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Abstract—The security and privacy risks posed by smartphone  Accelerometers are a particularly interesting case becafis
sensors such as microphones and cameras have been well docutheir pervasiveness ina |arge assortment of personai‘eﬂa’ct
mented. However, the importance of accelerometers have beendevices including tablet PCs, MP3 players, and handheld gam

largely ignored. We show that accelerometer readings can be . devi Thi f devi id | twork f
used to infer the trajectory and starting point of an individual Ing devices. This array O devices provides a large networ

who is driving. This raises concemns for two main reasons. Spyware to exploit.
First, unauthorized access to an individual's location is a serious  Furthermore, by correlating the accelerometer readings be

invasion of privacy and security. Second, current smartphone tyeen multiple phones it is possible for an adversary to de-

operating systems allow any application to observe accelerometer yo ine \whether the phones are in close proximity. Because
readings without requiring special privileges. We demonstrate tha ;

accelerometers can be used to locate a device owner to within aPhones undergoing similar motions can be identi ed by their
200 meter radius of the true location. Our results are comparable accelerations, events such as earthquakes or even everyday

to the typical accuracy for handheld global positioning systems. activities like public transportation (e.g., bus, traimbway)
produce identi able motion signatures that can be coreglat
|. INTRODUCTION with other users. As a consequence, if one person grants GPS

access, or exposes their cellular or Wi-Fi base statiom, tiney

Location privacy has been a hot topic.in recent news aftere'ésentially expose the location of all nearby phones, assum
was reported that Apple, Google, and Microsoft collect rdso o adversary has access to these devices.

of the location of customers using their mobile operating-sy
tems [12]. In some cases, consumers are seeking compensaéi,ga

n C'V.'I suits agalnst_the companies [8]. Xu and Teo aisy trajectory output. This is because the idiosynceasie
that, in general, mobﬂg phone users express Iowe_r levels r8£ldways create globally unique constraints. Dead reokpni
poncern_about privacy if they control access to their pEHISOrlcan be used to track a user's location long after locationices
mform ation. Additionally, users expect their smartpherte have been disabled [6]. But as we show, the accelerometer can
provide such a Ieyel of.contr.ol [20]. be used to infer a location with no initial location inforritat.
There are situations in which people may want to broadcagis s a very powerful side-channel that can be exploiteghev
their location. In fact, many social networking applicaoin- it |scation-based services on the device are disabled.
corporate location-sharing services, such as geo-taggiotps b) Threat Model: We assume that the adversary can

and status_ updates,_or checking in to a location with friendeS).(ecute applications on the mobile device, without any ispec
However, in these instances, users can control when thgllrvileges except the capability to send information oves t

location is shared and with whom. Furthermore, users espr wetwork. The application will use some legitimate reason to

g]need f1;or e(tjnbeven ncf:cir setF of I(r)]ca_tlon-prl\f_ac;{_ settings thobtain access to network communication. This is easily meco
ose offered by current location-sharing applicatior}s{Eer .plished by mimicking a popular application that many users

concerns over location-privacy are warranted. Websitks “download; e.g., a video game. In the case of a game, network

Plelasle R,f.)b l\ile ur;dgrscore Ehe p50 te_lr_1rt1|al (t:iaggerssc: meégos'gccess would be needed to upload high scores or to download
one’s location to malicious parties [5]. The study pre '€ advertisements. We assume that the OS is not compromised,

dﬁ\r;?gsi:gﬁﬁazoﬂear violation of user control over se E‘Smso that the malicious application simply executes as a atand
P : application. The application can communicate with an exter

, , server to leak acceleration information. Based on the kbake
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either express or implied, of ARO, CMU, Google, NSF or the G8vernment  general approach that we take is to rst derive an approxémat
or any of its agencies. motion trajectory given acceleration measurements—whieh
978-1-4673-0298-2/12/$31.00 2012 IEEE discuss inxll. We then correlate that trajectory with map

a) Contributions: Our key insight is that accelerometers
ble the identi cation of one's location despite a highly
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j By using the ProblIN statistical model, these observations
are directlymappedto the displacement of the vehicle
(Figure 2).
2) The standard dead reckoning approaches calculate the
displacement deterministically from the sensor readings.

