
Bounded Verification and Testing of Heap Programs
Duc-Hiep Chu

IST Austria
Email: duc-hiep.chu@ist.ac.at

Joxan Jaffar and Andrew E. Santosa
National University of Singapore

Email: {joxan@comp.,dcsandr@}nus.edu.sg

Abstract—We present an algorithm and implementation for the
bounded verification or testing of heap-manipulating programs in
pursuit of safety properties. This algorithm is based on symbolic
execution whose exploration covers every execution path up to a
certain length. The novel feature is the use of symbolic heaps in
order to precisely model the effect of dynamic memory allocation,
and critically, the use of property-directed interpolation in order
to obtain a useful relaxation of the path constraints. In other
words, we perform dynamic symbolic execution with pruning.
Finally, we describe our implementation TRACER-X and present
an experimental evaluation against LLBMC, a state-of-the-art
system for bounded verification, and KLEE, a state-of-the-art
dynamic symbolic executor used for testing.

I. INTRODUCTION

Symbolic execution (SE) has emerged as a important
method to reason about programs, in both verification and
testing. By reasoning about inputs as symbolic entities, its
fundamental advantage over traditional testing, which uses
concrete inputs, is simply that it has better coverage of pro-
gram paths. In particular, dynamic symbolic execution (DSE),
where the execution space is explored path-by-path, has been
shown effective in systems such as DART [1], CUTE [2],
KLEE [3].

A key advantage of DSE is that by examining a single path,
the analysis can be both precise (for example, capturing intri-
cate details such as the state of the cache micro-architecture),
and efficient (for example, the constraint solver often needs
to deal with path constraints that are a single disjunction).
Another advantage is the possibility of reasoning about system
or library functions which we can execute but not analyze, as
in the method of concolic testing. Yet another advantage is the
ability to realize a search strategy in the path exploration, for
example, to perform in random manner, or a depth/breadth-first
manner, or in a manner determined by the program structure.
However, the key disadvantage of DSE is that the number of
program paths is in general exponential in the program size,
and most available implementations of DSE do not employ
a general technique to prune away some paths. Indeed, a
recent paper [4] describes that DSE “traditionally forks off two
executors at the same line, which remain subsequently forever
independent”, clearly suggesting that the DSE processing of
different paths have no symbiosis.

The counterpart to DSE may be called static symbolic
execution (SSE), or bounded model checking (BMC) where,
typically, the (whole) program is encoded by a constraint
solver, typically an SMT solver [5]. Now because the encoding
is manageable in size (typically not more than quadratically

bigger than the program, this apparently addresses the key
disadvantage of DSE of having exponentially many paths to
explore. However, the exploration process is merely delegated
away to the solver, which then has to deal with the gen-
eral problem of reasoning about what is essentially a huge
disjunction. Nevertheless, constraint solvers, which routinely
deal with intractable problems, have the opportunity of solving
such problems. A most notable feature of constraint solvers
is that of clause learning which can enable efficient solution
of intractable problems. Essentially, clause learning enables
“pruning”in exploration process of the solver. Some notable
BMC systems are CBMC [6] and LLBMC [7].

In this paper, we consider an approach which is different
from traditional DSE and SSE. We consider the method of
abstraction learning [8], which is more popularly known
as lazy annotations (LA) [9], [10]. This method has been
implemented in the TRACER [11], [12] which was among the
first systems to demonstrate DSE with pruning. While TRACER
was able to perform bounded verification and testing on many
examples, it could not accommodate industrial programs.
Instead, it was primarily used to evaluate new algorithms in
verification, analysis and testing, e.g., [13], [14], [15]. It was
not intended to be a stand-alone verifier or tester.

In this paper, we extend the algorithm of TRACER. The main
new feature we contribute here is in constraint reasoning about
dynamically allocated/freed memory. The technical approach
involves a logical interpretation of dynamically allocated (but
not yet freed) addresses as symbolic addresses. This interpre-
tation is on the one hand abstract, for because dynamically
created addresses can be reasoned about in an existential
manner, and on the other hand, precise, because it captures
the desired collection of concrete states. More specifically,
we develop a logic formula that precisely captures the notion
of subsumption of states containing symbolic addresses, and
then develop a method of propagating these formulas so
that they can be used for pruning the exploration space.
This contribution may be utilized in any symbolic execution
framework that wishes to reason about different execution
paths, e.g. KLEE [3], DSM [16], and even Veritesting [4].

A follow-up contribution is to demonstrate an implemen-
tation of symbolic reasoning in an LA system TRACER-X,
built on top of KLEE. TRACER-X is a successor to the LA
system TRACER, but now accommodates heap-manipulating
programs. We are unaware of any symbolic execution system
which reasons about dynamic memory with both the precision
that captures all the required information, and yet with an

〈1〉 #define MAX 30
n = input(); // getting a symbolic input
x = malloc(sizeof(int)); *x = n;
for (int i = 0; i < MAX; i++) {

〈2〉 if (*) { y = malloc(sizeof(int)); *y = *x+1; }
else { y = malloc(sizeof(int)); *y = *x+1; } //(#)
x = y;

}
〈3〉 assert(*y >= MAX + n);

Fig. 1: Motivating Example

abstraction level that permits pruning. We conclude with an
experimental evaluation comparing with LLBMC, state-of-the-
art BMC tool, and KLEE, a state-of-the-art DSE tool for
testing memory errors.

II. MOTIVATING EXAMPLES

We begin with the example in Figure 1, and the observation
that its symbolic execution times out (> 1 hour) using both
KLEE and LLBMC. Clearly the number of symbolic execution
paths is 2MAX . Thus for a “non-pruning” system like KLEE [3],
the reason for timeout is obvious. However, LLBMC [7],
which processes (a manageable sized encoding of all) the
paths by using an SMT solver, we observe that despite the
pruning capability of SMT, this example still could not be
fully executed.

