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Abstract. Backward slicers are typically path-insensitive (i.e., they ignore the
evaluation of predicates in guards), or they are only partial sometimes produc-
ing too big slices. Though the value of path-sensitivity is always desirable, the
major challenge is that there are, in general, an exponential number of predi-
cate combinations to be considered. We present a path-sensitive backward slicer
and demonstrate its practicality with real C programs. The core is a symbolic
execution-based algorithm that excludes spurious dependencies lying on infeasi-
ble paths while pruning paths that cannot improve the accuracy of the dependen-
cies already computed by other paths.

1 Introduction

Weiser [21] defined the backward slice of a program with respect to a program location
` and a variable x, called the slicing criterion, as all statements of the program that
might affect the value of x at `, considering all possible executions of the program.
Slicing was first developed to facilitate software debugging, but it has subsequently
been used for performing diverse tasks such as parallelization, software testing and
maintenance, program comprehension, reverse engineering, program integration and
differencing, and compiler tuning.

Although static slicing has been successfully used in many software engineering ap-
plications, slices may be quite imprecise in practice - ”slices are bigger than expected
and sometimes too big to be useful [2]”. Two possible sources of imprecision are: in-
clusion of dependencies originated from infeasible paths, and merging abstract states
(via join operator) along incoming edges of a control flow merge. A systematic way to
avoid these inaccuracies is to perform path-sensitive analysis. An analysis is said to be
path-sensitive if it keeps track of different state values based on the evaluation of the
predicates at conditional branches. Although path-sensitive analyses are more precise
than both flow-sensitive and context-sensitive analyses they are very rare due to the
difficulty of designing efficient algorithms that can handle its combinatorial nature.

The main result of this paper is a practical path-sensitive algorithm to compute back-
ward slices. Symbolic execution (SE) is the underlying technique that provides path-
sensitiveness to our method. The idea behind SE is to use symbolic inputs rather than
actual data and execute the program considering those symbolic inputs. During the exe-
cution of a path all its constraints are accumulated in a formula P. Whenever code of the
form if(C) then S1 else S2 is reached the execution forks the current state and updates
the two copies P1 ≡ P∧C and P2 ≡ P∧¬C, respectively. Then, it checks if either P1 or
P2 is unsatisfiable. If yes, then the path is infeasible and hence, the execution stops and



backtracks to the last choice point. Otherwise, the execution continues. The set of all
paths explored by symbolic execution is called the symbolic execution tree (SET).

Not surprisingly, a backward slicer can be easily adapted to compute slices on SETs
rather than control flow graphs (CFGs) and then mapping the results from the SET to the
original CFG. It is not difficult to see that the result would be a fully path-sensitive slicer.
However, there are two challenges facing this idea. First, the path explosion problem in
path-sensitive analyses that is also present in SE since the size of the SET is exponential
in the number of conditional branches. The second challenge is the infinite length of
symbolic paths due to loops. To overcome the latter we borrow from [18] the use of
inductive invariants produced from an abstract interpreter to automatically compute
approximate loop invariants. Because invariants are approximate our algorithm cannot
be considered fully path-sensitive in the presence of loops. Nevertheless our results in
Sec. 5 demonstrate that our approach can still produce significantly more precise slices
than a path-insensitive slicer.

Therefore, the main technical contribution of this paper is how to tackle the path-
explosion problem. We rely on the observation that many symbolic paths have the same
impact on the slicing criterion. In other words, there is no need to explore all possible
paths to produce the most precise slice. Our method takes advantage of this observation
and explores the search space by dividing the problem into smaller sub-problems which
are then solved recursively. Then, it is common for many sub-problems to be “equiva-
lent” to others. When this is the case, those sub-problems can be skipped and the search
space can be significantly reduced with exponential speedups. In order to successfully
implement this search strategy we need to (a) store the solution of a sub-problem as well
as the conditions that must hold for reusing that solution, (b) reuse a stored solution if
a new encountered sub-problem is “equivalent” to one already solved

Our approach symbolically executes the program in a depth-first search manner.
This allows us to define a sub-problem as any subtree contained in the SET. Given a
subtree, our method following Weiser’s algorithm computes dependencies among vari-
ables that allow us to infer which statements may affect the slicing criterion. The fun-
damental idea for reusing a solution is that when the set of feasible paths in a given
subtree is identical to that of an already explored subtree, it is not possible to deduce
more accurate dependencies from the given subtree. In such cases we can safely reuse
dependencies from the explored subtree. However, this check is impractical because it is
tantamount to actually exploring the given subtree, which defeats the purpose of reuse.
Hence we define certain reusing conditions, the cornerstone of our algorithm, which are
both sound and precise enough to allow reuse without exploring the given subtree.

First, we store a formula that succinctly captures all the infeasible paths detected
during the symbolic execution of a subtree. We use efficient interpolation techniques [4]
to generate interpolants for this purpose. Then, whenever a new subtree is encountered
we check if the constraints accumulated imply in the logical sense the interpolant of an
already solved subtree. If not, it means there are paths in the new subtree which were
unexplored (infeasible) before, and so we need to explore the subtree in order to be
sound. Otherwise, the set of paths in the new subtree is a subset of that of the explored
subtree. However, being a subset is not sufficient for reuse since we need to know
if they are equivalent, but the equivalence test, as mentioned before, is impractical.