Fig. 1. System architecture #{CComplice

information to infer the location—which we discuss xhl. ProbIN frames displacement estimation as a probabilistic

Figure 1 depicts the overall system architecturexivi, we process, where a sensor reading can correspond to many

present our experimental results. We provide further disicuns displacements with different probabilities. ProbIN uses

in XV, a discussion of related works VI, and conclude in a Bayesian framework to combine the translation model

xVII. and the trajectory model in order to search for the optimal
trajectory.

Il. BACKGROUND: TRAJECTORYINFERENCE

The section provides a background description of the t{aje§ s :
. Quantizing Sensor Readings
tory inference model. First, we discuss a statistical ne:tton Q g g

translating sensor samples to displacements. Next, wemtres T0 simplify the model and to make the computation ef cient,
a statistical model for inferring trajectories. we rst convert the continuous space to the discrete space by
) o guantizing the sensor readings and the displacement space.

A. Displacement Estimation

We show that a sequence of motion sensor readings can 4
be used to generate an estimation of the motion trajectory of 202
the handset. We use a probabilistic dead reckoning method )
called Probabilistic Inertial Navigation (ProbIN). In oprior 0.4
work, we developed ProbIN to estimate a user's indoor locati
using inertial and magnetic sensors when GPS signals are not
available [14], [15].

Classical dead reckoning has inherent limitations when es-

timating the motion trajectory from motion sensor readings N ey U o0

The main problem igdrifting error. Drifting occurs because 10

the position of the vehicle at time depends on the positiongig 3. an example of clustering sensor readings into motidrela The
att 1, and the displacement estimated at time interval], acceleration vector measurements (in unitg of 9.81m=s?) are grouped into
t]. Drifting error aggregates over time, pushing the estedat clustersM0031,M0099 andM0059 usingk-means clustering.

trajectory further away from the truth. Even after applying
noise smoothing methods on the sensor readings, such as the
Kalman Filter [17], the estimated trajectory may be sigaintly

different than the ground truth as reported in many previous [0:08,0:40; 0:08][0:09; 0:49, 0:06][0:04, 0:16; 0:08]

works [4], [18], [14]. +
The ProbIN approach is different from the standard dead
reckoning approach in two ways: MO0099 M0099 M003%;

1) Instead of using the actual values of the sensor measure-
ments for displacement estimation, we treat the measurgy. 4.  An example of representing a sequence of sensor gsadin units
ments only as “observations” of the underlying motioref g = 9.81m=s) with a sequence of motion labels.



We cluster acceleration vectors in the training data udieg t or ‘ ‘/

standard-means clustering algorithm which resultkrclusters

(as shown in Figure 3). During the training and testing phase

an acceleration vector is rst labeled by its nearest cludtbis

motion label is later used for representing the sensor ngadi -

(as shown in Figure 4). ol
This quantization step results in loss of precision of thgiin

data as we reduce the acceleration readings from a consnuou o F

60 |

high dimension space to a one-dimensional discrete spaee. T Ei&I}ES:i: % -~

. - . i i lypothesis 3 m
reduced feature space has relatively small vocabulary(sige, s " o s o
k=200, as used in one of our experiments). Empirical results ¥

show, however, that such quantization does not affect.tlde €Rig. 5. An example of trajectory hypotheses with the highasbability
to-end system performance. Similarly, we quantize all iadss generated by the decoder (in meters)

displacements seen in the training data, for the sampling ti

interval, Dt. In the subsequent discussion, we refer to the

quantized acceleration values and the displacement valsiegrevious displacement segments in the past, we can break dow
motion labels and displacement labels, respectively. the trajectory probabilitie®(D) down to:

L
C. ProbIN Model P(D= Dy1;Dy;:::;D1) = QP(DyjDt ne1;:::;D; 1) (4)

ProblIN builds a statistical model to map the sensor readings =1

directly to the displacement. From the training data, FNobID Training ProbIN
learns the probability of translating a displacement label ~°
to its corresponding motion lab& with probability P(MjD). Both statistical translation and trajectory models
Again, there are alternativils to translate to on® because heed to be trained in order to estima®(MjD) and

of the inherent noise in sensor data. The conditional tegiosl P(DtiDt n+1;::1;D¢ 1). If the training data is labeled (i.e., we

probabilities for a particular value d = d have to satisfy: ~ know the corresponding displacement for each sensor rgjadin
it is straightforward to calculat®(MjD) using the Maximum

é P(MiD=d)=1 (1) Likelihood Estimation (MLE) andP(DD¢ n+1;:::;Dt 1)
M using MLE with proper smoothing mechanism such as the

