes SUMMARIZE to generate a summarization for the whole
program (line 1). We then compute the WCET by replaying the
witness path, starting from the initial cache state c0. This is
considered as a standard task (line 2).

Before elaborating on the SUMMARIZE function, we first
explain how summarizations are compounded through two
helper functions, COMPOSE and JOIN, presented in Fig. 4.

Compounding Vertically Two Summarizations: Consider-
ing subtree(s2, `3) suffixing subtree(s1, `2), where s2 ≡
〈`2, c2, [[s2]]〉 and s1 ≡ 〈`1, c1, [[s1]]〉. In other words, a path π1
from `1 to `2 followed by a path π2 from `2 to `3 corresponds
a path π in subtree(s1, `3). The COMPOSE function returns a
summarization for subtree(s1, `2) by compounding the two
existing summarizations, respectively for subtree(s1, `2) and
subtree(s2, `3).

The abstract transformer ∆p is computed as the con-
junction of the input abstract transformers (line 23), with
proper variable renaming. We use COMBINE-WITNESSES to
compound the witnesses of the two input summarizations
and COMBINE-CACHES to construct the overall cache input-
output relation for subtree(s1, `1). For interested readers,
COMBINE-WITNESSES and COMBINE-CACHES are elaborated more
in the Appendix.

Note that in our implementation, abstract transformers are
computed using polyhedral domain. We employ ∆p to generate
one continuation context, before proceeding the analysis with
subsequently program fragments. Finally, the desired inter-
polant must capture the infeasiblity of S1, as well as the
infeasibility of S2 given that we treat subtree(s1, `2)) as an
abstract transition, of which the operation is ∆p. We rely on
the function PRE-COND, which in line 24 under-approximates
the weakest-precondition of the post-condition Ψ2 w.r.t. to the
transition relation ∆p.

Compounding Horizontally Two Summarizations: Given
two summarizations of rooted at two nodes which are siblings,

5



Algorithm 1 Integrated WCET Analysis Algorithm
function ANALYZE(s0, P)

Let s0 be 〈`0, c0, [[s0]]〉
〈1〉 [`0, ·,Γ, ·, ·, ·] := SUMMARIZE(s0,P)
〈2〉 return COMPUTE-TIMING(Γ, c0)
end function

function SUMMARIZE(s, P)
Let s be 〈`, c, [[s]]〉

〈3〉 if ([[s]] ≡ false) return [`, false,〈−∞, [ ], false〉, [ ], false, [ ]]
〈4〉 if (OUTGOING(`,P) = ∅)
〈5〉 return [`, true, 〈0, [ ], true〉, [ ], Id(Vars), [ ]]
〈6〉 if (LOOP-END(`,P))
〈7〉 return [`, true, 〈0, [ ], true〉, [ ], Id(Vars), [ ]]
〈8〉 S := [`,Ψ,Γ, δ,∆p,∆c] := MEMOED(`)
〈9〉 if ([[s]] |= Ψ ∧ [[Γ]] 6≡ false ∧ DOM(δ, c)) return S
〈10〉 if (LOOP-HEAD(`,P))
〈11〉 S1 := [·, ·,Γ1, ·,∆p1,∆c1]

:= TRANSSTEP(s,P, ENTRY(̀,P)))
〈12〉 if ([[Γ1]] ≡ false)
〈13〉 S := JOIN(c, S1, TRANSSTEP(s,P, EXIT(`,P)))

else
〈14〉 Let tr be `

∆p1,∆c1−−−−−→ `′

〈15〉 s
tr−→ s′

〈16〉 S′ := SUMMARIZE(s′,P)
〈17〉 S := COMPOSE(S1, S

′)
〈18〉 S := JOIN(c, S, TRANSSTEP(s,P, EXIT(`,P)))
〈19〉 else S := TRANSSTEP(s,P, OUTGOING(`,P))
〈20〉 memo and return S
end function

we want to propagate the information back and compute
the summarization for the parent node. While propagation
can be achieved by COMPOSE, we need JOIN to “merge” the
contributions of the two children to the parent node. Note that
unlike COMPOSE, we need to select the longer path between
the two witnesses of the input summarizations. Such selection
depends on the current cache context. That is why the cache
context c is passed as an input to JOIN, which subsequently
pass it on to MERGE-WITNESSES.

As before, we use MERGE-WITNESSES and MERGE-CACHES and
delegate the details to the Appendix. The abstract transformer
∆p, however, is computed straightforwardly as the disjunction
of the input abstract transformers. All the infeasible paths
in both sub-structures must be maintained, thus the desired
interpolant is the conjunction of the two input interpolants.

In depth-first traversal of the symbolic execution tree, at a
node either (1) a summarization is reused, thus we do not need
to expand the node; or (2) after expanding it, we compute its
summarization based on the summarizations of its child nodes.
This summarization in turn can be reused later. In such case,
we avoid the cost a traversing larger portion of the tree.

We now discuss function SUMMARIZE in details.