To see the core problem, first note that every path is
essentially the same. Let us hand execute this example, with
a reduced MAX = 2. Consider any two paths, for example, in
one, we (always) take the “then” alternative in each branch,
and in the other, we always take the “else” alternative. At the
end of the first path, the heap and stack, described as two
collections of key-value pairs, look like

heap : x0 7→ n0,y1 7→ n0 +1,y2 7→ n0 +2
stack : n 7→ n0,x 7→ y2,y 7→ y2

(1)

where n0 represents the symbolic input, x0 represents the
address of the first memory allocation, and y1,y2 represent
the two addresses allocated in the for loop. Similarly, at the
end of the second path, we have

heap : x0 7→ n0,z1 7→ n0 +1,z2 7→ n0 +2
stack : n 7→ n0,x 7→ z2,y 7→ z2

(2)

where z1,z2 represent the two addresses of the dynamically
allocated memory by the loop along this path. The crux of the
problem is to determine that these two state configurations
(1) and (2) are the same. In the case of DSE such as
KLEE [3], DSM [16] (aka. KLEE with state merging),
and Veritesting [4], concrete values are assigned to y1,y2,
and different concrete values are assigned to z1,z2. Thus the
two state configurations must be consider as different. In the
case of LLBMC, statically defined segmented arrays are used
for SMT-encoding of the program. Thus the two paths in
consideration will involve different (SMT) variables. Conflict
clause learning thus does not work across different (statically
defined) arrays.

Our main contribution is to regard the dynamically allocated
addresses symbolically. What this means is essentially that, in
the logical reading of a symbolic state, we regard these ad-
dresses, as well as symbolic inputs, as existentially quantified
variables. That is, (1) should read as the following formula1

with free variables n, x, and y:

∃n0∃x0∃y1∃y2

(
x0 7→ n0,y1 7→ n0 +1,y2 7→ n0 +2
n 7→ n0,x 7→ y2,y 7→ y2

)
With this relaxation, the state configurations (1) and (2) are
considered the same and need not be both explored. Conse-
quently, TRACER-X can run this example quickly. (In fact in
near linear time because our argument applies inductively, thus
the number of nodes in the symbolic execution tree that we
actually encounter grows linearly with MAX.)

Now consider a small change to the example in Figure 1
where in the line marked (#), the increment value is 2 instead
of 1. This time our two paths will produce two different heaps
(their contents are different). Thus to be efficient, we also
need the power of abstraction learning. Our algorithm, which
is based upon a path-by-path reasoning process, is able to
produce an interpolant which describes a relaxation of the
symbolic state based upon the target property to be proved.
In other words, our algorithm is property-directed and able
to perform a kind of weakest precondition. We relegate the
details to Section IV. Meanwhile, we simply mention that for
this example, while both KLEE and LLBMC take exponential
time, our algorithm executes in near linear time.

Finally, in Figure 2, we display a real-world benchmark
examples, which checks if a string matches a regular expres-
sions (and is tutorial example 2 in the KLEE distribution).
Note similarity of this program with Figure 1. Here, code
iterations are in the form of recursive function calls, and
dynamic memory arises from the instances of the formal
function parameters. The content of this memory are addresses
of statically allocated arrays plus some offset. Different sym-
bolic execution paths arise from different conditions that the
symbolic arrays re[] and text[] satisfy, and these variations
lead to recursive calls that increment the values of pointer
values by various offsets (0, 1 or 2, in this example). The
objective is to show that no reference is made outside the
array footprints. Unsurprisingly, here too we observe that both
KLEE and LLBMC time out while TRACER-X runs quickly;
section VI provides some run-time numbers.

III. SYMBOLIC EXECUTION OF HEAP PROGRAMS

We formalize DSE (as in KLEE-like systems [3], [16],
[4]) for a subset language of LLVM. Though being simple,
the language is enough to demonstrate the difficulties to apply
“lazy annotation” when dealing with heap-based programs.

We model a program P by a transition system: a tuple
〈Σ, `start,−→〉 where Σ is the set of program points and `start ∈
Σ is the unique initial program point. Let −→⊆ Σ×Σ×Stmts,

1Strictly speaking, we also need to enforce the “separation” between the
allocated chunks of memory. This topic cannot be easily discussed without
proper formalization first.

int matchstar(int c, char *re, char *text) {
do if (matchhere(re, text)) return 1;
while (*text!=’\0’ && (*text++==c || c==’.’));
return 0;

}

int matchhere(char *re, char *text) {
if (re[0] == ’\0’) return 0;
if (re[1] == ’*’) return matchstar(re[0], re+2, text);
if (re[0] == ’$’ && re[1]==’\0’) return *text == ’\0’;
if (*text!=’\0’&&(re[0]==’.’||re[0]==*text))

return matchhere(re+1, text+1);
return 0;

}

int match(char *re, char *text) {
if (re[0] == ’ˆ’) return matchhere(re+1, text);
do if (matchhere(re, text)) return 1;
while (*text++ != ’\0’);
return 0;

}

#define SIZE 7
main() {

char re[SIZE]; re[SIZE-1] = ’\0’;
match(re, "hello");

}

Fig. 2: Small but Real World Example

where Stmts is the set of program statements, be the transition
relation that relates a state to its (possible) successors by
executing the statements. We shall use `

stmt−−→ `′ to denote a
transition relation from `∈ Σ to `′ ∈ Σ executing the statement
stmt ∈ Stmts.