`1 x=0;y=5;

`2 if (a>0)

`3 b=x+y;

`4 if (*)

`5 x=1;

else
`6 y=0;

`7 if (y>0)
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Fig. 1. (a) A program and its transition system, (b) its naive symbolic execution tree (SET) and (c) its interpolation-
based SET, for slicing criterion (underlined statements) 〈`9,{z}〉

Here, we make use of our intuition that only few paths contribute to the dependency
information in every subtree. Hence, to check for equivalence of subtrees we need not
check all paths, but only those that contribute to the dependencies, what we call the
witness paths. Now, if the implication succeeds we also check if the witness paths of
the explored subtree are feasible in the new subtree. If yes, we reuse dependencies.
Otherwise, the equivalence test failed.

Finally, as we will discuss in Sec. 6, some previous works have tackled the problem
of path-sensitive backward slicing before. However, to the best of our knowledge either
they suffer from the path-explosion problem or scalability is achieved at the expense
of losing some path-sensitiviness. One essential result of our method is that it produces
exact slices for loop-free programs. By “exact” we mean that the algorithm guarantees
to not produce dependencies from spurious1 (i.e., non-executable) paths. In other words,
it produces the smallest possible, sound slice of a loop-free program for any given
slicing criterion. Our method mitigates the path-explosion problem using a combination
of interpolants and witness paths that allows pruning significantly the search space.

2 Motivating Example

We first describe our approach through an example. Consider the program in Fig. 1(a)
and assume we would like to slice it wrt location `9 and variable z. The statement x:=0

1 Of course, limited by theorem prover technology which decides whether a formula is unsatis-
fiable or not.



at `1 should not be included in the slice because any path that reaches `8 through `5
redefines x and any path that reaches `8 through `6 (without redefining x) is infeasible.
Note that a path insensitive algorithm would not be able to infer this from the CFG.

Fig. 1(b) shows the naive symbolic execution tree of the program. The nodes are
labeled with ` : k (` is a program location and k is an identifier to distinguish nodes with
the same program location belonging to different symbolic paths) and edges between
two locations are labeled by the intervening program operation. Black (solid) edges de-
note feasible transitions and red (zigzag) edges denote infeasible transitions. Each node
is annotated with its dependency set in blue (between brackets) obtained by running,
for instance, Weiser’s [21] algorithm. Informally, a dependency set at location ` con-
tains all variables that may affect the slicing criterion from any path reachable from `. A
statement at ` is included in the slice if the intersection between the dependency set at `
and the set of variables defined at ` (i.e., left-hand side of the assignment) is not empty.
Note that the dependency set at 2:1 only contains y and therefore, the statement x:=0
at `1 would not be included in the slice. Hence it is clear that the path-sensitive SET
improves the accuracy of slices. The problem is that the size of the tree is exponential
in the number of branches. However, consider now the tree in Fig. 1(c) constructed by
our method2 where green (dotted) edges denote reusing transitions. This tree contains
the same relevant information needed to exclude x:=0 from the slice but without some
redundant paths present in Fig. 1(b), achieving exponential savings. Let us see how the
tree in Fig. 1(c) is generated.

Our algorithm performs symbolic execution guided by depth-first search exploring
first the path π ≡ `1 · `2 · `3 · `4 · `5 · `7 · `8 · `9. As usual, it accumulates the constraints
along the path in a formula Π, where variable redefinitions are denoted by primed ver-
sions. For the above path, Π9:1≡ x= 0∧y= 5∧a> 0∧b= x+y∧x′= 1∧y> 0∧z= x′

is the formula built at 9:1, which is satisfiable. It then applies Weiser’s algorithm to
compute the dependency set at each node along the path. In addition, it also computes
at each node one of the reusing conditions: the (smallest possible) set of paths from
which the dependency set was generated. For example, at 7:1 the dependency set {x,y}
was obtained from the path `7 · `8 · `9, at 4:1 the dependency set {y} was obtained from
`4 · `5 · `7 · `8 · `9, and so on. These paths are called the witness paths and they represent
the paths along which each variable in the dependency set affects the slicing criterion.

Next our algorithm backtracks and explores the path π ≡ `1 · `2 · `3 · `4 · `5 · `7 · `9
with constraints Π9:2 ≡ x = 0∧ y = 5∧ a > 0∧ b = x+ y∧ x′ = 1∧ y ≤ 0. This for-
mula is unsatisfiable and hence the path is infeasible. Now it generates another reusing
condition: a formula called the interpolant that captures the essence of the reason of
infeasibility of the path. The main purpose of the interpolant is to exclude irrelevant
facts pertaining to the infeasibility so that the reusing conditions are more likely to be
reusable in future. For the above path a possible interpolant is y = 5 which is enough
to capture its infeasibility and the infeasibility of any path that carries the constraint
y≤ 0. In summary, our algorithm generates two reusing conditions: witness paths from
feasible paths and interpolants from infeasible paths.

Next it backtracks and explores the path π ≡ `1 · `2 · `3 · `4 · `6 · `7. At 7:2, it checks
whether it can reuse the solution from 7:1 by checking if the accumulated constraints

2 In fact, it is a Directed Acyclic Graph (DAG) due to the existence of reusing edges.



Π7:2 ≡ x = 0∧ y = 5∧ a > 0∧ b = x+ y∧ y′ = 0 imply the interpolant at 7:1, y′ = 53.
Since the implication fails, it has to explore 7:2 in order to be sound. The subtree after
exploring this can be seen in Fig. 1(c). An important thing to note here is that while
applying Weiser’s algorithm, it has obtained a more accurate dependency set (empty
set) at 7:2 than that which would have been obtained if it reused the solution from 7:1.
Also note that at 4:1, the dependency set is still {y} with witness path `4 · `5 · `7 · `8 · `9
and interpolant y = 5.