In addition to the translation model, ProbIN also models tH80di €d Kneser-Ney method [3]. Labeled data requires

trajectory pattern. The underlying assumption is thatetame recording the displacement corresponding to each sensor
regularities in a vehicle's trajectory and we can calcukite sample. In our case samples occur every 0.02 to 0.1 seconds

probability of a trajectory given the trained trajectory et 9€PeNding on the sampling frequency, rendering this ajproa

Intuitively, it is more likely to have a trajectory where toar 1S impractical. To solve this problem, ProbIN uses an
approximated EM algorithm to train both the translation and

drives forward and then makes a left turn than a trajectoti wi“™t o X - e

a sequence of alternating tumns (e.g., left, right, legntright). traiectory models.The main |de? of thls”s_olutlon is to triet

From the collected training data, we can build a trajectof%Splf_"Cem_ent at each time as “hidden” information. Through

model and estimate the likelihood of a trajectdywhich is a € iterative EM process, we approximate the unknown
displacement and update the model accordingly.

sequence of displacement labé&ls A ! - - .
Combined, the goal of ProbIN is to nd an optimal displace- The training data contains multiple trips of a car dr|V|_ng
ments vectod such that: normally with the smartphone constantly collecting motion
sensor data. For each trip, we record the actual starting and
D = argmaP(MjD)P(D) (2) ending positions through the GPS receiver. The traininggss
) goes through the following steps:
1) Initialize the model by assuming the sensor readings are
correct and apply a physics-based approach to estimate
D for eachM.
2) E-step: based on the current translation model and the
trajectory model, estimate the trajectory of each trip with
the constraint that the starting and ending positions of

The translation model is used to estimR@1jD). Assuming
that the translating conditional probability is indepemidand
identically distributed (i.i.d.), we can break down the dbn

s T _ the estimated trajectory match the true starting/ending
P(MjD) = O P(MjDy): ) positions.
=1 3) M-step: from estimated trajectories for all trips, updat

By assuming that the trajectories satis es the Markov as-  the translation model and the trajectory model. Go to E-
sumption that the displacement at timenly depends om 1 step. Repeat till model converges.



E. Decoding Trajectory / L \ E‘/”
Once the statistical models are trained, we can apply the </ o Jes
model on the input sensor reading sequence and decode it with Lo o/
an optimal trajectory (as shown in Figure 5). ey s ®
In the probabilistic navigation framework, each motion la- e “ - Ve d,/
bel can be translated into multiple displacement label$ wit RIS e P
different probabilities. For an input sensor reading segae of / \//
of T labels, if the average number of displacement labels
for a motion label ism then the total number of possible () (b)

: o1 :
trajectories ian' . The goal of the decoder is to search throughI 6. An example step of the map matching algorithm. (@) and @}t

. . . . . Fig.
all pOS.S-IbIe trajectories and nd the one with the highesfsfore and after steps @ is mapped to a candidate road segment.
probability P(DjM).
It is infeasible to calculateP(DjM) for each of them'
trajectories and select the best one as the output. Instead,A. Map Matching Algorithm

use a stack decoder to approximate the optimal trajectody an o, map matching algorithm maps motion trajectory points,
keep the computing time complexity linearTo After applying 1= [P, Po,..., Pu], to corresponding points on a road net-
the translation model on the input motion label sequence agg k. This matching is accomplished by mapping each motion
building a lattice, the stack decoder scans the Ia'_[tlce frol’f‘éjectory point to the best corresponding candidate sagme
left t= 1 to the end of the sequente T. At each timet, Our algorithm follows Green eld's approach for map match-
the decoder extends the partial hypotheses ftoml with g (7] py utilizing similarity measures to assign scorésan-
all possible displacements translated fravih and calculate gigate road segments. We use distance and angle as sipilarit
corresponding translation and trajectory probabilities the easures to map motion trajectory onto road segments.
augmented partial hypotheses. As tiigram trajectory model  consider the problem of matching poRitto a road segment
can only differentiate trajectory sequences that haveewifft ¢ justrated by Figure 6. Assuming that ; is mapped to a
n 1 ending displacement labels, the stack decoder only ne;@,}nt on road segmer€;, potential road segment candidates
to keep the best partial hypothesis for each trajectory inog4g; B are compared. The candidate edges are de ned as a road
endings. Also, we prune out partial hypotheses at each timgegment onto which the previous trajectory point is mapped,
if their probabilities are much worse than the best altéveat 5,4 ijts adjacent segments. In this case, in additiorCto
at this stage. segmentsC,, C3, andCy are all candidate segments. In order
to mapPR to a candidate road segment, we use two similarity
[Il. TRAJECTORYMAPPING measuresy; and S;. & is calculated using the orthogonal
h f - h _projection,d, of B to a candidate road segmei. has four
o e oo lecions o 1 possie candiat seqmer i, an
on a map. We thus demonstrate that an adversary can deo@cczrr:es g %r;?:]n%:gdesvﬁg](?[fr]gsfgﬁg\fivliiatz ssgtril:;r?ts. Spely cal
the trajectory and starting point from acceleration infation. P ged '
The mapping of a motion trajectory to a path on a map is the S=adl (5)
rst challenge we need to address. This problem is compditat
by the noise in the motion trajectory. ill-A we describe wherea is a weighting constant empirically determined to
our approach to map matching. The map matching algoritime 100.S, is calculated using the angke between a motion
outputs a score of how closely a motion trajectory matchedrajectory segment and a candidate segment by computing the
given path on the map. following:
Using the similarity score as our guide we search the map
for the best t. We follow a brute-force approach for nding S = C coga)M (6)
the starting position by computing a similarity for all stag