Let the program variables be denoted by Vars. Basic state-
ments are defined in Table I. Note that “assertions” can be
modeled with “assume” and “error” statements. Other than
the program variables, there are also logical variables. Let Ĩ
denote the symbolic inputs, which are logical variables.

stmt ::= var := input() | var := exp | store(exp, exp) |
assume(exp) | var := malloc(c) | error | halt

exp ::= load(exp) | exp ♦b exp | ♦u exp | var | c
♦b ::= typical binary operators
♦u ::= typical unary operators
c ::= 32-bit unsigned integer
var ∈ Vars

TABLE I
A SIMPLE INTERMEDIATE LANGUAGE

For presentation purposes, we consider only expressions (con-
stants, variables, etc.) that evaluate to 32-bit integer values,
and memory objects are aligned in 4-bytes. Generalizing to
additional types is straightforward. We also assume that the
input programs are well-typed in the obvious way.

We now define the notion of symbolic state. In addition to
a (stack) store in traditional definition (e.g. in [12]), we also
track a (symbolic) “heap store”.

Definition 1 (Symbolic State): A symbolic state s is a tuple
〈`,σ,µ,Π〉, where `∈ Σ is the current program point, the store
σ is a map from program variables to terms, the heap store µ
is a map from addresses to terms, and the path condition Π is

a first-order formula over the symbolic inputs that the inputs
must satisfy in order for the execution to reach the current
state. �

Let Ω denote an empty map. Given a map M, let dom(M)
be the domain of M. From Definition 1, for every symbolic
state 〈`,σ,µ,Π〉, Vars≡ dom(σ). Let M[key 7→ val] denote the
most basic operation of a map: if key does not exist in M,
it will be added; and then the associated value for key in M
is set to val. We also define the binary relation v between
maps as follows: M1 vM2 if dom(M1)⊆ dom(M2) and ∀x ∈
dom(M1) ·M1(x)≡M2(x).

The evaluation JeKµ
σ of an expression e with the stores σ

and µ is defined in a standard way. (Note that our expressions
have no side-effects. Calls to system functions must be treated
differently, such as in the case of malloc.) For example,
JvKµ

σ = σ(v) (if v is a program variable), JcKµ
σ = c (if c is

an integer), Je1 ♦b e′2K
µ
σ = Je1K

µ
σ ♦b Je2K

µ
σ (where e1,e2 are

expressions and ♦b is a binary operator), and Jload(e)Kµ
σ =

µ(JeKµ
σ). The notion of evaluation is extended for a set of

constraints in an intuitive way.
A symbolic state s≡ 〈`,σ,µ,Π〉 is called infeasible if Π is

unsatisfiable. Otherwise, the state is called feasible; symbolic
execution is possible from a feasible state only.

Definition 2 (Transition Step): Given a transition system
〈Σ, `start,−→〉 and a feasible symbolic state s≡ 〈`,σ,µ,Π〉, the
symbolic execution of transition `

stmt−−→ `′ returns a successor
state 〈`′,σ′,µ′,Π′〉 where σ′,µ′,Π′ are computed as in Table II.

�

stmt σ′ µ′ Π
′

v := input() σ[v 7→ i] µ Π

where i is a fresh (logical) variable

v := e σ[v 7→ JeKµσ] µ Π

store(e1,e2) σ µ[Je1K
µ
σ 7→ Je2K

µ
σ] Π

assume(e) σ µ Π∧ JeKµσ
v := malloc(c) σ[v 7→ a] µ[a 7→]· · · [a+c/4−1 7→] Π

where a is the address returned from concretely executing malloc(c)

TABLE II
OPERATIONAL SEMANTICS FOR SYMBOLIC EXECUTION

Let s0 ≡ 〈`start,Ω,Ω, true〉 be the initial symbolic state. A
symbolic path s0→ s1 · · ·→ sm is a sequence of symbolic states
such that ∀1≤ i≤ m, si is a successor of si−1.

We can now define symbolic exploration as the process of
constructing a Symbolic Execution Tree (SET) rooted at s0.
In accordance to some search strategy, the order in which
the nodes are constructed can be different. For bounded
verification and testing, we assume the tree depth is bounded.

The reachability of an error statement indicates a bug.
Symbolic execution typically stops the path and generates
a failed test case witnessing that bug. On the other hand, a
path safely terminates if we reach a halt statement, and we
also generate a passed test case. We prove a program is safe
by showing that no error statement is reached. A subtree is
called safe if no error statement is reached from its root.

IV. ABSTRACTION LEARNING VIA INTERPOLATION

Naively enumerating the Symbolic Execution Tree (SET)
will not scale. In symbolic exploration, we would like to prune
away those states that guarantee to not lead to “any unknown
error”. We discuss simple state subsumption in Section IV-A
first, then we will discuss interpolation in Section IV-B.
Section IV-C shows that a straightforward adaptation of “lazy
annotation” does not work. Our solution will be presented
afterward.

A. Subsumption between States
Definition 3 (Concrete State): A concrete state cs is a tuple
〈`,S,H〉, where ` ∈ Σ is the current program point, the stack
S is a map from program variables to (concrete) values, and
the heap H is a map from addresses to values. �

Definition 4 (Subsumption of Concrete States): Given two
concrete states cs1 ≡ 〈`,S1,H1〉 and cs2 ≡ 〈`,S2,H2〉, we say
cs1 subsumes cs2 if S1 v S2 and H1 v H2. �

The implication of “cs1 subsumes cs2” is that if the ex-
ecution of a program fragment starting from cs1 is error-
free, then the executing the same fragment starting from cs2
will also be error-free. (Another interpretation: the execution
with cs1 contains more undefined and erroneous behaviors
than the execution with cs2.) We also remark that because
Vars≡ dom(S1)≡ dom(S2), S1 v S2 simply means S1 ≡ S2.