Note what happens now. When our algorithm backtracks to explore the path π ≡
`1 ·`2 ·`4, it checks at 4:2 if it can reuse the solution from 4:1. This time, the accumulated
constraints x = 0∧ y = 5∧ a ≤ 0 imply the interpolant at 4:1, y = 5. In addition, the
witness path at 4:1 is also feasible under 4:2. Hence, it simply reuses the dependency
set {y} from 4:1 both in a sound and precise manner, and backtracks without exploring
4:2. In this way, it achieves exponential savings while still maintaining as much as
accuracy as the naive SET in Fig. 1(b). Now, when Weiser’s algorithm propagates back
the dependency set {y} from 4:2, we get the dependency set {y} again at 2:1, and the
statement x:=0 at 1:1 is not included in the slice.

3 Background

Syntax. We restrict our presentation to a simple imperative programming language
where all basic operations are either assignments or assume operations, and the do-
main of all variables are integers. The set of all program variables is denoted by Vars.
An assignment x := e corresponds to assign the evaluation of the expression e to the
variable x. In the assume operator, assume(c), if the boolean expression c evaluates to
true, then the program continues, otherwise it halts. The set of operations is denoted
by Ops. We then model a program by a transition system. A transition system is a
quadruple 〈Σ, I,−→,O〉 where Σ is the set of states and I ⊆ Σ is the set of initial states.
−→⊆ Σ×Σ×Ops is the transition relation that relates a state to its (possible) succes-
sors executing operations. This transition relation models the operations that are exe-
cuted when control flows from one program location to another. We shall use `

op−−→ `′

to denote a transition relation from ` ∈ Σ to `′ ∈ Σ executing the operation op ∈ Ops.
Finally, O⊆ Σ is the set of final states.

Symbolic Execution. A symbolic state υ is a triple 〈`,s,Π〉. The symbol ` ∈ Σ corre-
sponds to the current program location (with special symbols for initial location, `start,
and final location, `end). The symbolic store s is a function from program variables to
terms over input symbolic variables. Each program variable is initialized to a fresh in-
put symbolic variable. The evaluation JeKs of an arithmetic expression e in a store s is
defined as usual: JvKs = s(v), JnKs = n, Je+ e′Ks = JeKs+Je′Ks, Je− e′Ks = JeKs−Je′Ks,
etc. The evaluation of Boolean expression JbKs can be defined analogously. Finally, Π is
called path condition and it is a first-order formula over the symbolic inputs and it accu-
mulates constraints which the inputs must satisfy in order for an execution to follow the
particular corresponding path. The set of first-order formulas and symbolic states are
denoted by FOL and SymStates, respectively. Given a transition system 〈Σ, I,−→,O〉

3 The interpolant always considers the latest versions of the variables.



and a state υ ≡ 〈`,s,Π〉 ∈ SymStates, the symbolic execution of `
op−−→ `′ returns an-

other symbolic state υ′ defined as:

υ
′ ,

{
〈`′,s,Π∧ JcKs〉 if op ≡ assume(c) and Π∧ JcKs is satisfiable
〈`′,s[x 7→ JeKs],Π〉 if op ≡ x := e

(1)

Note that Eq. (1) queries a theorem prover for satisfiability checking on the path condi-
tion. We assume the theorem prover is sound but not necessarily complete. That is, the
theorem prover must say a formula is unsatisfiable only if it is indeed so.

Abusing notation, given a symbolic state υ≡〈`,s,Π〉we define JυK : SymStates→ FOL
as the formula (

∧
v ∈ Vars JvKs)∧Π where Vars is the set of program variables.

A symbolic path π≡ υ0 ·υ1 · ... ·υn is a sequence of symbolic states such that ∀i•1≤
i≤ n the state υi is a successor of υi−1. A symbolic state υ′ ≡ 〈`′, ·, ·〉 is a successor of
another υ≡ 〈`, ·, ·〉 if there exists a transition relation `

op−−→ `′. A path π≡ υ0 ·υ1 · ... ·υn
is feasible if υn≡〈`,s,Π〉 such that JΠKs is satisfiable. If `∈O and υn is feasible then υn
is called terminal state. Otherwise, if JΠKs is unsatisfiable the path is called infeasible
and υn is called an infeasible state. If there exists a feasible path π≡ υ0 ·υ1 · ... ·υn then
we say υk (0≤ k≤ n) is reachable from υ0 in k steps. We say υ′′ is reachable from υ if
it is reachable from υ in some number of steps.

A symbolic execution tree contains all the execution paths explored during the sym-
bolic execution of a transition system by triggering Eq. (1). The nodes represent sym-
bolic states and the arcs represent transitions between states.

Program Slicing via Abstract Interpretation. The backward slice of a program wrt
a program location ` and a set of variables V ⊆ Vars, called the slicing criterion 〈`,V 〉,
is all statements of the program that might affect the values of V at `.4 We follow
the dataflow approach described by Weiser [21] reformulated as an abstract domain
D ≡{⊥}∪P (Vars) (where P (Vars) is the powerset of program variables) with a lattice
structure 〈v,⊥,t,u,>〉, such that v≡⊆, t ≡ ∪, and u ≡ ∩ are conveniently lifted to
consider the element ⊥.