Base Cases: SUMMARIZE handles 4 base cases. First, when the
symbolic state s is infeasible (line 3). Note that here path-
sensitivity plays a role because provably infeasible paths will
be excluded from contributing to the analysis result. Thus the
returned witness is 〈−∞, [ ], false〉. Second, s is a terminal
state (line 5). Here Id refers to the identity function, which
keep the program variables unchanged. The end point of a loop
is treated similarly in the third base case (line 7). The last base

function COMPOSE(S1, S2)
Let S1 be [`1,Ψ1,Γ1, δ1,∆p1,∆c1]
Let S2 be [`2,Ψ2,Γ2, δ2,∆p2,∆c2]

〈21〉 {Γ, δ} := COMBINE-WITNESSES(Γ1,Γ2, δ1, δ2)
〈22〉 ∆c := COMBINE-CACHES(∆c1,∆c2)
〈23〉 ∆p := ∆p1 ∧ ∆p2

〈24〉 Ψ := Ψ1 ∧ PRE-COND(∆p1,Ψ2)
〈25〉 return [`1,Ψ,Γ, δ,∆p,∆c]
end function

function JOIN(c, S1, S2)
Let S1 be [`,Ψ1,Γ1, δ1,∆p1,∆c1]
Let S2 be [`,Ψ2,Γ2, δ2,∆p2,∆c2]

〈26〉 {Γ, δ} = MERGE-WITNESSES(c,Γ1,Γ2, δ1, δ2)
〈27〉 ∆c := MERGE-CACHES(∆c1,∆c2)
〈28〉 ∆p := ∆p1 ∨ ∆p2

〈29〉 Ψ := Ψ1 ∧ Ψ2

〈30〉 return [`,Ψ,Γ, δ,∆p,∆c]
end function

function TRANSSTEP(s,P,TransSet)
Let s be 〈`, ·, ·, ·〉

〈31〉 S := [`, false, 〈0, [ ], true〉, [ ], Id(Vars), [ ]]
〈32〉 foreach (tr ∈ TransSet) do
〈33〉 s

tr−→ s′

〈34〉 S′ := SUMMARIZE(s′,P)
〈35〉 S := COMPOSE(SUMMARIZE-A-TRANS(s, tr), S′)
〈36〉 S := JOIN(c, S, S)

endfor
〈37〉 return S
end function

function SUMMARIZE-A-TRANS(s, tr)
Let s be 〈`, c, σ,Π〉 and Let tr be `

op−→ `′

〈38〉 t := EXECUTION-TIME(op); Υ := acc(`, op, σ)
〈39〉 Iterate through Υ and remove repeating accesses
〈40〉 i := 0;M := ∅
〈41〉 foreach m ∈ REVERSE(acc(`, op, σ)) do
〈42〉 Add 〈m, i〉 into M; i := i+ 1

endfor
〈43〉 ∆c := 〈M, i〉
〈44〉 return [`, true, 〈t,Υ, [[op]]σ〉, [ ], op∆,∆c]
end function

Fig. 4: Helper Functions

case, lines 8-9, is the case that a summarization can be reused.
We have discussed this step in Section III-B.

Expanding to the next programming point: Line 19 depicts
the case when transitions can be taken from the current
program point `, and ` is not a loop head. We call TRANSSTEP to
move recursively to next program points. TRANSSTEP considers
all transitions emanating from `, denoted as OUTGOING(`,P),
then calls SUMMARIZE recursively and compounds the returned
summarizations into a summarization of `.

In more detail, for each tr in TransSet, TRANSSTEP extends
the current state with the transition. We then call SUMMARIZE

with the resulting child state (line 34). The algorithm ag-
gregates each returned summarization into a single summa-
rization, namely S. This is achieved by first calling COMPOSE

(line 35), then calling JOIN (line 36). Note here that we
construct a summarization from a single transition before

6



calling COMPOSE.

SUMMARIZE-A-TRANS computes a summarization for a single
transition tr at state s. This can be seen as a basic step in our
algorithm. Because no infeasible path has been discovered,
the interpolant Ψ is just true. There is a single path, thus the
dominating condition is true. We denote this as [ ], meaning
that the cache is unconstrained. The cache abstract transformer
is computed from the sequence of all memory accesses, namely
acc(`, op, σ). We delegate the discussion of it to the Appendix,
i.e., Section IX-C. The abstract transformer ∆p (for program
variables) is the operation op itself, but translated to the
language of input-output relation. As an example, x := x + 1
is translated to xout = xin + 1. We use op∆ to denote such
translated op.

We now elaborate on the computation of the witness. First,
the static timing t is initialized as the static execution time of
the operator op, assuming all memory accesses are cache hits.
Secondly, Υ is initialized to acc(`, op, σ). For consecutive
accesses to a same memory block, only the first access is kept,
the rest are removed from Υ. This can be achieved by iterating
through Υ once. (Those removed accesses are classified as
Always Hit.) The path constraints for the witness is computed
by projecting op onto the set of program variables w.r.t. the
symbolic store σ, denoted as [[op]]σ .

Handling Loops: Lines 11-18 handle the case when the
current program point ` is a loop head. Let ENTRY(`,P) denote
the set of transitions going into the body of the loop, and
EXIT(`,P) denote the set of transitions exiting the loop.

Upon encountering a loop, our algorithm attempts to unroll
it once by calling the function TRANSSTEP to explore the entry
transitions (line 11). If the returned witness formula is false,
meaning that it is infeasible to execute another iteration, we
thus proceed with the exit branches. The returned summa-
rization is merged (using JOIN) with the summarization of the
previous unrolling attempt (line 13). Otherwise, we first use the
returned abstract transformer to produce a new continuation
context, (line 14 and 15), then we continue the analysis
from the next loop iteration onwards (line 16). The returned
information is then compounded with the summarization of the
first iteration (line 17). Note that, importantly, compounded
summarizations of the inner loop(s) can be reused in later
iterations of the outer loop.