locations. Our predicted map location will be the one coritey tively. The rate constant N is used to vary the rate of deereés

a driving route most similar to our trajectory. S, with respect taa. The constants are determined empirically:

While this approach is computationally expensive, we malgz: 25 andN = 4. The nal score is computed by the following:
use of several constraints that reduce the number of cardida

paths. We make use of the fact that trajectories can be ugique Sroal = S+ S 7)
identi ed. For example, the inherent idiosyncrasies ofd®and otal

the fact that every turn adds an additional constraint resluc where a greateBrq5 denotes a better score for the corre-
the number of potential trajectory candidates. There areem@ponding candidate.

optimizations that can be incorporated in a sophisticatetla Based on this scoring mechanisRjs mapped to a point on
We discuss areas for optimization xv. Cs. The remaining points of the motion trajectory are realdjne

whereC andN are the weighting and rate constants, respec-
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Fig. 7. Veri cation of map matching algorithm with the knowrasting point. (a) and (b) show Experiment 2a (Pittsburgh, 8 Experiment 2b (Mountain
View, CA), respectively. The green (star) curve indicates totion trajectory obtained from ProbIN. The red (circlejve indicates the mapped points. The
blue (x-mark) curve indicates the ground truth (i.e., actoate traveled) obtained from GPS data.

to the mapped point o€z, which is depicted in Figure 6(b).
This realignment mitigates the effect of the noise inhefant DS= 5 Dist(M;: B) ®)
the motion trajectory. Nt b

To verify the results, we perform the aforementioned map ) ) ]
matching algorithm on a map with a known starting point. We Figureé 8 showsDist(M;;R) for all corresponding points
pre-processed motion paths to remove highly transieneriois Pefween the motion trajectory and the mapped points. The
the motion trajectory, which smooths the data while preagry difference scoreDS in Figure 8(a) is the sum of lengths of

key features of the trajectory. Figure 7 illustrates the mapSt(Mi;R) for all i. OnceDS is computed for each starting
matching process of a motion trajectory. point on the map, the starting points are ranked in ascending

prder because a smdllS is a good indicator that the actual

Figures 7(a) and (b) show matching procedures for EXpeand predicted paths are similar,

ment 2a and Experiment 2b, respectively. The green (stargcu

shows the motion trajectory obtained from ProbIN. The red n _the case of erroneous starting points, the map matching
(circle) curve illustrates the corresponding mapped oot algorithm can encounter a dead end or may not be able to match

a map. The blue (x-mark) curve shows the ground truth usifgY road on the map to the motion trajectory, in which case the

GPS data to validate our algorithm ap matching algorithm simply maps several motion trajgcto
' points to a single map location. Many starting points wilt no

result in any valid candidate paths, especially for longehg
B. Starting Point Prediction — we detect these cases and reject those paths.
We then take the top ten ranked points sorted in ascending

This section explains an algorithm that can be used to predigder ofDSto locate the actual starting point. Among the highly
a starting point of a trajectory by applying the map matchinginked points, the points are likely to form a few clusters of
algorithm to all points on a given map. First the trajectorgiodes that have closely matched routes with the alignecomoti
is aligned to every point on the map (each node represetitgectory. If only a few clusters on a map are found, it is an
a possible starting point). In order to determine the méstlyi indication with strong certainty that the actual startiranp is
starting point, we compare each mapped route using a toajectin one of the clusters.
difference metric (explained below). However, the motion trajectory is a noisy estimate of an