We say σ` ∈ D is the approximate set of variables at location ` that may affect
the slicing criterion. We will abuse notation to denote the dependencies associated to a
symbolic state υ also as συ. Backward data dependencies can be formulated using this
set, defining two kinds of dataflow information. Given a transition relation `

op−−→ `′ we
define def (op) and use(op) as the sets of variables altered and used during the execution
of op, respectively. Then,

σ` ,

{
(σ`′ \def(op))∪use(op) if σ`′ ∩ def(op) 6= /0

σ`′ otherwise (2)

where σ`′ = V if `′ = `end. We say a transition relation `
op−−→ `′ where op ≡ x := e is

included in the slice if:
σ`′ ∩ def(op) 6= /0 (3)

Backward control dependencies can also affect the slicing criterion. A transition relation
δ ≡ `

op−−→ `′ where op ≡ assume(c) is included in the slice if any transition relation

4 W.l.o.g., we assume in this paper a single slicing criterion at `end.



under the range of influence5 (the function INFL will compute the range of influence)
of δ is included in the slice, and (4)

σ` , σ`′ ∪use(op) (5)
Finally, a function p̂reD (σ`,op) that returns the pre-state after executing backwards
the operation op with the post-state σ` is defined using Eqs. (2,3,4,5).

4 Algorithm
A path-sensitive slicing algorithm over a symbolic execution tree (SET) can be defined
as an annotation process which labels each symbolic state υ ≡ 〈`, ·, ·〉 with σ` ∈ D
by computing a fixpoint (later formalized) over the tree, using Eqs. (2,5) described in
Sec. 3. In an interleaved process, the final SET is obtained through Eqs. (3,4). Since
the SET may have multiple instances of the same transition relation, we say that a
transition relation is included in the final slice if at least one of its instances is included
in the slice on the SET. It is easy to see that the path-sensitiveness comes from how
symbolic execution builds the tree since no dependencies from a non-executable path
can be considered.

Our algorithm performs symbolic execution in a depth-first search manner exclud-
ing all infeasible paths. Whenever the forward traversal of a path finishes due to a (a)
terminal state, (b) infeasible state, or (c) reusing state (i.e., a state reusing a solution
from another state), the algorithm halts and backtracks to the next path. During this
backtracking each symbolic state υ is labelled with its solution, i.e., the set of variables
συ at υ that may affect the slicing criterion. Furthermore, the reusing conditions are
computed at each state for future use. We first introduce formally the two key concepts
which will decide whether a solution can be reused or not.
Definition 1 (Interpolant). Given a pair of first order logic (FOL) formulas A and B
such that A∧B is f alse a Craig interpolant [4] wrt A is another FOL formula Ψ such
that (a) A |= Ψ, (b) Ψ∧B is false, and (c) Ψ is formed using common variables of A
and B.

Note that interpolation allows us to remove irrelevant facts from A without affecting the
unsatisfiability of A∧B.

Definition 2 (Witness Paths and Formulas). Given a symbolic state υ ≡ 〈`, ·, ·〉 an-
notated with the set of variables συ that affect the slicing criterion at `end, a witness
path for a variable v∈ συ is a symbolic path π≡ 〈`, ·, ·〉 · ... · 〈`end, ·,Πend〉 with the final
symbolic state υ′ ≡ 〈`end, ·,Πend〉 such that Jυ′K is satisfiable (i.e., π is feasible). We call
Jυ′K the witness formula of v, denoted ωv.

Intuitively, a witness path for a variable at a node is a path below the node along which
the variable affects the slicing criterion at the end. A witness formula represents a con-
dition sufficient for the variable to affect the slicing criterion along the witness path.

Prior to establishing the reusing conditions, we augment the abstract domain D to
accommodate the witness formulas. Here, and in the rest of the paper, we will refer
to the term “dependency” as the set of variables that may affect the slicing criterion
together with their witnesses.

5 More formally, the range of influence for δ is the set of transition relations defined in any path
from δ to its nearest postdominator in the transition system.



- t : Dω×Dω→Dω

σω
1tσω

2 , σω
1∪σω

2

- v: Dω×Dω→ Bool

σω
1 v σω

2 if and only if σω
1 ⊆ σω

2

- p̂re : Dω× (Σ×Σ×Ops)× (Vars→ SymVars)→Dω.

p̂re(σω′, `
op−−→ `′,s) ,



let σω := p̂re aux(σω′, `
op−−→ `′,s)

foreach 〈x,ωx〉 ∈ σω,〈x,ωx′〉 ∈ σω

σω:=σω \{〈x,ωx〉,〈x,ωx′〉}
if ωx |= ωx′ then σω:=σω∪{〈x,ωx′〉}
else σω:=σω∪{〈x,ωx〉}

if (σω∩de f (op) or INFL(` −→ `′)∩S 6= /0) then
S :=S ∪{` −→ `′}

in σω

where:

p̂re aux(σω′, `
op−−→ `′,s) ,


{〈x,ωx∧ Jy = eKs〉 | 〈x,ωx〉 ∈ σω′,op≡ y := e, x 6∈ de f (op)}∪
{〈v,ωx∧ Jy = eKs〉 | 〈x,ωx〉 ∈ σω′,op≡ y := e, x ∈ de f (op),v ∈ use(op)}∪
{〈x,ωx∧ JcKs〉 | 〈x,ωx〉 ∈ σω′,op≡ assume(c)}∪
{〈x,JΠπKs∧ JcKs〉 | 〈x, ·〉 /∈ σω′,op≡ assume(c),x ∈ use(op),