Finally, we conclude this section with a formal statement
about the soundness of our framework.

Theorem 1 (Soundness). Our algorithm always produces safe
WCET estimates.

Proof Outline: Our algorithm performs a depth-first traversal
of the symbolic execution tree. In all steps except when reuse
happens, what we perform only widen the execution contexts,
not narrowing them. Because of such steps, we might over-
approximate the real WCET; but this is safe.

Assume that we reuse a summarization [`,Ψ,Γ, δ,∆p,∆c]
of a subtree T at some symbolic state s ≡ 〈`, c, [[s]]〉. Also
assume that the reuse is unsafe. Note that when reuse happens,
we employ the abstract transformers to generate a continuation
context and continue the analysis from there. This step is also
a widening step, thus it is safe. As a result, there must be
a feasible path in the avoided subtree emanating from s, of
which the timing is more than the timing of the witness Γ. Let
us call this path Γ′.

Because the first condition for reuse implies that all infea-
sible paths of T stay infeasible under the new context s, Γ′

must be feasible in T as well. Obviously, in order for Γ to be
reported as the witness, in T , the timing of Γ′ must be not
more than the timing of Γ.

The third condition for reuse ensures that the dominating
condition is satisfied. This implies that the cache configuration
at s maintains the optimality of Γ. In particular, if the timing
of Γ (in T ) is not less than the timing of some other feasible
path (in T ), it is still the case under the new context s.
Consequently, under the new context s, the timing of Γ′ can
not be more than the timing of Γ. Contradiction.

We remark here that we do not make use of the second
condition for reuse in the proof of soundness. In fact, that
condition has to do with the precision of reuse, rather than its
soundness. An important implication – which has been shown
in [6] – is that our algorithm produces “exact” analysis for
loop-free programs.

VI. EXPERIMENTAL EVALUATION

The data and instruction cache settings in our experiments
is borrowed from [8] for ARM9 target processor. Our instruc-
tion and data caches are separate. A cache state c contains two
separate abstract caches 〈ci, cd〉, where ci is a 4KB abstract
instruction cache and cd is a 4KB abstract data cache. The
cache configurations are write-through, with no-write-allocate,
4-way set associative L1 cache with LRU replacement policy.
The cache miss and cache hit latencies are respectively 10 and
0 cycles.

Because we perform loop unrolling, it is sufficient to
employ a must analysis for precisely tracking the data cache,
as opposed to a persistent analysis. We follow the treatment as
in [9] for loading memory ranges into the cache for persistent
analysis3 when a data access cannot be resolved to a single
memory address, meaning that the blocks in the memory
address range are not loaded into the cache, but the blocks
already in the cache are relocated as if all the blocks in the
memory address range were loaded into the cache.

A. Results

We used an Intel Core i5 @ 3.2Ghz processor having 4Gb
RAM for our experiments and built our system upon CLP(R)
[11] and Z3 as the constraint solver, thus providing an accurate
test for feasibility. The analysis was performed on LLVM IR
which, while being expressive enough, a program’s transition
system can be easily constructed. The LLVM instructions are
simulated for a RISC architecture. We use Clang 3.2 [12] to
generate the IR.

Table I presents our results on three kinds of algorithms:

• AI+SAT⊕ILP implements the algorithm in [4]. It comprises
micro-architectural modeling combined with an ILP formu-
lation for WCET aggregation. This algorithm represents the
state-of-the-art method.

• AI+SAT⊕Unroll_s implements a hypothetical algorithm.
This analysis is constructed to benefit from combining the
low-level analysis in [4] and the high-level analysis in [5].
This combined algorithm generates static timing for each basic
block before aggregating results via a path analysis phase.
More specifically, this algorithm improves on the previous be-
cause of loop unrolling and increased infeasible path detection.

3Huynh et. al. in [10] have fixed a safety issue with the treatment of loading
memory ranges into the cache from [9]. However, this safety issue occurs in
the semantics of abstract cache for persistent analysis and does not affect the
semantics of abstract cache for must analysis, which is used by our method.

7



TABLE I: Comparing our Algorithm (Unroll_d) to the State-of-the-art

Benchmark LLVM AI+SAT AI+SAT Unroll_d Unroll_d vs
⊕ILP ⊕Unroll_s w. reuse w.o. reuse AI+SAT AI+SAT⊕

LOC T(s) WCET T(s) WCET T(s) State WCET T(s) State WCET ⊕ILP Unroll_s
tcas 736 0.84 1427 9.07 1212 21.36 2389 1112 - ∞ - 22.07% 8.25%
nsichneu 12879 161.58 85845 504.88 66808 709.03 3776 48388 - ∞ - 43.63% 27.57%
statemate 3345 13.89 12382 248.41 9101 358.94 4152 7644 - ∞ - 38.27% 16.01%
ndes 1755 11.45 304369 37.95 174266 38.92 1065 148368 - ∞ - 51.25% 14.86%
fly-by-wire 2459 1.32 12171 10.97 9761 11.16 279 8751 - ∞ - 28.10% 10.35%
adpcm 2876 4.82 39088 106.53 33676 118.92 1617 31574 - ∞ - 19.22% 6.24%
compress 1334 9.18 478191 179.43 31665 204.82 1622 28670 911.38 10984 28180 94.00% 9.46%
edn 1226 1.47 437158 534.28 437158 676.11 2369 321028 - ∞ - 26.56% 26.56%
cnt 269 0.17 21935 0.29 21935 0.44 230 19355 1.56 1426 19355 11.76% 11.76%
matmult 286 1.75 874348 5.38 874348 6.5 906 621458 - ∞ - 28.92% 28.92%
jfdctint 693 0.08 20332 1.02 20332 1.43 254 17572 0.9 328 17572 13.57% 13.57%
fdct 831 0.08 17442 0.05 17442 0.13 58 14572 0.04 70 14572 16.45% 16.45%

• Unroll_d is the algorithm presented in this paper. This
further improves on the already quite accurate hypothetical
algorithm above because we now accomodate dynamic timing.
Note, however, as explained in the earlier sections, that this
entails more cost. Our results below show that this cost is
bearable.