Given a feasible symbolic state s ≡ 〈`,σ,µ,Π〉 that is
reachable from s0 via a sequence of transitions π, let θ be
a satisfying assignment of symbolic variables Ĩ for the path
condition Π, i.e. JΠKθ ≡ true. Let JsKθ denote the concrete
state cs≡ 〈`,S,H〉, where S≡ JσKθ and H ≡ JµKθ. Then cs is
the concrete state resulting from executing the state Js0Kθ (via
the same sequence of transitions π).

We are now ready to define the notion of subsumption for
two symbolic states.

Definition 5 (Subsumption of Symbolic States): Given two
symbolic states s1 ≡ 〈`,σ1,µ1,Π1〉 and s2 ≡ 〈`,σ2,µ2,Π2〉, we
say s1 subsumes s2, denoted by s2 |= s1, if for each satisfying
assignment θ2 of Π2, there exists a satisfying assignment θ1
of Π1 such that Js1Kθ1 subsume Js2Kθ2 . �

Of course in practice we will not enumerate all the satisfying
assignments for Π2 and Π1 to perform the subsumption check.
Instead, we make use of a symbolic solver. Let Ĩ1 and Ĩ2 be the
symbolic variables denote the inputs for s1 and s2 respectively,
then the subsumption check is equivalent to the validity of the
following formula:

∀Ĩ2

Π2⇒∃Ĩ1

Π1 ∧
dom(σ1)⊆ dom(σ2) ∧
dom(µ1)⊆ dom(µ2) ∧
∀x ∈ dom(σ1) · (σ1(x) = σ2(x)) ∧
∀a ∈ dom(µ1) · (µ1(a) = µ2(a))

 (3)

By construction we always have dom(σ2)≡ Vars which by
default will cover the store in s1, thus the constraint dom(σ1)⊆
dom(σ2) can be dropped.

Proposition 1: The subsumption condition in Definition 5
and the validity of the formula (3) are equivalent. �

B. Interpolation for Verification vs. Testing

Relying on state subsumption alone is not enough. It is
because different symbolic states that share the same program
point might be significantly different, e.g., due to different
increments as in the modified version of Figure 1. On the
other hand, abstraction learning, has demonstrated significant
speedup in verification and testing, e.g., [8], [9], [12], [15].
The intuitive idea is as follows.

In exploring the SET, an interpolant Ψ of a state s is an
abstraction of it, which ensures the safety of the subtree rooted
at that state. In other words, if we continue the execution with
Ψ instead of s, we will not reach any error.

Upon encountering a state s of the same program point as s,
i.e., s and s̄ have same set of emanating transitions, if s |= Ψ,
then continuing the execution from s will not lead to any error.
Consequently, we can prune the subtree rooted at s.

Interpolants are computed recursively from bottom up. We
now describe the form of our interpolants and the base cases.

Suppose we have a symbolic state s ≡ 〈`,σ,µ,Π〉. In this
paper, an interpolant Ψ for s is of the same form as a symbolic
state. That is, we compute Ψ≡ 〈`, σ̄, µ̄,Π̄〉 where σ̄v σ, µ̄v µ,
and Π =⇒ Π̄, yet Ψ satisfies the requirement that it ensures
the safety of the subtree rooted at s. It is important to note
that the check if an interpolant subsumes a symbolic state, can
simply follow the Definition 5 and formula (3).
Safely terminated state: If s halts normally, the interpolant
is simply 〈`,Ω,Ω, true〉.
Infeasible state: Given the transition t ≡ `

stmt−−→ `′ executing
it from s results in a successor state s′ that is infeasible. (stmt
must be an assume statement.) Then 〈pc′,Ω,Ω, f alse〉 is an
interpolant of s′.
Error state: The treatment of error states differs for ver-
ification and testing. When an error statement is reached,
the verification task fails and we will generate a test case
witnessing the bug and then terminate the exploration process.
However, in testing (and test case generation), we cannot
simply stop at the first error path. For the purpose of this
paper, the interpolant for an error state is simply 〈`,Ω,Ω, true〉.
The consequence is that we will not generate error paths
duplicating the same error location. (This is what typical
testers such as KLEE will do, because in general there could be
exponentially many paths leading to the same error location.)

Interpolants are propagated backward in the same manner as
how the “weakest” precondition is computed. More formally,
let pre(t,Φ) denote the precondition of the transition t wrt. the
postcondition Φ, then the interpolant Ψ of state s is computed
as follows:

Ψ := true
foreach successor si of s wrt. transition ti

Let Ψi be the computed interpolant for si
Ψ := Ψ∧ pre(ti,Ψi)

We elaborate on our implementation of pre(,) in Section V.

C. Interpolation with Heaps

Let us revisit the first motivating example in Figure 1 (with
MAX = 30). Let s1 ≡ 〈`,σ1,µ1,Π1〉 and s2 ≡ 〈`,σ2,µ2,Π2〉 be
two symbolic states at program point 〈3〉, i.e., right before
the assertion. Also assume that we visit s1 before s2 in our
exploration.

Even though s1 and s2 are very much similar, subsumption
cannot happen because malloc returned different sequence of
addresses in the two paths, thus the domains of µ1 and µ2 are
different. In other words, there do not exist θ1 and θ2 such
that Jµ1Kθ1 v Jµ2Kθ2 .

If interpolation is enabled, let n0 be the symbolic input
(that n holds) and a be a concrete address returned by the
last malloc, then an interpolant for s1 can be:

Ψ≡ 〈`,{n 7→ n0,y 7→ a},{a 7→ n0 +30}, true〉.
For the same reason, this interpolant will not subsume s2
either. That is, s2 |= Ψ does not hold. In particular, in s2, y is
mapped to a different address, returned by a different call to
malloc, thus dom(µ2) contains that address instead of a.

We now present our new treatment for malloc, which is
foundational to enable heap interpolation. Essentially, the
semantics of malloc is precisely captured using symbolic
addresses.