INFL(` −→ `′)∩S 6= /0,∃ π≡ `′ · . . . · `end}

Fig. 2. Main Abstract Operations for Dω

Definition 3 (Dω). We define a new abstract domain Dω as a lattice 〈v,⊥,t,>〉 such
that Dω , {⊥} ∪ P (Vars×FOL) (i.e., set of pairs of the form 〈x,ωx〉 where x is a
variable and ωx is its witness formula) and abstract operations described in Fig. 2.6

Note that the witness formulas can be obtained only from (feasible) paths in the
program. Therefore, the number of witness formulas is always finite. As we will see
later, even with loops, the size of each witness formula is also finite because we make
the symbolic subtree of the loop finite. That is, we perform symbolic execution on a
finite program once loop invariants are given. This ensures that the abstract domain Dω

is finite and hence, termination is guaranteed for any fixpoint computation based on it.
In Fig. 2, the operator t computes the least upper bound of the abstract states by

simply applying the set union of the two set of states. The operator v simply tests
whether one set is a subset of the other. p̂re is a bit more elaborated but basically consists
of the Eqs. (2,3,4,5) defined in Sec. 3 extended with witnesses formulas. We assume
here and in the algorithm in Fig. 3 that p̂re accesses S which is the set of transitions
included in the slice. In function p̂re aux, there are four cases to handle different kinds
of statements and dependencies:

- In the first two cases, if the operation is an assignment, the dependencies are prop-
agated from the defined to the used variables and any dependency from a variable
not defined is kept. In these cases, the pre-state witness formula is the conjunction
of the post-state witness formula with the corresponding statement.

6 For lack of space, trivial treatment of the element ⊥ is omitted from operations in Fig. 2.



- In the third case, if the operation is an assume, any used variable is preserved, with
its pre-state witness formula being the conjunction of the post-state witness formula
and the corresponding guard.

- In the last case, for any variable x occurring in an assume statement without any
dependency, if any transition under the range of influence (computed by INFL) of
the assume is already in the slice, then x is added (due to control dependency) and
its witness formula is the conjunction of the guard and the path condition of any
(feasible) path from the assume statement that leads to the end of the program.

In addition, in function p̂re whenever two pairs from the set of dependencies com-
puted by p̂re aux refer to the same variable, we choose the one with the weaker witness
formula (which is more likely to be reused). Finally, a transition is included in the slice
if one of the Eqs. (3,4) holds.

Definition 4 (Reusing Conditions). Given a current symbolic state υ ≡ 〈`, ·,Π〉 and
an already solved symbolic state υ′ ≡ 〈`, ·, ·〉 such that Ψ is the interpolant generated
for υ′ and σω are the dependencies together with their attached witnesses at υ′, we say
υ is equivalent to υ′ (or υ can reuse the solution at υ′) if the following conditions hold:

(a) JυK |= Ψ (b) ∀〈x, ·〉 ∈ σω •∃〈x,ωx〉 ∈ σω such that JυK∧ωx is satisfiable (6)

The condition (a) affects soundness and it ensures that the set of symbolic paths reach-
able from υ must be a subset of those from υ′. The condition (b) is the witness check
which essentially states that for each variable x in the dependency set at υ′, there must be
at least one witness path with formula ωx that is feasible from υ. This affects accuracy
and ensures that the reuse of dependencies does not incur any loss of precision.

We now describe in detail the main features of our algorithm defined by the function
BackwardDepsV in Fig. 3. The main purpose of BackwardDepsV is to keep track of
the backward dependencies between the program variables and the slicing criterion by
inferring for each state the set of variables that may affect the slicing criterion. From
these dependencies it is straightforward to obtain the slice of the program as explained
at the beginning of this section. For clarity of presentation, let us omit the content of the
grey boxes and assume programs do not have loops, which we will come to later.

BackwardDepsV : SymStates×Dω → FOL×Dω ×Bool requires the program to
have been translated to a transition system 〈Σ, I,−→,O〉 and takes as input an initial
symbolic state υ≡ 〈` ∈ I,ε, true〉 and an initially empty σω. V is the set of variables of
the slicing criterion. The set of transitions included in the slice, S , is also empty. Recall
that S is only modified by p̂reDω , and hence, we omit it from the description of the
algorithm defining it as a global variable. The output is a triple with the interpolant,
dependencies (i.e., reusing conditions and solution) and a boolean flag representing
whether any change occurred in a dependency set at any symbolic state during the
algorithm’s backward traversal (this is used mainly to handle loops later). The actual
object of interest computed by the algorithm is the set of transitions S included in the
slice.

BackwardDepsV implements a recursive algorithm whose objective is to generate a
finite complete SET while reusing solutions whenever possible to avoid path explosion.
Line 1 initializes the (local) variable change to false, which will be updated later. Next,
the three base cases for symbolic states are handled - infeasible, terminal, and reuse:



BackwardDepsV (υ≡ 〈`,s,Π〉,σω)
1: change := false
2: if INFEASIBLE(υ) then 〈Ψ,σω〉 := 〈false, /0〉 and goto 13
3: if TERMINAL(υ) then 〈Ψ,σω〉 := 〈true,{〈v, true〉 | v ∈V}〉 and goto 13
4: if ∃ υ′ ≡ 〈`,s, ·〉 labelled with 〈Ψ,σω〉 such that REUSE(υ,υ′) then goto 13
5: if ` is the header of a loop then
6: υ := invariant(υ, `→ . . .→ `)