We take the rst point of the trajectoryfy, and plot all actual traveled route. Because the map matching algorighm i
candidate starting pionts. L&4; be a point on a road networktopologically sensitive, some trajectories may not be eately
that has been matched B, a point on the motion trajectory. scaled. In order to account for this fact, we stretch the omoti
We de ne Dist(M;;R) as the distance betweed; and B. trajectory and repeat the prediction algorithm. With wvdrie
Summing upDist(M;;R) from 1 to s, where s is the numbertrajectory scales, the probability of nding a valid match
of mapped points, we obtain the difference scb® given by between motion trajectory and the actual traveled routattyre
the following equation: increases. The following section provides evaluation .data
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Fig. 8. Difference Metric usindist(M;;R). (a) shows the entire motion
trajectory and the corresponding mapped points on the magh¢ys a close- E
up of (a) \

IV. EVALUATION

This section discusses the experiments used to evaluate
the methodologies mentioned kil and xlll. First, we show Fig. 9. A comparison of trajectories produced by GPS (a), asiohybased
how ProbIN is achieved from data sample collected whilgsitioning technique (b), and the ProbIN statistical madg!
driving. Second, we demonstrate map matching and starting
point identi cation with collected data from different dihg

routes. can be estimated. This trajectory is used for bootstraptlieg
_ ProbIN statistical model.
A. Experiment 1: ProbIN In the evaluation phase, the statistical model is applied to

1) Con guration: In our research, we focus on the mobildranslate the raw sensor readings into the displacemehishw
smartphones in common use. Each device is usually equipfedn the vehicle's trajectory. By applying a map-matching
with a 3-axis accelerometer and magnetometer providirm-inf technique introduced ixlll the estimated trajectory can be
mation about the acceleration in the device's coordinastesy overlayed on the map in order to identify and correct différe
and the azimuth angle identifying the direction showinghe t turns.
north. We demonstrate ProbIN based on a data sample collected

Our approach is evaluated on the iPhone 4, which is additicsidring 22 kilometers of driving. We used the rst 18 kilomete
ally equipped with a 3-axis gyroscope. By utilizing the taia of the collected data for training the ProbIN model. Then we
rate that is provided by the gyroscope a more accurate orieised the remaining 4 kilometers for evaluation.
tation can be calculated. However, since the most smargshon In our approach the estimation provided by the physics model
do not have a gyroscope, in our experiments we will derive used for bootstrapping the ProbIN model. However, the tra
the vehicle's position based solely on the accelerometer ajectory of the physics-based estimation contains an emtoich
magnetometer reading. We use the magnetometer to impragvews with time and traveled distance. Thus, the trajeaddty8
the accuracy of the trajectory inference phase. However, Widlometers estimated by the physics model would be ina¢eura
are able to obtain a trajectory with only accelerometer meand inappropriate for bootstrapping the ProbIN model. In ou
surements. approach we split the long data sequence of 18 kilometens int

The orientation pitch and roll angle can be calculated froshort sequences based on GPS data. The idea is to identify
the accelerometer reading when the phone is not moving. W locations where the car stopped temporarily (e.g., #b@ s
assume that at the beginning of each drive the phone is lyisign, at a traf c light, in a traf c jam, etc.). These locatie
still in the car and that the car is standing still on a leve¢st indicate the end of one short sequence and the start of the nex
Thus, we will be able to estimate the rough initial oriertati short sequence. Thus, instead of using the 18 kilometer long
of the phone. During the drive, the acceleration values atean trajectory estimation we utilize the physics based estonatf
reliable source for recalculating the pitch and roll an@lgen shorter trajectories, which are more accurate. The shad da
if the car would be temporarily standing (e.g., at a stop Jsiggequences are then used for creating the ProbIN model, which
the vibration caused by the running car engine adds additioiis then used for estimating the 4 kilometer long test trajsct
noise to the accelerometer reading. Therefore, the imftah Figure 9 (a) depicts the trajectory of the vehicle based on
and roll angles will be used for transforming the accelerati the collected GPS data in the testing phase. This trajecsory
into the world's coordinate system during the entire drive. considered to be the true trajectory. Figure 9 (b) is thelresu

In the training phase, the raw sensor reading is transformachieved by applying the state-of-the-art physics-basesi- p
into the acceleration in world's coordinate system, whish tioning technique. As depicted, the estimated trajectafferd
then double integrated in order to calculate the displacémesigni cantly from GPS-based trajectory in shape, directand
By summing up the displacements the trajectory of the csize.