Definition 6 (Transition Step for malloc): Given a feasible
symbolic state s ≡ 〈`,σ,µ,Π〉, the symbolic execution of

transition `
malloc(c)−−−−−→ `′ returns a successor state 〈`′,σ′,µ′,Π′〉

where σ′,µ′,Π′ are computed as follows:
• σ′ := σ[v 7→ a]
• µ′ := µ[a 7→] . . . [a+ c/4−1 7→]
• Π

′ := Π∧dom(µ′) = [a,a+ c/4−1]]dom(µ)
where a is a fresh symbolic variable. �

The key change is that instead of using a concrete address
returned by a system call to malloc, we use a fresh symbolic
variable. We also add into the path condition the constraints
specifying that the newly-allocated region is separated from
the domain of the old heap store µ and the new domain of the
new heap store include both of them. We use the notation]
to succinctly represent these constraints.

Side Remarks: Firstly, separation constraints of m allocated
“regions”, denoted by [a1,b1] . . . [am,bm], can be easily en-
coded by simple arithmetic constraints such as ai > b j ∨a j >
bi. The size of such a formula is quadratic to the number
of allocations in a path. Secondly, to be faithful to possible
side-effects, we also invoke malloc and record the returned
address value. Yet the value is neither used for interpolating
nor subsumption checking.

Note that our new treatment for malloc introduces another
set of logical variables, denoted by Ã, representing the sym-
bolic addresses capturing what were returned from calling
malloc. So in the check of whether an interpolant subsumes a
symbolic state using formula (3), the set of quantified variables
also includes Ã. We relegate to Section V to discuss how we
implement such check using a standard solver.

We now conclude the section with a formal statement about
our pruning using interpolation.

Theorem 1: Given a symbolic state s̄ and an interpolant Ψ

such that s̄ |= Ψ, then the expansion of s̄ will not lead to any
(unknown) errors, i.e. pruning s̄ is sound. �

V. TRACER-X: DESIGN AND IMPLEMENTATION

Our system TRACER-X [17] combines TRACER [11], [12]
and KLEE [3]. KLEE is a well-developed DSE tool, and
TRACER was a test bed for path pruning in DSE using the
lazy annotation method. The first goal of TRACER was to have
both DSE and pruning. The current implementation TRACER-X
first improved TRACER by building on top of KLEE, thereby
inheriting its C++/C and LLVM applicability, and its efficiency
for DSE. The main contribution of TRACER-X however is
to implement symbolic states which accurately describe dy-
namically changing heaps, and an interpolation algorithm for
reasoning about such states.

Reusing the infrastructure of KLEE implies that our sym-
bolic execution needs to track more details, thus going beyond
Section III, whose purpose was to present the background
for symbolic execution when heap memory is involved. For
example, to detect buffer overflow errors, each pointer variable
is also associated to a base address of an allocated memory
region that it is supposed to point to. Assignment of pointers
will also pass such base address around. Buffer overflow is
detect if we dereference a pointer whose value goes over (or
under) the addresses of the associated region.

In the following, we will focus on the two key imple-
mentation features, which concern the how interpolants are
propagated backward and the subsumption check. Finally, we
will illustrate using the motivating example in Figure 1.

A. Backward Propagation of Interpolants

We have presented the base cases in Section IV, here we
describe how an interpolant is propagated from a child node
to its parent. Suppose executing a transition t ≡ `

stmt−−→ `′ from
a symbolic state s≡ 〈`,σ,µ,Π〉 results in state s′.

We start with the case where s′ is infeasible. Thus stmt
must be an assume statement, denoted by assume(e). Then
〈pc′,Ω,Ω, f alse〉 is an interpolant of s′.

Recalling how an assume statement is executed, we have
s′ ≡ 〈`′,σ,µ,Π∧ JeKµ

σ〉. So we can compute 〈`, σ̄, µ̄,Π̄〉 ≡
pre(t,〈pc′,Ω,Ω, f alse〉), as follows:
• Π̄ is the first-order interpolant as in [9], [8] such that

Π =⇒ Π̄ and Π̄∧JeKµ
σ =⇒ f alse; we compute Π̄ simply

from the unsatisfiability core of the infeasibility proof of
Π∧ JeKµ

σ.
• σ̄v σ that includes only the individual mappings used in

the evaluation of JeKµ
σ.

• µ̄v µ that includes only the individual mappings used in
the evaluation of JeKµ

σ.
For the general case, assume that we already have an

interpolant Ψ for a state s′ . The computation of pre(t,Ψ)
can now be described as a relaxation of s by means of:

• (“Deletion”) deleting any individual key-value pair in
σ,µ, and any constraint in Π that Ψ does not depend
on. This can be assisted by constructing a “dependency
graph” during symbolic execution.

• (“Slackening”) generalizing any equation of the form v=
e in Π, where v is a variable and e an expression, to
become an inequality. That is, to become of the form
v≤ e′ or v≥ e′ as appropriate – where e′ is derived from e
by changing some constants in e – such that the resulting
state still implies the weakest precondition of t wrt. Ψ.
Similarly for a key-value pair (v,e) in σ,µ, it can be
replaced by a pair (v, f v) where f v is a fresh logical
variable and a constraint f v≤ e′ or f v≥ e′ can be added
to the path condition as appropriate.

B. Subsumption

Another key implementation feature concerns subsumption,
as in Definition 5. More precisely, we wish to determine if one
symbolic state s2 implies another s1 (this latter being an inter-
polant), as in (3). Our objective is to transform the entailment
problem, which has existential quantifiers consequent (∃Ĩ1Ã1)
so that it can be effectively solved by a standard solver (in our
case, Z3).