We have divided our benchmark programs, which are quite
standard in evaluating WCET analysis algorithms, into three
groups, separated by horizontal double lines. The columns
T(s) and State denote the running time and number states (in
symbolic execution) respectively. The symbol ∞ denotes out-
of-memory. The WCET improvement is computed as B−U

B ×
100%, where U is the WCET obtained using our analysis
algorithm, and B is the WCET obtained using the baseline
approach. In order to highlight the importance of reuse, we
tabulate separate results for the cases where it is employed or
not. The last two columns, separated by a vertical double line,
summarize the improvement of Unroll_d over the other two
analyses.

Benchmarks with lots of Infeasible Paths: The first group
contains statemate and nsichneu from Mälardalen bench-
marks [13] and tcas, a real life implementation of a safety
critical embedded system. tcas is a loop-free program with
many infeasible paths, which is used to illustrate the per-
formance of our method in analyzing loop-free programs.
On the other hand, nsichneu and statemate are programs
which contain loops of big-sized bodies, also with many
infeasible paths. These benchmarks are often used to evaluate
the scalability of WCET analysis algorithms [14].

Standard Timing Analysis Benchmarks with Infeasible
Paths: This group contains standard programs from [13], and
fly-by-wire from [15].

Benchmarks with Simple Loops: This group contains a
set of academic programs from [13]. Though the loops in
these programs are simple for high-level analysis, they contain
memory accesses that a fixed-point computation might resolve
to a range of memory addresses, leading to imprecise low-level
WCET analysis.

B. Discussion on Precision

The generated WCET by Unroll_d for the first group
of benchmarks, compared to AI+SAT⊕ILP, on average is
improved by 34%; compared to AI+SAT⊕Unroll_s, the
number is 17%. Focussing on nsichneu and statemate, it
can be seen that part of the improvement of Unroll_d over

AI+SAT⊕ILP comes from the detection of infeasible paths
(i.e., the common improvement between Unroll_d and
AI+SAT⊕Unroll_s over AI+SAT⊕ILP). The improvement
of Unroll_d over AI+SAT⊕Unroll_s, on the other hand,
is due to infeasible path detection directly reflected in the track-
ing of micro-architectural states. This avoids lossy merging of
cache states at the join points in the CFG.

For a loop-free program like tcas, the improvement of
Unroll_d over the other two analyses is clearly not advan-
taged by tighter loop bounds in unrolling, nor disadvantaged by
fixpoint computation in AI+SAT. Next, consider the fact that
the (high-level) infeasible paths detected by Unroll_d and
AI+SAT⊕Unroll_s are the same. Even so, Unroll_d is
more accurate by 8%. Once again, this improvement comes
from our integration of low-level analysis with high-level
analysis, making infeasible path detection reflected in the
precise tracking of micro-architectural states.

For benchmarks in the second group, Unroll_d pro-
duces significantly more accurate WCET than AI+SAT⊕ILP,
on average 48%, peaking at 94%. In compress and ndes,
many infeasible paths have to do with loops, and being able
to detect them improves the WCET estimates dramatically.
AI+SAT⊕Unroll_s performs relatively well on this group of
benchmarks. However, for ndes and fly-by-wire, the accu-
racy improvement of Unroll_d over AI+SAT⊕Unroll_s
is still noticeable. Further investigation reveals that these two
benchmarks contain memory accesses which are resolved to
address ranges in the AI+SAT component – ultimately is still a
fixed-point computation – leading to imprecise analysis results
from the combined algorithm.

The effect of such memory accesses on analysis precision
can be seen more clearly by examining the third benchmark
group. Unroll_d is still better than the other two algorithms
by 18% on average. These benchmarks do not contain many
infeasible paths nor complicated loops and that is the reason
why AI+SAT⊕Unroll_s does not produce better estimates
than AI+SAT⊕ILP. However, these benchmarks contain mem-
ory accesses which are resolved to address ranges in a fixed-
point computation, leading to the imprecision of AI+SAT. In
contrast, Unroll_d performs loop unrolling, thus it can
precisely resolve the addresses of the accesses, leading to
superior precision.

In summary, in terms of precision, Unroll_d outperforms
the other two algorithms in all benchmarks. The WCET es-
timations from Unroll_d have improved 32% on average
compared to AI+SAT⊕ILP and 15% on average compared
to AI+SAT⊕Unroll_s. These improvements clearly uphold

8



our proposal that performing WCET analysis in one integrated
phase in the presence of dynamic timing will enhance the
precision over modular approaches. However, the scalability
of our method is not yet discussed.