7: 〈Ψ,σω,change〉 := UnwindTreeV (υ,σ
ω) and goto 13

8: if ∃ `′ such that `→ `′ is a backedge of a loop then
9: 〈·, ·,Π〉 := invariant(υ, `′→ . . .→ `)
10: 〈Ψ,σω〉 := 〈Π,σω〉 and goto 13

11: 〈Ψ,σω,change〉 := UnwindTreeV (υ, σω)
12: change := change ∨ υ is labeled with 〈·,σω

old〉 such that ¬(σω
old vDω σω)

13: label υ with 〈Ψ,σω〉 and return 〈Ψ,σω,change〉

UnwindTreeV (υ≡ 〈`,s,Π〉,σω
in )

1: Ψ:=true, σω := σω
in, change := false

2: foreach transition relation `
op−−→ `′

3:
υ
′ ,

{
〈`′,s,Π∧ JcKs〉 if op ≡ assume(c)
〈`′,s[x 7→ Sx],Π∧ Jx = eKs〉 if op ≡ x := e and Sx fresh variable

4: 〈Ψ′,σω′,c〉:= BackwardDepsV (υ
′,σω

in)

5: Ψ:= Ψ∧ ŵl p(op,Ψ
′
)

6: σω:= σω tDω p̂reDω(σω′,op,s)
7: change := change ∨ c
8: return 〈Ψ,σω,change〉

BackwardDepsLoopV (υ, σω)
1: σω′ := σω, change := false
2: do 〈·,σω′,change〉 := BackwardDepsV (υ,σ

ω′) while change end

Fig. 3. Path-Sensitive Backward Slicing Analysis

- In line 2, the function INFEASIBLE(〈·, ·,Π〉) checks whether Π is satisfiable. If not,
the symbolic execution detects an infeasible path and halts, excluding any depen-
dency which would have been inferred from the non-executable path. In addition,
it produces an interpolant from Π and false, namely Ψ ≡ false, which generalizes
the current path condition (Π |= Ψ and Ψ is false). Since the path is not executable
there is no variable that may affect the slicing criterion and hence, the set of de-
pendencies returned is empty.

- In line 3, the function TERMINAL(〈`, ·, ·〉) checks if the symbolic state is a terminal
node by checking if ` = `end. If yes, the execution has reached the end of a path.
Since the path is feasible, it can be fully generalized returning the interpolant Ψ≡
true. Since ` is a terminal node, the set of dependencies is the set of variables in the
slicing criterion, V . The witness formula for each variable from V is initially true.



- In line 4 the algorithm searches for another state υ′ whose dependencies can be
reused by the current state υ so that the symbolic execution can be stopped. For
this, the function REUSE(υ,υ′) tests both the reusing conditions in Eq. 6. If the
test holds, the state υ can reuse the dependencies computed by υ′.

If all three base cases fail, the algorithm unwinds the execution tree by calling the
procedure UnwindTreeV at line 11. UnwindTreeV , at line 3, executes one symbolic step 7

and calls the main procedure BackwardDepsV with the successor state (line 4). After
the call the two key remaining steps are to compute:

- the interpolant Ψ (UnwindTreeV line 5) that generalizes the symbolic execution tree
below υ while preserving its infeasible paths. The procedure ŵl p : Ops×FOL→
FOL ideally computes the weakest liberal precondition (wlp) [7] which is the weak-
est formula on the initial state ensuring the execution of op results in a final state Ψ

′
.

In practice, we approximate wlp by making a linear number of calls to a theorem
prover following techniques described in [14]. The interpolant Ψ is an FOL for-
mula consisting of the conjunction of the result of ŵl p on each child’s interpolant.

- the solution, σω, for the current state υ at line 6 which is computed by executing
p̂reDω on each child’s solution and then combining all solutions using tDω .

In addition, at line 7 it also records changes in any child’s symbolic state (if any)
and then returns a triple in the same format as BackwardDepsV ’s return value. In Back-
wardDepsV , line 12 updates change to true if either it was set to true in UnwindTreeV at
line 11 or the current symbolic state is about to be updated with a more precise solution
than that it already has. The final operation before returning from BackwardDepsV is to
label the state υ with the reusing conditions and solution (line 13).

Now we continue describing our algorithm by discussing how it handles loops. The
main issue is to produce a finite symbolic execution tree on which a fixpoint of the
dependencies can be computed.

For this, the algorithm in Fig. 3 takes an annotated transition system in which pro-
gram points are labelled with inductive invariants inferred automatically by an abstract
interpreter using an abstract domain such as octagons or polyhedra (we borrow the
ideas presented in [18] for this purpose). We assume the abstract interpreter provides a
function getAssrt which, given a program location ` and a symbolic store s, returns an
assertion in the form of an FOL formula renamed using s, which holds at `. Note that
when applied at loop headers, getAssrt will return a loop invariant. However, we would
like to strengthen it using the constraints propagated from the symbolic execution. The
function invariant performs this task as follows:

invariant(〈`,s,Π〉, `1→ `n) ,


let s′ := havoc(s,modifies(`1→ `n))

Π := getAssrt(`,s′)∧Π

in 〈`,s′,Π〉
havoc(s,Vars) , ∀v ∈Vars• s[v 7→ z]
where z is a fresh variable (implicitly ∃-quantified).

7 Note that the rule described in line 3 is slightly different from the one described in Sec. 3
because no consistency check is performed. Instead, the consistency check is postponed and
done by the first base case at line 2.



modifies(`1→ . . .→ `n) takes a sequence of transitions and
returns the set of variables that may be modified during its symbolic execution.