Figure 9 (c) shows the trajectory estimated based on applica » ‘ ‘ ‘ ‘ ‘
tion of the ProbIN statistical model. The shape of this tgey _-:-_Eigzngt 2a: Pitisbugh, PA c;J
is very similar to the shape of the reference trajectory.eBas '
on the shape, different turns can be identi ed. Additiopall
the similarity in the direction and the size of both trajeids
allows the application of the map-matching. Then the ttajsc
can be “snapped” to the road of a map in order to identify the
vehicle's current position in the world's coordinate syste

10p

Starting point clusters
(2]

B. Experiment 2. Map Matching

To evaluate the algorithm, we conducted two experiments ;
in different cities and states. We conducted Experimentn2a i
Pittsburgh, PA; with a driving distance of 9.7 km for 15 % 2* 2 6 8 10 12
minutes. Experiment 2a utilized a map of Pittsburgh with an ength of Motion Trajectory (km)
area of size 11 km x 10 km, with a total of 10108 number of
points. We conducted Experiment 2b in Mountain View, CAF9- 10. This gure depicts the crowding of predicted stagtpoint locations,

. .. . . . Within a 200 meter radius from the true starting point, as thgttory length
with a driving distance of 4.4 km for 13 minutes. Experiment j,creases.
2b accessed a map covering parts of Mountain View, Sunnyvale

and Santa Clara, with an area of size 12 km x 10 km, with a

total of 10096 number of points. This is shown in Table I. V. DISCUSSION
We now address several topics not yet explained in detail.
- S— E?‘ti’eg'mehm Ff: o Exeef'm\?m Zt(’:A First, we discuss why an application vetting process may not
eograpnical Location Ittsbourgn, ountain View, . .

Driving Length 97 ki T4 Km prevent this sort of attack. S_econd, we dlscuss_ methodsefor r
Driving Time 15 minutes 13 minutes ducing the search space during the map matching phase., Third

Map Size 11kmx 10 km| 12 km x 10 km we discuss how reducing the sampling frequency can limit

TABLE | the effectiveness of the attack. Fourth, we explore alterma
DESCRIPTION OF EXPERIMENTS FOR MAP MATCHING methods for location inference on smartphones.

A. Application Vetting

As mentioned fromxllI-B, probability of nding a valid Apple's vetting process may seem to help in detecting appli-
match increases by scaling the motion trajectory becauste ofcations that attempt to misuse accelerometer readingsféo in
inherent noise. For both experiments, we repeated thegiimdi location. In an effort to identify low-quality and poteritia
algorithm by varying the lengths of the motion trajectonttwi malicious applications, Apple implements a vetting preces
stretch factors of 1.0, 1.25, and 1.50 fold. The predictian which moderators must approve of any application that is
algorithm formed two starting point clusters for Experirherdeveloped for the iPhone before it gets distributed to theketa
2a highlighted in Figure 11(a). We de ne a cluster to be anjhe application vetting cycle is best illustrated by thédeing
ve or more predicted points located within 200 meter radiugprocess: (1) developers submit an application to Apple, (2)
As shown in the gure, the actual starting point is within oné\pple decides to approve or disapprove of the application,
of the two clusters. Similarly, Figure 11(b) for Experimen(3) the application is distributed to the market via the App
2b also illustrates two clusters indicating the probabéetisty Store or iTunes. At rst glance it would seem that this veitin
point. The two experiments clearly show that the adversary cprocess provides for greater security against malicioesais
accurately pin-point the starting point as well as the tiedle sensory data as compared to models that rely on end users to
route with high probability. A limitation of our implemerttan report suspicious software. However, applications caiyease
is that we often identify more than one possible startingipoiaccelerometer data to violate user privacy even on the &hon

clusters. However, reducing the search space to a fewdosati ~ Accelerometer information is currently viewed as harm-
is signi cant. Moreover, other information can be used to |ess; thus an application that uses accelerometer data
eliminate some of the clusters. maliciously is likely to be approved.