C. Discussion on Scalability

As expected, reuse is important for scalability. For most of
the benchmarks (8 out of 12) the analysis cannot finish without
reuse. Between the benchmarks in the first group which contain
many infeasible paths (tcas, nsichneu and statemate),
none of the benchmarks can be analyzed without reuse. The
two largest benchmarks, nsichneu and statemate, are used
as an indicator of the scalability of the WCET tools. The WCET
analysis for nsichneu and statemate, uses at most 53%
and 40% of the 4GB available. It is worth noting that, for
nsichneu, the overhead of the analysis time and memory
usage compared to AI+SAT⊕Unroll_s is 31% and 40%,
respectively, while the precision is improved by 27%.

In conclusion, our analysis framework relies a lot on reuse
for scalability. From these experiments we can infer that only
small size programs where the number of paths is limited can
be analyzed without reuse.

VII. RELATED WORK

WCET analysis has been the subject of much research, and
substantial progress has been made in the area (see [14], [16]
for surveys of WCET). As discussed before, WCET analysis
is often conducted by separating low-level analysis and high-
level analysis into different phases.

High-level analysis: Among the works on high-level analysis,
our most important related work is [5]. The origin of this
approach dates back to [6], which introduced the concept of
summarization with interpolation, to harness better “reuse” in
the setting of dynamic programming and address the scalability
issue of the resource-constrained shortest path (RCSP) problem.
RCSP, though NP-hard, is still simpler than WCET analysis. In
[6], reuse was limited to loop-free programs.

Chu and Jaffar [5] have advanced [6] by introducing
compounded summarizations, so that reuse can be effective
in the presence of loops and nested loops. Specifically, [5]
has demonstrated that exhaustive symbolic execution for WCET
analysis can be made scalable. Given the effect of caches on
the basic block timings, making the timings dynamic, [5] is no
longer applicable. One key contribution of this paper is that,
by capturing the dominating condition, we enable reuse, now
under the existence of caches.

Recently, there are CEGAR-like methods, which start by
generating a rough WCET estimate and then gradually refine
it. “WCET squeezing” [17] is built on top of the Implicit
Path Enumeration Technique (IPET) [18]. A solution to the
given integer linear programming (ILP) formula corresponds
to number of program traces, of which the feasibility will
be checked (one-by-one) via SMT solving. If such a trace
is infeasible, additional ILP constraints are added to exclude
it from further consideration. Subsequently, [19] proposes
hierarchical segment abstraction, thus allows the computation
of WCET by solving a number of independent ILP problems,
instead of one large global ILP problem. Since the abstract
segment trees can store more expressive constraints than ILP,
better refinement procedure can be implemented.

We also mention the recent work [20], which also employs
the concept of interpolation, but under the SMT framework, to

avoid state explosion in WCET analysis. Like [6], this approach
is formulated for loop-free programs, and not yet suitable for
analyzing programs with loops.

In summary, we can see a trend of research where recent
advances in software verification are employed for WCET high-
level analysis. However, it is unclear if these approaches will
remain scalable when extended towards low-level analysis,
under the presence of loops and/or many infeasible paths.

Low-level analysis: Low-level analysis, with emphasis on
caches, has always been an active research topic in WCET
analysis. Initial work on instruction cache modeling uses in-
teger linear programming (ILP) [21]. However, the work does
not scale due to a huge number of generated ILP constraints.
Subsequently, the abstract interpretation framework (AI) [22]
for low-level analysis, proposed in [2], has made an important
step towards scalability. The solution has also been applied in
commercial WCET tools (e.g., [23]). For most existing WCET
analyzers, AI framework has emerged to be the basic approach
used for low-level analysis. Additionally, static timing analysis
with data cache has been investigated in [9], [10], [24].

Recent approaches [3], [4] by the same research group –
combining AI with verification technology – have shown some
promising results. In the more recent work [4], a partial path
is tracked together with each micro-architectural state µ. This
partial path captures a subset of the control flow edges along
which the micro-architectural state µ has been propagated. If
a partial path was infeasible, its associated micro-architectural
state can be excluded from consideration. To be tractable,
micro-architectural states are merged at appropriate sink nodes.
(In fact, the partial path constraints are merged to true.) As
a result, the approach is only effective for detecting infeasible
paths whose conflicting branch conditions appeared relatively
close to each other in the CFG.

In a similar spirit as [17] and [3], Nagar and Srikant
[25] propose the concept of cache miss paths. The method
employs IPET formulation, using the information from the
worst-case solution of the ILP problem (which corresponds to a
number of program paths) to improve the precision of AI-based
cache analysis. However, it is reported that for benchmarks
statemate and nsichneu – which contain a large number
of program paths – little improvement is obtained.

It is important to note that, in general, the above-mentioned
approaches still employ a fixed-point computation in order to
ensure sound analysis across loop iterations. Thus, they inherit
the imprecision of AI, because the timings of a basic block in
different iterations of a loop often can diverge significantly.

Other Related Work: We mention some orthogonal works
that represent recent and interesting advances in WCET re-
search. [26] performs loop unrolling, passing flow information
from source level through the process of compiler optimiza-
tion in order to help tighten the WCET estimates. At the
current stage, the approach seems to be limited to single-
path programs. Zolda and Kirner [27] propose to incorporate
the information from collected program execution traces into
IPET framework to enhance the precision of calculated WCET
bounds. The effectiveness of this approach seems dependent
on the quality of the collected traces as well as the amount of
infeasible paths in the given input program.

We remark that the idea of coupling low-level analysis with
high-level analysis (with loop unrolling) dates back to [28].
However, to counter state explosion, the only solution of [28]
is to perform merging frequently. In the end, the approach

9



forfeits its intended precision, while at the same time, does
not scale realistic benchmarks.