Implementing a perfect transformation is challenging. But
in practice what we require is not a complete solution to the
subsumption check, which is invoked at almost every step
of symbolic execution, but an opportunistic approach using
a cheaper (though incomplete) algorithm whose cost is not
significantly more than linear. Toward this goal, TRACER-X
implements the following. In the formula (3): replace each
variable a1 ∈ Ã1 by a variable a2 ∈ Ã2 and replace each variable
i1 ∈ Ĩ1 by a simple expression on some variables in Ĩ2. Then
we can remove the existential quantification on a1 and i1.

Essentially, this means to transform an entailment of the
form ∀i2 ·F2 |= ∃i1 ·F12 into F2 |= F12[i2/i1] where F12[i2/i1]
denotes the result of substituting out i1 with an expression
of i2 in F12. This process is repeated until the consequent
contains no more existential logical variables (symbolic inputs
and symbolic addresses). The resulting entailment can then be
solved by a quantifier-free solver.

Let us focus the discussion on symbolic addresses. The big
(and remaining) question is, of course, how to determine, given
a1, which variable amongst Ã2 is a2? Our algorithm performs
“matching” as follows:
• We make use of the equations ∀x ∈ dom(σ1) ·σ1(x) =

σ2(x) and start with the program variables x ∈ dom(σ1)
to perform each binding between σ1(x) and σ2(x) which
will necessarily match some a1 ∈ Ã1 with some a2 ∈ Ã2.

• For those already matched a1 ≡ a2 we follow the pointer
chain, making use of the equations ∀a ∈ dom(µ1) ·
µ1(a) = µ2(a) to further match µ1(a1) with µ2(a2). The
process is repeated until: (a) a conflict is detected (sub-
sumption check fails); (b) all the variables a1 ∈ Ã1 have
been matched; or (c) a fixpoint has been reached.

This method is not complete, that is, it may not be able to
eliminate all the logical variables Ĩ1 and Ã1 in the consequent.

σ : Ω
µ : Ω

Π : true

〈1〉
σ : n 7→ n0, x 7→ x0 , y 7→ , i 7→ 0

µ : x0 7→ n0

Π : dom(µ) = [x0, x0]

〈2〉-1

σ : n 7→ n0, x 7→ y1 , y 7→ y1, i 7→ 1

µ : x0 7→ n0, y1 7→ n0 + 1

Π : dom(µ) = [x0, x0] ⊎ [y1, y1]

〈2〉-2

σ : n 7→ n0 , x 7→ y2, y 7→ y2

µ : x0 7→ n0, y1 7→ n0 + 1, y2 7→ n0 + 2

Π : dom(µ) = [x0, x0] ⊎ [y1, y1] ⊎ [y2, y2]

〈3〉
σ : n 7→ n0, x 7→ z2, y 7→ z2

µ : x0 7→ n0, y1 7→ n0 + 1, z2 7→ n0 + 2

Π : dom(µ) = [x0, x0] ⊎ [y1, y1] ⊎ [z2, z2]

〈3〉

σ : n 7→ n0, x 7→ z1, y 7→ z1, i 7→ 1
µ : x0 7→ n0, z1 7→ n0 + 1

Π : dom(µ) = [x0, x0] ⊎ [z1, z1]

〈2〉-2Subsume

Subsume

Fig. 3: Symbolic Execution Tree (SET) with Pruning

However, as we will show in our experimental evaluation, this
method seems to be sufficient in practice.

C. Motivating Example Revisited

For presentation purposes, we use the reduced MAX = 2
and only show in Figure 3 an extract of the SET for relevant
program points, namely 〈1〉, 〈2〉, and 〈3〉. For simplicity, we
also perform static unrolling of the loop before building the
SET2, leading to two different versions of program point 〈2〉,
namely 〈2〉-1 and 〈2〉-2 in the Figure.

For this example, the path condition only contains the
constraints enforcing that the allocated memory regions are
separated. Now consider the state at program point 〈3〉 in the
leftmost path, right before the assertion *y >= MAX + n. The
validity of the assertion is proved by showing that:
• σ(y) 6∈ dom(µ) contradicts the path condition. This im-

plies that the dereference *y is memory safe. This proof
leads to the fact that the learned interpolant must retain
the constraint specifying that the domain of µ includes
[y2,y2] and the pair (y 7→ y2) in σ.

• executing assume(load(y) < 2 + n) will result in an
infeasible state. Note that the assertion will be compiled
explicitly to assume and error transitions. This proof
leads to the fact that the learned interpolant must also
retain the pair (n 7→ n0) in σ and (y2 7→ n0 +2) in µ.

The combined interpolant is presented by putting the retained
mapping and constraint in boxes (and also in blue color).

Now consider the neighbor path reaching the same program
point 〈3〉. At this state, y is holding the value of a symbolic
address z2. In order to perform the subsumption check, using
the previously computed interpolant, we need to first eliminate
the existential variable y2. Note that the subsumption condition
requires the current store σ ≡ n 7→ n0,x 7→ z2,y 7→ z2 must
contain the pairs (n 7→ n0) and (y 7→ y2). This forces us to
match y2 with z2. Subsequently, the subsumption check holds,
thus we don’t need to expand this state further.

Finally, we remark on how the interpolant at 〈2〉-2 is
computed: by first simply retaining the pairs and constraints
that the computation of the pairs and constraints in its children
interpolants depends on. Additionally, we also need to retain

2Otherwise there will be infeasible paths caused by the loop counter i.

the information that guarantees the safety of transiting from
the current state to its children. Specifically, (x 7→ y1) and
[y1,y1] are kept in σ and Π respectively because variable x
is dereferenced going from 〈2〉-2 to 〈3〉.