An adversary can deduce a starting point with higher proba- Since it is challenging to detect applications that misuse
bility for longer trajectories because as the length ofectgry accelerometer information, application vetting by the -mar

increases, it creates globally unique constraints. We demo  ketplace is unlikely to help against this threat.

strate this effect empirically in Figure 10. As lengths oéth -

two experiments were varied from 1 km to 9.7 km and 4.B- Map Search Tractability

km for Experiments 2a and 2b, respectively, we nd that the xIl showed how one can deduce the trajectory and the starting
accuracy of our starting point prediction increases. location from acceleration data given a map of a city. Ifitia
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Fig. 11. This gure shows the top ten predictions made by the magching algorithm for each stretch factor. Notice that mahthe predictions gather in
clusters. This is because a trajectory with a slightly défe starting point can still trace a similar route as the gobtruth; leading to a lowDS. Experiments
2a and 2b are shown on the left and right, respectively.

the search space may seem intractable to search. This wdDldSensor Sampling Frequency

certainly be an issue if the attacker needed to search tlire ent .
. . The effectiveness of the attack depends on the frequenc
map of the United States, let alone the entire world. Howev: b q y

. the attacker h o oth 6f the accelerometer readings. Consequently, if the sagpli
In many cases e atlacker has access o other sources, o uency of the sensor is reduced, there is less informatio
information, including publicly available data, that caslm to produce an accurate trajectory. The experiments shown he
IEdl:CEI the searchhspace fro_m a gIObil scale down to a mgfé) based on a sampling frequency of approximately 30 Hz.
ractable area such as a region or a city. However, the attack is still possible for longer trajeatsrdue

i to global constraints that accumulate.
If the attacker knows the name or e-mail address, they can

easily reduc_e the search space using online search (ectal sy Ajternative Inference Methods
networks, city and state public records, etc.). In casesrevhe ) )
the victim's phone is accessing a network through Wi-Fi, the Similar types of attacks are possible with the use of ceallula

attacker can make use of the IP address for geo-ip locati®fd Wi-Fi signals. While this is true, we claim that our work
lookup. highlights a more signi cant attack risk for two reasonsiski

inferring a trajectory with accelerometer data is more &aieu

Our work presents a proof-of-concept of these attacks, wﬁlﬂan using cellutar 'and \.N"F' traces. As shown frp m our
periments, our trajectories and matched geo-locatiods i

the intent to raise awareness about location privacy Ieeakagi( .
associated with accelerometer data. The results presapted ate a high degree of accuracy. Second, the method presented

use displacements exclusively for starting point predictiWe n this paper is po;s@le on the large c;ateg_ory of devices
foresee the possibility of stronger attacks in real worldraples without ceIIuI.ar. or Wi-Fi radio. These devices include PDAS.

if attackers incorporate additional contextual inforroati For tablgt PCs, digital cameras, MP3 p'ayefs' and handhg Idrgami
instance, including additional sensors, such as an amliggt devices. Because the_se dewce_s are widely QSEd’. this may be a
sensor and microphone, can further assist in determinirgewhprevalem attack. Viclims carrying such devices in theigsa

the car is traveling (e.g., through tunnels, or near railg)a and/or pockets may be unwittingly sharing their locationhwi
’ ’ malicious software.

Moreover, different roads have different speed limitsf ¢ra
patterns, road surfaces, road angles (both in the direction
of road as well as perpendicular), and road features (e.g.Several prior works show that accelerometer data collected
bridge transitions, speed bumps, potholes, uneven sydacg from wearable sensors can be used for activity recognitiyn [
Temporal information such as trafc light timings and road10], [11], [16]. Bao et al. utilized multiple biaxial acegbm-
congestion information could be used in addition for disaneters situated on different areas of the body to classify ev-
biguation, given the public availability of road congestidata. eryday activities with subject-independent training deish

VI. RELATED WORK



84% accuracy [1]. Ravi et al. found that using a single tri{5] Dan Fletcher. Please rob me: The risks of online oversaifFebruary

axial accelerometer worn near the pelvic region is suf tien _ 2010. . o o
Clment Fouque, Philippe Bonnifait, and David Btaille. Hamcement of

. . . . . 6]
to (_;IaSS”y a W"?'e variety of .taSkS with a h|gh degree 01{ global vehicle localization using navigable road maps aradieleckoning.
delity, but certain tasks that involved only arm movement  2010.

were comparatively more dif cult to identify [16]. Maurert e [7] Joshua Green eld. Matching GPS observations to locetion a digital
| imilarl d inale triaxial | ter toni map. Proc. 81st Annual Meeting of the Transportation Researchr@o
al., similarly, used a single triaxial accelerometer toniifg 2002.