Finally, we remark on the issue of timing anomaly [29]. In
general, timing anomaly can make abstraction (and therefore
AI) unsound. It is extremely hard to systematically address
this issue. More often, custom solutions are employed. For
example, [30] can compute a constant bound to be added to
the local worst-case path to safely handle timing anomalies,
provided they are not of “domino-effect” type. This approach
is also applicable to us. Extension towards integrating such
method (or the alike) is left as future work.

VIII. CONCLUSION

We have presented a framework for WCET analysis of
programs with consideration of a cache micro-architecture. At
its core is a symbolic execution algorithm. Its key feature is
the ability for reuse. This is critical for maintaining a high-
level of path-sensitivity, which in turn produces significantly
increased accuracy. In other words, reuse allows scalability
in path-sensitive exploration. Finally, we demonstrated using
realistic benchmarks.

REFERENCES

[1] F. Mehnert, M. Hohmuth, and H. Hartig, “Cost and benefit of separate
address spaces in real-time operating systems,” in RTSS 2002.

[2] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and precise WCET
prediction by seperate cache and path analyses,” RTS 18(2/3) 2000.

[3] S. Chattopadhyay and A. Roychoudhury, “Scalable and precise refine-
ment of cache timing analysis via model checking,” in RTSS 2011.

[4] A. Banerjee, S. Chattopadhyay, and A. Roychoudhury, “Precise micro-
architectural modeling for wcet analysis via ai+sat,” in RTAS 2013.

[5] D. H. Chu and J. Jaffar, “Symbolic simulation on complicated loops
for wcet path analysis,” in EMSOFT 2011.

[6] J. Jaffar, A. E. Santosa, and R. Voicu, “Efficient memoization for
dynamic programming with ad-hoc constraints,” in AAAI 2008.

[7] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in POPL, Pages 84–96, 1978.

[8] “Wcet tool competition 2014,” URL www.mrtc.mdh.se/projects/WTC/.
[9] C. Ferdinand and R. Wilhelm, “On predicting data cache behavior for

real-time systems,” in LCTES 1998.

[10] B. K. Huynh, L. Ju, and A. Roychoudhury, “Scope-aware data cache
analysis for WCET estimation,” in RTAS 2011.

[11] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap, “The CLP(R)
language and system,” ACM TOPLAS 14(3) 1992.

[12] “clang: a c language family front-end for llvm,”
http://www.clang.llvm.org, 2014, accessed: 2015-02-01.

[13] “The malardalen wcet benchmarks,”
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html, 2014.

[14] R. Wilhelm et al., “The worst-case execution-time problem—overview
of methods and survey of tools,” TECS 7(3) 2008.

[15] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. De Michiel,
“Papabench: a free real-time benchmark,” in WCET 2006.

[16] P. Puschner and A. Burns, “A review of worst-case execution-time
analysis,” RTS 18(2/3) 2000.

[17] J. Knoop, L. Kovács, and J. Zwirchmayr, “Wcet squeezing: on-demand
feasibility refinement for proven precise wcet-bounds,” in RTNS 2013.

[18] Y. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” DAC 1995.

[19] P. Černỳ et al., “Segment abstraction for worst-case execution time
analysis,” in ESOP 2015.

[20] J. Henry, M. Asavoae, D. Monniaux, and C. Maı̈za, “How to compute
worst-case execution time by optimization modulo theory and a clever
encoding of program semantics,” in LCTES 2014.

[21] Y.-T. S. Li, S. Malik, and A. Wolfe, “Performance estimation of em-
bedded software with instruction cache modeling,” TODAES 4(3)1999.

[22] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis,” in POPL 1977.

[23] “aiT Worst-Case Execution Time Analyzers,” URL htt-
p://www.absint.com/ait/index.htm.

[24] R. T. White, F. Mueller, C. A. Healy, and o. Whalley, “Timing analysis
for data caches and set-associative caches,” in RTAS 1997.

[25] K. Nagar and Y. Srikant, “Path sensitive cache analysis using cache
miss paths,” in VMCAI 2015.

[26] H. Li et al., “Tracing flow information for tighter wcet estimation:
Application to vectorization,” in RTCSA 2015.

[27] M. Zolda and R. Kirner, “Calculating wcet estimates from timed traces,”
RTS, pp. 1–50, 2015.

[28] T. Lundqvist and P. Stenström, “An integrated path and timing analysis
method based on cycle-level symbolic execution,” RTS 17(23) 1999.

[29] J. Reineke et al., “A definition and classification of timing anomalies.”
WCET 2006.

[30] J. Reineke and R. Sen, “Sound and efficient wcet analysis in the
presence of timing anomalies,” in WCET 2009.

10



IX. APPENDIX

A. Standard Definitions Related to Loops

(Note that our transition system is a directed graph.)

Definition 4 (Loop). Given a directed graph G = (V,E) (our
transition system), we call a strongly connected component
S = (VS , ES) in G with |ES | > 0, a loop of G.

Definition 5 (Loop Head). Given a directed graph G =
(V,E) and a loop L = (VL, EL) of G, we call E ∈ VL a
loop head of L, also denoted by E(L), if no node in VL, other
than E has a direct successor outside L.

Definition 6 (End Point of Loop Body). Given a directed
graph G = (V,E), a loop L = (VL, EL) of G and its loop
head E . We say that a node u ∈ VL is an end point of a loop
body if there exists an edge (u, E) ∈ EL.