Intuitively, invariant clears the symbolic store of all variables modified in the loop
(using the havoc function) and then enhances the path condition Π of the symbolic state
with the invariants from the abstract interpreter.

Let us now explain the grey boxes in Fig. 3. Lines 5-7 in BackwardDepsV cover the
case when a loop header has been encountered. The main purpose here is to abstract the
current symbolic state by using the loop invariant obtained from the abstract interpreter.
The algorithm calls the function invariant (at line 6) with the transitions in the loop so
as to obtain a copy of the current symbolic state annotated with the approximate loop
invariant in its path condition. At line 7, the UnwindTreeV procedure is called on the
resulting symbolic state to explore the symbolic subtree of the loop.

If the symbolic execution encounters a loop backedge (lines 8-10) from ` to `′ it
halts and backtracks. The reason is that the loop header at `′ has already been symboli-
cally executed with a loop invariant. Hence there is no need to continue the loop since
the invariant ensures that no new feasible paths will be encountered if it is explored
again. This is our basic mechanism to make the symbolic execution of the loop finite.

Finally, the main algorithm to handle loops, BackwardDepsLoopV , makes calls to
the function BackwardDepsV until there is no change detected in the symbolic state of
any program point. We present it in its simplest form, but it can be easily optimized to
call BackwardDepsV only with the loop in which the change was detected.

5 Results

We implemented the path-sensitive slicer described in this paper and performed exper-
iments to address the following questions:

1. Is our path-sensitive slicer practical for medium-size programs?
2. What is the impact of reusing ?
3. How effective is a path-sensitiveness slicer against a path-insensitive version?

Our proof-of-concept implementation models the heap as an array. A flow-insensitive
pointer analysis is used to partition updates and reads into alias classes where each class
is modeled by a different array. Given an operation that involves pointers the sets def
and use utilize the results of the pointer analysis. For instance, given the statement *p
=*q the set def contains everything that might be pointed to by p and the set use in-
cludes everything that might be pointed by q. A theorem prover is used to decide linear
arithmetic formulas over integer variables and array elements in order to check the sat-
isfiability and entailment of formulas, and computing interpolants and witnesses. Pro-
gram are first annotated with approximate loop invariants using the abstract intepreter
InterProc [15]. Functions are inlined and external functions are modeled as having no
side effects and returning an unknown value.

We used several instrumented device driver programs previously used as software
model checking benchmarks: cdaudio, diskperf, floppy, and serial. In addition, we also
considered mpeg, the mpeg-1 algorithm for compressing video, and fcron.2.9.5, a cron
daemon. For the slicing criterion we consider variables that may be of interest during



Path-Insens Path-Sens
Reuse No Reuse

Program LOC Size Red Time Size Red Time Time

mpeg 5K 4% 21s 8% 628s ∞1

diskperf 6K 32% 2s 57% 94s ∞

floppy 8K 36% 9s 47% 263s ∞

cdaudio 9K 23% 10s 52% 301s ∞

serial 12K 39% 16s 50% 395s ∞

fcron.2.9.5 12K 42% 32s 61% 832s ∞

Mean 23% 15s 38% 418s −
Table 1. Results on Intel 3.2Gz 2Gb. 1 timeout after 2 hours or 2.5 Gb of memory consumption

debugging tasks. For the instrumented software model checking programs, we choose
as the slicing criterion the set of variables that appear in the safety conditions used for
their verification in [10]. In the case of mpeg we choose a variable that contains the type
of the video to be compressed. Finally, in fcron.2.9.5 we choose all the file descriptors
opened and closed by the application.

Table 1 compares our path-sensitive slicer (columns labelled with Path-Sens) against
the same slicer but without path-sensitivity (labelled with Path-Insens). Path-insensitivity
is achieved by the following modifications in our slicer: (1) considering all paths as fea-
sible, and (2) always forcing reuse. These changes have the same effect as always merg-
ing the abstract states along incoming edges in a control-flow merging node. In other
words, they mimic running a path-insensitive slicer on the original CFG. We could have
used a faster off-the-shelf path-insensitive program slicer (using e.g., [11]), however,
our objective here is to isolate the impact of path-sensitivity and hence, we decided to
perform the comparison on a common platform to produce the fairest results. Finally,
we also tried running with different abstract domains, such as octagons and polyhedra,
to generate loop invariants and the results were the same.

The column LOC represents the number of lines of program without comments. The
column Size Red shows the reduction in slice size (in %) wrt the original program size.
The reduction size is computed using the formula (1− size o f slice

size o f original )× 100. By size
we mean all executable statements in the program, excluding type declarations, unused
functions, comments, and blank lines. A minor complication here is that the SET may
contain multiple instances of program points in the CFG, as can be seen in Fig. 1(c). To
compare the reduction in slice sizes fairly, we use the rule mentioned at the beginning
of Sec. 4 to compute slices: a transition in the original CFG is included in the slice if
any of its instances in the SET is included in the slice.

The column Time reflects the running time of the analysis in seconds excluding the
alias analysis and the external abstract interpreter. Column Reuse is our path-sensitive
slicer with reusing, and No Reuse uses the same symbolic execution engine with au-
tomatic loop invariants but without interpolation and witness paths. Finally, we sum-
marize in row Mean the numbers of columns Size Red and Time by computing their
geometric and arithmetic mean, respectively.