user activities with great success [11]. In their study, &osv, [8] Kashmir Hill. Koreans seek 25 million from apple over iplolocation-
the accelerometer was combined with other sensors such (@s tracking. August 2011.

bient light d d ¢ | . id t J Lester, B Hannaford, and Borriello Gaetano. Are youhwite? - using
ambient light and sound sensors 1o ¢ aSS|fy a wiaer gamu accelerometers to determine if two devices are carried byaime person.

applications. Additionally, the accelerometer was placedhe In Proceedings of Pervasiv@004.

wrist instead of the pelvis. Liu et al. have created the uwal¥! Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Verasidevan.
uwave: Accelerometer-based personalized gesture recmgraind its

SOftVYare to use triaxial accelerom?.ter data on mobile phone applications.Pervasive and Mobile Computing(6):657 — 675, 2009.
for highly accurate gesture recognition [10]. [11] Uwe Maurer, Anthony Rowe, Asim Smailagic, and Daniel Rv&orek.

There have also been studies on using acceleration data aseéwatch: A wearable sensor and noti cation platform.|EEE Workshop
9 on Wearable and Implantable Body Sensor Netw,oPK®6.

one part of a set of data to detect '_Jser Iogations [19]* [1693 I-[12] Declan McCullagh. Microsoft collects locations of wiows phone users,
and Mase propose a dead reckoning, or incremental, approach April 2011.

to using human motor data to predict user motion trajecsorig3] Prashanth Mohan, Venkata N. Padmanabhan, and RamaahéRdmjee.
Nericell: rich monitoring of road and traf c conditions ugjnmobile

givgn a Starting point [19]- However, their device utili;ed smartphones. IrProceedings ACM conference on Embedded network
variety of motor sensors worn by human users of which the sensor systemSenSys, pages 323-336, 2008.

accelerometer was only one component. Additionally, th ] L. T. Nguyen and Y. Zhang. Probabilistic infrastru@less positioning
y P Y éyl in the pocket. InProceedings of The International Conference on Mobile

taclfle the probl_em of de'Fermining location detection indod Computing, Applications, and Services (MobiCASE}tober 2011.
environments via detecting how human users walked. Mops] L. T. Nguyen, Y. Zhang, and M. Griss. Probin: Probatitisinertial
closely related to our work. Mohan et al. developed Nerjcell navigation. InThe third Mobile Entity Localization and Tracking (MELT)

. . Workshop held at the 7th IEEE International Conference orbiléoAd-
software package that piggybacks on mobile smartphones and p,,¢ and Sensor Networkilovember 2010.

uses the accelerometer as one of a large suite of smartphpae Nishkam Ravi, Nikhil D, Preetham Mysore, and Michael Littman.

sensors to detect traf ¢ conditions and road deformitieshsas Activity recognition from accelerometer data. Rtoceedings of Confer-
ence on Innovative Applications of Arti cial Intelligenq@AAl), pages

pot holes [13]. This study also tackles the problem of vifyua 1541-1546, 2005.
reorienting the received acceleration data, which can be [0f] Greg Welch and Gary Bishop. An introduction to the Kalméer.
arbitrary orientation. University of North Carolina at Chapel Hill, Chapepages 1-16, 1995.
[18] Widyawan, Martin Klepal, and Stephane Beauregard. Akbacking
VIl. C particle Iter for fusing building plans with PDR displacemteestimates.
- LONCLUSION pages 207-212, March 2008.

; ; ; Seon woo Lee and Kenji Mase. Activity and location rewitign using
As we demonstrate in this paper, accelerometer readings P wearable sensordEEE Pervasive Computind.:24-32, 2002.

highly sensitive. Our results indicate that acceleronset&n [20] Heng Xu and Hock hai Teo. Alleviating consumers' privaoyncems
be used to locate the device owner even if all localization in location-based services: A psychological control pecspe. In
mechanisms on the device are disabled. We illustrate this International Conference on Information Systempages 793-806, 2004.
through a series of experiments conducted in Pittsburghn-Pe
sylvania and Mountain View, California. Our proof-of-campt
implementation infers a smartphone's location to withinG® 2
meter radius of the true location.

We hope that this work will encourage future versions of
mobile platforms to restrict access to accelerometer métion
as strictly as microphone and camera sensors.
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