Definition 7 (Same Nesting Level). Given a directed graph
G = (V,E) and a loop L = (VL, EL), we say two nodes u and
v are in the same nesting level if for each loop L = (VL, EL)
of G, u ∈ VL ⇐⇒ v ∈ VL.

B. Generating Witness and Dominating Condition

In this section, we present COMBINE-WITNESSES and
MERGE-WITNESSES functions.

In Fig. 5, COMBINE-WITNESSES produces a witness and a
dominating condition, by compounding the witnesses and
dominating conditions of two subtrees, where one suffixes the
other. This can be understood as a sequential composition.

function COMBINE-WITNESSES(Γ1,Γ2, δ1, δ2)
Let Γ1 be 〈t1,Υ1, π1〉 and Let Γ2 be 〈t2,Υ2, π2〉

〈45〉 t = t1 + t2
〈46〉 if (LAST(Υ1) ≡ FIRST(Υ2)) then Υ2 := REMOVE-FIRST(Υ2)
〈47〉 Υ = Υ1 · Υ2

〈48〉 π := π1 ∧ π2

〈49〉 δ′2 := PRE-CACHE(Υ1, δ2); δ = δ1 ∧ δ′2
〈50〉 return {〈t,Υ, π〉, δ}
end function

Fig. 5: Combining Witnesses

The static timing of the witness t is initialized as the sum
of t1 and t2 (line 45). Let m be the last access in Υ1. If m is
also the first access in Υ2, it will be removed from Υ2 (line
46). The combined Υ is then the concatenation of Υ1 and Υ2
(line 47). Next, the witness path constraint π is computed as
the conjunction of π1 and π2 (line 48).

The combined dominating condition δ is computed as the
conjunction of δ1 and a condition, say δ′2, as in line 49.
Intuitively, δ′2 describes an abstract cache state c, such that
if from c we perform all the accesses in Υ1, we will produce
a cache state c′ which satisfies δ2. The computation of δ′2 is
a precondition computation, but in the nature of caches. We
abstract this computation with the function PRE-CACHE. We omit
the details here, but remark that in our implementation we need
a more elaborate representation of cache constraints in order
to facilitate such computation. In particular, m ∈ cache is
represented as age(m) < A while m 6∈ cache is represented
as age(m) ≥ A (assuming that age starts from 0).

In Fig. 6, MERGE-WITNESSES produces a witness and a
dominating condition, by compounding the witnesses and dom-
inating conditions of two sibling subtrees. We need to choose
one witness from the two input witnesses. The combined
dominating condition must ensure the dominance of each

witness (in its respective subtree) and the dominance of the
chosen witness over the other.

The dominating condition δ is initialized as the conjunction
of the two dominating conditions (line 51). We next compare
the timing of the two witnesses; and we select the one with
higher timing as the combined witness. After line 53, the
chosen witness and its corresponding dominating condition are
captured in Γ1 and δ1.

Next, we test if δ is sufficient to ensure that Γ1 dominates
Γ2. Given a condition δ, a witness dominates another witness
if its minimum timing is more than the maximum timing of the
other. The minimum timing is calculated by: (1) first determine
some accesses in the Υ component are necessary misses as the
consequence of the condition δ; (2) classifying the remaining
accesses in Υ as cache hits. Whereas the maximum timing
is calculated in the opposite manner: (1’) first determine
some accesses in the Υ component are necessary hits as the
consequence of the condition δ; (2’) classifying the remaining
accesses in Υ as cache misses. This dominance test is shown
in line 54.

If Γ1 dominates Γ2, then Γ1 is returned as the dominating
witness with δ as the dominating condition. If not, we need to
further constrain the dominating condition δ.

First, for each access mi in Υ1, if mi has not been
constrained in δ, mi 6∈ cache is added to δ (lines 58). This
cache constraint might increase the the minimum timing of Γ1
and lead to passing the dominance test. If the dominance test
indeed succeeds, Γ1 and δ are returned.

If we have not succeeded yet, we can do similarly for each
mj in Υ2. Note the difference that now we add the cache
constraint of the form mj ∈ cache, with the hope to reduce
the maximum timing of Γ2 enough that the dominance test
can be passed (line 64).

At the end of the first for loop, MIN(Υ1, δ) would be larger
than (or equal to) the original timing of Γ1 (w.r.t. cache context
c) while at the end of the second for loop, MAX(Υ2, δ) would
be less than (or equal to) the original timing of Γ2 (w.r.t. cache
context c). In other words, eventually, we will end up with a
condition δ so that Γ1 dominates Γ2.

function MERGE-WITNESSES(c,Γ1,Γ2, δ1, δ2)
Let Γ1 be 〈t1,Υ1, π1〉 and Let Γ2 be 〈t2,Υ2, π2〉