VI. EXPERIMENTAL RESULTS

We use a small collection of programs. Our first group of
two are our academic motivating example in Figure 1, and
the regexp (from KLEE tutorial 2 [18]) in Figure 2. The
next group comprises three programs basename, cut and
pathchk from the GNU Coreutils 6.10 benchmark. Finally,
our last group comprises two substantial programs statemate
and nsichneu from the Mälardalen WCET benchmark [19].
These latter two programs are specifically chosen because they
exhibit many infeasible paths, and therefore represent a big
challenge for symbolic execution. (In fact, existing specialized
WCET algorithms struggle to analyze these programs pre-
cisely [14].) The target property for all runs is memory safety
of pointer dereferences (which is automatic in KLEE). We use
a DFS search strategy, justified because our experiments are
to explore the entire search space.

For each program, we consider a small, medium and large
versions of the underlying size parameter (typically an array
bound), to demonstrate complexity. In our motivating example,
these three values for MAX are 9, 18 and 27. For regexp, we
use a fixed SIZE of 7, while varying the length of the constant
string, displayed as ‘‘hello’’ in Figure 2, by symbolic
strings of length 4, 5 and 6. Recall that in regexp, the number
of paths is exponential in the bound. Therefore any non-
pruning system will be limited to small problems.

We note that in the Coreutils programs, we were unable to
run LLBMC on basename, because it erroneously reports a
safety violation and terminates early. In the cut example, the
breakdown into small or medium or large is not appropriate for
LLBMC because these numbers pertain to the size of symbolic
file, and this cannot be adjusted in LLBMC.

The results need little elaboration. One noteworthy point
is in the small version of pathchk, KLEE is faster than
TRACER-X, but then loses in larger versions of the prob-
lem. This is explained by the throughput (rate of LLVM
instructions emulated) of KLEE, which is much faster than
that of TRACER-X (since it does not compare paths). But as
the experiments show, the exploration space is much larger
for KLEE (across all programs and not just these Coreutils
programs), and therefore pruning is eventually more effective.

Finally, on nsichneu, statemate, we do not consider
various size instances because they use data structures of a
fixed size.

We use Linux boxes with 16GB RAM and Intel Core i5 3.20
GHz for the Coreutils problems and i7 2.60 GHz for the others.
In Table VI, the performance of KLEE and TRACER-X for each
run is a pair: time in seconds (s), and number of instructions
(i) executed. For LLBMC, we only report the running time. A
one-hour timeout is indicated by ∞.

PROG. TOOL SMALL MEDIUM LARGE

malloc L 2.2s 3004.7s ∞

(Motivating K 0.2s 1.1e4i 25.33s 5.5e6i ∞

example) T 0.03s 403i 0.03s 817i 0.05s 1231i

regexp L ∞ ∞ ∞

K 228.9s 7.5e6i ∞ ∞

T 1.1s 2.9e4i 2.9s 6.3e4i 10.8s 1.3e5i

basename L error error error
K 383.9s 3.8e8i 2797.4s 2e9i ∞

T 39.4s 1.2e6i 40.4s 1.2e6i 48.9s 1.4e6i

cut L 299.06s

K 293.1s 1.3e8i 489.7s 2.9e8i 860.9s 6.5e8i

T 28.3s 2.7e5i 24.3s 1.7e5i 27.1s 2.3e5i

pathchk L 390s ∞ ∞

K 139.11s 1.5e8i 291.47s 3.1e8i 2366.3s 2.4e9i

T 274.81s 3.1e6i 433.51s 3.8e6i 1268.7s 7.3e6i

statemate L 412.56s

K 600.3s 1.7e7i

T 0.1s 4135i

nsichneu L 25.99s

K 2247.9s 4.9e6i

T 11.4s 3711i
TABLE III

EXPERIMENTAL RESULTS. L=LLBMC, K=KLEE, T=TRACER-X

The main point of our small experimental evaluation is to
show that there are significant programs for which Tracer-X
demonstrates an advance in performance by a large margin.

Limitations and Future Work: First, we remark that there
exist other Coreutils benchmarks that KLEE and TRACER-X
can run but both timeout. In other words, none achieves
search space exhaustion. We do not include those benchmarks
because no conclusive interpretation can be drawn, essentially
due to the lack of good metrics to quantify the “path coverage”
of a pruning system with lazy annotations (TRACER-X) vs. a
non-pruning system (KLEE). This is left as future work.

Second, “symbolic array indices” always pose a problem for
symbolic execution of heap-manipulating programs. This topic
is left out in the paper. While we simply inherit the solution
of KLEE in forward symbolic execution, symbolic indices, in
general, can make our subsumption check ineffective. This is
because under the existence of symbolic indices, subsumption
checking includes the potentially hard problem of checking
graph homomorphism. This is also an interesting topic for
future work.

VII. FURTHER RELATED WORK

Abstraction learning in symbolic execution has its origin
in [8], and is also implemented in the TRACER system [11],
[12]. TRACER implements two interpolation techniques: us-
ing unsatisfiability core and weakest precondition (termed
postconditioned symbolic execution in [20]). Systems that
use unsatisfiability core and weakest precondition respectively
include Ultimate Automizer [21], and a KLEE modification
reported in [20]. The use of unsatisfiability core results in
an interpolant that is conjunctive for a given program point

and therefore requires less performance penalty in handling.
In contrast, weakest precondition might be more expensive to
compute, yet logically is the weakest interpolant, hence its use
may result in more subsumptions.

Abstraction learning is also popularly known as lazy annota-
tions (LA) in [9], [10]. In [10] McMillan reported experiments
on comparing abstraction learning with various other ap-
proaches, including property-directed reachability (PDR) and
bounded model checking (BMC). He observed that PDR, as
implemented in Z3 produced less effective learned annotations.
On the other hand, BMC technology, e.g. [22], [7], [23], [24],
employs as backend a SAT or SMT solver, hence it employs
learning, however, its learning is unstructured, where a learned
clause may come from the entire formula [10]. In contrast,
learning in LA is structured, where an interpolant learnt is a
set of facts describing a single program point.