We summarize our results as follows. The running times (column Reuse) of our
path-sensitive slicer (with a mean of 418 secs) are reasonable considering the size of
the programs and the current status of our prototype implementation which can be opti-
mized significantly. The analysis of mpeg is especially slow and it is due to the existence



of many nested loops. On the other hand, the reuse of solutions clearly pays off. With-
out our reuse mechanism (column No Reuse) we were not able to finish the analysis
of any program after a timeout of 2 hours or memory consumption of 2.5 Gb. Finally,
the improvement in terms of reduction shown in column Reuse is roughly 38% against
only 23% of its path-insensitive counterpart (column Path-Insens). Again, the mpeg
program is an exception since the size of the slices in both Path-Insens and Path-Sens
are quite big (i.e., very small reduction). The reason is that in mpeg all the computations
depend on the type of video to be compressed which is our slicing criterion.

6 Related Work

Static slicing remains a very active area of research. We limit our discussion to the
most relevant works that take into account path-sensitiveness. We also discuss pruning
techniques that might have influenced our work.

Fully path-sensitive methods. Conditioned slicing described in [3, 5, 6] performs sym-
bolic execution in order to exclude infeasible paths before applying a static slicing algo-
rithm, so they are fully path-sensitive (for loop-free programs) similar to us. However,
they perform full path enumeration and essentially explore the search space of the naive
SET. Hence, they suffer from the path explosion problem.

Partially path-sensitive methods. A more scalable but not fully path-sensitive ap-
proach is described by Snelting et al. [20, 17, 19]. They compute the dependency be-
tween two program points y and x using the Program Dependence Graph (PDG) [11]
and apply the following rule to remove spurious dependencies: I(y,x)⇒ ∃v̄ : PC(y,x),
where I(y,x) stands for y influences x (i.e., there is a dependency at x on y), v̄ is some
assignment of values to program variables and PC(y,x) is the path condition from y to
x. Essentially it means that if the path condition from y to x is found to be unsatisfiable,
then there is definitely no influence from y to x. If there are multiple paths between two
points, the path condition is computed as a disjunction of each path.

For the program in Fig. 1(a), [20, 17, 19] would proceed as follows. In the PDG
there will be a dependency edge from `8 to `1, hence they would check to see if the
path condition PC(1,8) is unsatisfiable. First they calculate the path condition from `4
to `8 as PC(4,8) ≡ (x = 1∧ y > 0∧ z = x)∨ (y = 0∧ y > 0∧ z = x) ≡ (x = 1∧ y >
0∧ z = x). Now they use this to calculate PC(1,8) ≡ (x = 0∧ y = 5∧ ((a > 0∧ b =
x+y∧PC(4,8))∨(a≤ 0∧PC(4,8))))8, which is not unsatisfiable. Hence the statement
x:=0 at `1 will be included in the slice.

The fundamental reason for this is that for [20, 17, 19], path conditions are only
necessary and not sufficient, so false alarms in examples such as the above are possible.
An important consequence of this is the fact that even for loop-free programs, their
algorithm cannot be considered “exact” in the sense described in Sec. 1. However, our
algorithm guarantees to produce no false alarms for such programs.

Finally, another slicer that takes into account path-sensitiveness up to some degree is
Constrained slicing [8] which uses graph rewriting as the underlying technique. As the

8 We have simplified this formula since [20, 17, 19] uses the SSA form of the program and adds
constraints for Φ-functions, but the essential idea is the same.



graph is rewritten, modified terms are tracked. As a result, terms in the final graph can
be tracked back to terms in the original graph identifying the slice of the original graph
that produced the particular term in the final graph. The rules described in [8] mainly
perform constant propagation and dead code detection but not systematic detection of
infeasible paths. More importantly, [8] does not define rules to prune the search space.

Interpolation and SAT. Interpolation has been used in software verification [1, 10, 16,
12] as a technique to eliminate facts which are irrelevant to the proof. Similarly, SAT
can explain and record failures in order to perform conflict analysis. By traversing a
reverse implication graph it can build a nogood or conflict clause which will avoid
making the same wrong decision. Our algorithm has in common the use of some form
of nogood learning in order to prune the search space. But this is where the similarity
ends. A fundamental distinction is that in program verification there is no solution (e.g.,
backward dependencies) to compute and hence, there is no notion of reuse and the
concept of witness paths does not exist. [9] uses interpolation-based model checking
techniques to improve the precision of dataflow analysis but still for the purpose of
proving a safety property.

Finally, a recent work of the authors [13] has been a clear inspiration for this paper. [13]
uses interpolation and witnesses as well to solve not an analysis problem, but rather, a
combinatorial optimization problem: the Resource-Constrained Shortest Path (RCSP)
problem. Moreover, there are other significant differences. First, [13] is totally defined
in a finite setting. Second, [13] considers only the narrower problem of extraction of
bounds of variables for loop-free programs while we present here a general-purpose
program analysis like slicing. Third, this paper presents an implementation and demon-
strates its practicality on real programs.

7 Conclusions

We presented a path-sensitive backward slicer. The main result is a symbolic execution
algorithm which excludes infeasible paths while pruning redundant paths. The key idea
is to halt the symbolic execution while reusing dependencies from other paths if some
conditions hold. The conditions are based on a notion of interpolation and witness paths
at aiming to detect whether the exploration of a path can improve the accuracy of the
dependencies computed so far by other paths. We have demonstrated the practicality
of the approach with a set of real C programs. Finally, although this paper targets slic-
ing our approach can be generalized and applied to other backward program analyses
providing them path-sensitiveness.
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