〈51〉 δ := δ1 ∧ δ2
〈52〉 if (COMPUTE-TIMING(Γ1, c) < COMPUTE-TIMING(Γ2, c))
〈53〉 SWAP(Γ1,Γ2), SWAP(δ1, δ2)
〈54〉 if (t1 + MIN-TIME(Υ1, δ) ≥ t2 + MAX-TIME(Υ2, δ))
〈55〉 return {Γ1, δ}
〈56〉 foreach mi ∈ Υ1 do
〈57〉 if (NO-CONS(mi, δ))
〈58〉 δ := δ ∧ {mi 6∈ cache}
〈59〉 if (t1 + MIN-TIME(Υ1, δ) ≥ t2 + MAX-TIME(Υ2, δ))
〈60〉 return {Γ1, δ}

endfor
〈61〉 foreach mj ∈ Υ2 do
〈62〉 if (NO-CONS(mj , δ))
〈63〉 δ := δ ∧ {mj ∈ cache}
〈64〉 if (t1 + MIN-TIME(Υ1, δ) ≥ t2 + MAX-TIME(Υ2, δ))
〈65〉 return {Γ1, δ}

endfor
end function

Fig. 6: Merging Witnesses

11



function COMBINE-CACHES(∆s1,∆s2)
Let ∆s1 be 〈M1, n1〉 and Let ∆s2 be 〈M2, n2, 〉

〈66〉 M := M2;n := 0
〈67〉 foreach 〈m, k〉 ∈ M1 do
〈68〉 foreach 〈m′, i〉 ∈ M2 do
〈69〉 if m 6≡ m′ then
〈70〉 Increase the age of m′ in M by 1

else
〈71〉 Move 〈m, k〉 to the beginning of M
〈72〉 break

endfor
〈73〉 if 〈m, k〉 /∈ M then
〈74〉 Add 〈m, 0〉 to the beginning of M
〈75〉 n := n + 1

endfor
〈76〉 foreach 〈m, i〉 ∈ M do
〈77〉 if i ≥ A− 1 then
〈78〉 Remove 〈m, i〉 from M; n := A

endfor
〈79〉 return 〈M, n〉
end function

function MERGE-CACHES(∆s1,∆s2)
Let ∆s1 be 〈M1, n1〉 and Let ∆s2 be 〈M2, n2〉

〈80〉 M := ∅
〈81〉 foreach 〈m, i〉 ∈ M1 ∧ 〈m, j〉 ∈ M2 do
〈82〉 M := M+ 〈m, MAX(i, j)〉

endfor
〈83〉 return 〈M, MAX(n1, n2)〉
end function

Fig. 7: Combining and Merging Two Set Summaries

C. Generating Abstract Transformer for Cache

Let us first review on abstract set-associative must-cache.
An abstract set-associative cache c is consisted of N cache sets,
where N = C/(BS ∗A), C is the cache capacity, BS is block
size and A is the associativity. We denote a cache-set with cs
where c ≡ [cs1, ..., csN ]. Each cache set is considered as a set
of cache lines cs = [l1, ..., lA]. We use cs(li) = m to indicate
the presence of a memory block m in a cache-set, where i
describes the relative age of the memory block according to
the LRU replacement strategy and not the physical position in
the cache hardware.

The cache abstract transformer ∆c is partitioned to N
independent abstract transformers of respective cache-sets, i.e.,
∆c ≡ [∆s0 , ...∆sN−1

]. Applying a cache abstract transformer
on a cache state, each abstract transformer of a cache-set is
applied to the corresponding cache-set.

Each abstract transformer of a particular cache-set is de-
picted by 〈M, n〉, where M is a sequence of pairs 〈m, i〉.
Each pair indicates a memory block m and its age i indicating
where m will be loaded to the cache. Moreover, n depicts the
number of cache lines that the memory blocks inM are loaded
to. It is the maximum i in the sequence M plus 1. Thus, n is

always less than A.

The size of cache abstract transformer is linear w.r.t. the
cache capacity. This is because in computing the abstract
transformer, we only store the memory blocks with a age less
than the associativity. The rest of the memory blocks would
naturally be pushed out of the cache and we do not need to
maintain them in the abstract transformer.

We present COMBINE-CACHES and MERGE-CACHES functions
in Fig. 7. We only focus on demonstrating how to compound
two abstract transformers for a particular cache-set. The gen-
eralization to deal with a whole cache is straightforward.

Consider COMBINE-CACHES.M is first initialized toM2. For
each m in M1, for each memory accesses m′ in M2, if they
are not the same, the age of m′ is increased by 1 (lines 69-70).
This process terminates if one of the memory accesses is the
same as m. The memory access is moved to the beginning of
M with age 0 (line 71). Next, if m is not in M, it is added
to the beginning of M with age 0 (lines 73-75).

Finally, for all pair 〈m, i〉 in M, where i denotes the age
of m, if i ≥ A, then 〈m, i〉 is removed from M (lines 76-78).

MERGE-CACHES preserves the memory blocks common on
both abstract transformers with their maximum age. For each
memory block m that is in both M1 and M2, it is added to
M with the maximum age from M1 and M2. We compute
n as the maximum of n1 and n2.

Example 2. Consider a sequence of accesses
〈m1,m2,m3,m2〉 and a fully associative cache of size
4 which initially contains m0:

0 1 2 3
m0

Applying the sequence 〈m1,m2,m3,m2〉 to the given cache
state, we achieve:

0 1 2 3
m2 m3 m1 m0

The abstract transformer we compute for the
previous sequence of accesses would be of the form
〈[〈m2, 0〉, 〈m3, 1〉, 〈m1, 2〉], 3〉. The application of this
transformer to the initial cache state is as follows:

First, all items in the initial cache are aged by 3 – the
number of cache lines that memory blocks will be loaded to.
This gives us:

0 1 2 3
m0

Next, for each pair among 〈m2, 0〉, 〈m3, 1〉, 〈m1, 2〉 , the
respective memory blocks (m2, m3 and m1) are loaded into
the cache at their ages (0, 1 and 2), respectively. The generated
cache state after applying the abstract transformer on the
initial cache is the same as if we had loaded the memory
blocks one by one:

0 1 2 3
m2 m3 m1 m0

12