Recently Veritesting [25] leveraged modern SMT solvers
to enhance symbolic execution for bug finding. Basically, a
program is partitioned into difficult and easy fragments: the
former are explored in DSE mode (i.e., KLEE mode), while
the latter are explored using SSE mode with some power of
pruning (i.e., BMC mode). Though this paper and veritesting
share the same motivation, the distinction is clear. First, our
learning is structured and has customizable interpolation tech-
niques. Second, we directly address the problem of pruning in
DSE mode via the use of symbolic addresses. In contrast, there
will be program fragments where Veritesting’s performance
will downgrade to naive DSE, e.g. our motivating examples.
In summary, we believe that our proposed algorithm can also
be used to enhance Veritesting.

Our approach is also slightly related to various state merging
techniques in symbolic execution, in the sense that both
state merging and abstraction learning terminates a symbolic
execution path prematurely while ensuring precision. State
merging encodes multiple symbolic paths using ite expres-
sions (disjunctions) fed into the solver. The article [26] shows
that state merging may result in significant degradation of
performance, which hints that complete reliance on constraint
solver for path exploration, as with the bounded model check-
ers (e.g., CBMC, LLBMC), may not always be the most
efficient approach for symbolic execution. [16] proposes a
symbolic execution that is based on KLEE, addressing two
problems of state merging: degradation of performance due
to solver having to deal with disjunctions, and inability to
control search strategy (the strategy is dictated by the solver’s
implementation), respectively using heuristics.

REFERENCES

[1] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in 26th PLDI. ACM, 2005, pp. 213–223.

[2] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in 10th ESEC/13th SIGSOFT FSE. ACM, 2005, pp. 263–272.

[3] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in 8th OSDI. USENIX Association, 2008, pp. 209–224.

[4] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” Comm. ACM, vol. 59, no. 6, pp.
93–100, 2016.

[5] L. de Moura and H. Rueß, “Lemmas on demand for satisfiability
solvers,” in 5th SAT, 2002.

[6] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in 10th TACAS, ser. LNCS, vol. 2988. Springer, 2004, pp.
168–176.

[7] “LLBMC: introduction,” Mar. 2012. [Online]. Available: http://llbmc.
org/

[8] J. Jaffar, A. E. Santosa, and R. Voicu, “An interpolation method for
CLP traversal,” in 15th CP, ser. LNCS, vol. 5732. Springer, 2009, pp.
454–469.

[9] K. L. McMillan, “Lazy annotation for program testing and verification,”
in 22nd CAV, ser. LNCS, vol. 6174. Springer, 2010, pp. 104–118.

[10] ——, “Lazy annotation revisited,” in 26th CAV, ser. LNCS, vol. 8559.
Springer, 2014, pp. 243–259.

[11] J. Jaffar, J. A. Navas, and A. E. Santosa, “Unbounded symbolic execution
for program verification,” in 2nd RV, ser. LNCS, vol. 7186. Springer,
2011, pp. 396–411.

[12] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa, “TRACER: A
symbolic execution tool for verification,” in 24th CAV, ser. LNCS, vol.
7358. Springer, 2012, pp. 758–766.

[13] D. Chu and J. Jaffar, “A complete method for symmetry reduction in
safety verification,” in 24th CAV, ser. LNCS, vol. 7358. Springer, 2012,
pp. 616–633.

[14] D. Chu, J. Jaffar, and R. Maghareh, “Precise cache timing analysis via
symbolic execution,” in 2016 RTAS. IEEE, 2016, pp. 293–304.

[15] J. Jaffar, V. Murali, and J. Navas, “Boosting concolic testing via
interpolation,” in 21st FSE, 2013, pp. 133–143.

[16] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” in 33rd PLDI. ACM, 2012, pp. 193–
204.

[17] “Tracer-X KLEE symbolic virtual machine,” 2017. [Online]. Available:
https://github.com/tracer-x/klee/tree/experiment-201705

[18] “Testing a simple regular expression library,” 2017. [Online]. Available:
http://klee.github.io/tutorials/testing-regex/

[19] “Mälardalen WCET research group benchmarks.” [Online]. Available:
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

[20] Q. Yi, Z. Yang, S. Guo, C. Wang, J. Liu, and C. Zhao, “Postconditioned
symbolic execution,” in 8th ICSP. IEEE, 2015, pp. 1–10.

[21] M. Heizmann, J. Christ, D. Dietsch, J. Hoenicke, M. Lindenmann,
B. Musa, C. Schilling, S. Wissert, and A. Podelski, “Ultimate automizer
with unsatisfiable cores - (competition contribution),” in TACAS ’14, ser.
LNCS, vol. 8413. Springer, 2014, pp. 418–420.

[22] L. Cordeiro, J. Morse, D. Nicole, and B. Fischer, “Context-bounded
model checking with ESBMC 1.17,” 2012, contribution to SV-COMP
at TACAS 2012.

[23] E. M. Clarke, D. Kroenig, N. Sharygina, and K. Yorav, “SATABS: SAT-
based predicate abstraction for ANSI-C,” in 11th TACAS, ser. LNCS, vol.
3440. Springer, 2005, pp. 570–574.

[24] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith, “FShell: system-
atic test case generation for dynamic analysis and measurement,” in 20th
CAV, ser. LNCS, vol. 5123. Springer, 2008, pp. 209–213.

[25] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in ICSE. New York, NY, USA:
ACM, 2014, pp. 1083–1094.

[26] T. Hansen, P. Schachte, and H. Søndergaard, “State joining and splitting
for the symbolic execution of binaries,” in 9th RV, ser. LNCS, vol. 5779.
Springer, 2009, pp. 76–92.

