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Abstract—The security and privacy risks posed by smartphone
sensors such as microphones and cameras have been well docu-
mented. However, the importance of accelerometers have been
largely ignored. We show that accelerometer readings can be
used to infer the trajectory and starting point of an individual
who is driving. This raises concerns for two main reasons.
First, unauthorized access to an individual's location is a serious
invasion of privacy and security. Second, current smartphone
operating systems allow any application to observe accelerometer
readings without requiring special privileges. We demonstrate that
accelerometers can be used to locate a device owner to within a
200 meter radius of the true location. Our results are comparable
to the typical accuracy for handheld global positioning systems.

I. I NTRODUCTION

Location privacy has been a hot topic in recent news after it
was reported that Apple, Google, and Microsoft collect records
of the location of customers using their mobile operating sys-
tems [12]. In some cases, consumers are seeking compensation
in civil suits against the companies [8]. Xu and Teo �nd
that, in general, mobile phone users express lower levels of
concern about privacy if they control access to their personal
information. Additionally, users expect their smartphones to
provide such a level of control [20].

There are situations in which people may want to broadcast
their location. In fact, many social networking applications in-
corporate location-sharing services, such as geo-taggingphotos
and status updates, or checking in to a location with friends.
However, in these instances, users can control when their
location is shared and with whom. Furthermore, users express
a need for an even richer set of location-privacy settings than
those offered by current location-sharing applications [2]. User
concerns over location-privacy are warranted. Websites like
“Please Rob Me” underscore the potential dangers of exposing
one's location to malicious parties [5]. The study presented here
demonstrates a clear violation of user control over sensitive
private information.
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Accelerometers are a particularly interesting case because of
their pervasiveness in a large assortment of personal electronic
devices including tablet PCs, MP3 players, and handheld gam-
ing devices. This array of devices provides a large network for
spyware to exploit.

Furthermore, by correlating the accelerometer readings be-
tween multiple phones it is possible for an adversary to de-
termine whether the phones are in close proximity. Because
phones undergoing similar motions can be identi�ed by their
accelerations, events such as earthquakes or even everyday
activities like public transportation (e.g., bus, train, subway)
produce identi�able motion signatures that can be correlated
with other users. As a consequence, if one person grants GPS
access, or exposes their cellular or Wi-Fi base station, then they
essentially expose the location of all nearby phones, assuming
the adversary has access to these devices.

a) Contributions: Our key insight is that accelerometers
enable the identi�cation of one's location despite a highly
noisy trajectory output. This is because the idiosyncrasies of
roadways create globally unique constraints. Dead reckoning
can be used to track a user's location long after location services
have been disabled [6]. But as we show, the accelerometer can
be used to infer a location with no initial location information.
This is a very powerful side-channel that can be exploited even
if location-based services on the device are disabled.

b) Threat Model: We assume that the adversary can
execute applications on the mobile device, without any special
privileges except the capability to send information over the
network. The application will use some legitimate reason to
obtain access to network communication. This is easily accom-
plished by mimicking a popular application that many users
download; e.g., a video game. In the case of a game, network
access would be needed to upload high scores or to download
advertisements. We assume that the OS is not compromised,
so that the malicious application simply executes as a standard
application. The application can communicate with an external
server to leak acceleration information. Based on the leaked
information, the adversary can extract a mobile user's trajectory
from the compromised device via data analysis.

Our goal is to determine the location of an individual driving
in a vehicle based solely on motion sensor measurements. The
general approach that we take is to �rst derive an approximate
motion trajectory given acceleration measurements–whichwe
discuss inxII. We then correlate that trajectory with map978-1-4673-0298-2/12/$31.00c 2012 IEEE
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Fig. 1. System architecture ofACComplice

information to infer the location–which we discuss inxIII.
Figure 1 depicts the overall system architecture. InxIV, we
present our experimental results. We provide further discussions
in xV, a discussion of related works inxVI, and conclude in
xVII.

II. BACKGROUND: TRAJECTORYINFERENCE

The section provides a background description of the trajec-
tory inference model. First, we discuss a statistical method for
translating sensor samples to displacements. Next, we present
a statistical model for inferring trajectories.

A. Displacement Estimation

We show that a sequence of motion sensor readings can
be used to generate an estimation of the motion trajectory of
the handset. We use a probabilistic dead reckoning method
called Probabilistic Inertial Navigation (ProbIN). In ourprior
work, we developed ProbIN to estimate a user's indoor location
using inertial and magnetic sensors when GPS signals are not
available [14], [15].

Classical dead reckoning has inherent limitations when es-
timating the motion trajectory from motion sensor readings.
The main problem isdrifting error. Drifting occurs because
the position of the vehicle at timet depends on the position
at t � 1, and the displacement estimated at time interval [t � 1,
t]. Drifting error aggregates over time, pushing the estimated
trajectory further away from the truth. Even after applying
noise smoothing methods on the sensor readings, such as the
Kalman Filter [17], the estimated trajectory may be signi�cantly
different than the ground truth as reported in many previous
works [4], [18], [14].

The ProbIN approach is different from the standard dead
reckoning approach in two ways:

1) Instead of using the actual values of the sensor measure-
ments for displacement estimation, we treat the measure-
ments only as “observations” of the underlying motion.

Dead 
Reckoning  

ProbIN

Sensor 
Readings Displacement

Motion

Fig. 2. The standard dead reckoning approach uses a physics-based model
to translate the measured values of the underlying motion to displacements.
ProbIN uses a statistical model to directly map the sensor readings to displace-
ments.

By using the ProbIN statistical model, these observations
are directlymappedto the displacement of the vehicle
(Figure 2).

2) The standard dead reckoning approaches calculate the
displacement deterministically from the sensor readings.
ProbIN frames displacement estimation as a probabilistic
process, where a sensor reading can correspond to many
displacements with different probabilities. ProbIN uses
a Bayesian framework to combine the translation model
and the trajectory model in order to search for the optimal
trajectory.

B. Quantizing Sensor Readings

To simplify the model and to make the computation ef�cient,
we �rst convert the continuous space to the discrete space by
quantizing the sensor readings and the displacement space.

Fig. 3. An example of clustering sensor readings into motion labels. The
acceleration vector measurements (in units ofg = 9.81m=s2) are grouped into
clustersM0031,M0099 andM0059 usingk-means clustering.

[0:08;0:40;0:08][0:09;0:49;0:06][0:04;0:16;0:08] � � �

+

M0099;M0099;M0031; � � �

Fig. 4. An example of representing a sequence of sensor readings (in units
of g = 9.81m=s2) with a sequence of motion labels.



We cluster acceleration vectors in the training data using the
standardk-means clustering algorithm which result ink clusters
(as shown in Figure 3). During the training and testing phase,
an acceleration vector is �rst labeled by its nearest cluster. This
motion label is later used for representing the sensor reading
(as shown in Figure 4).

This quantization step results in loss of precision of the input
data as we reduce the acceleration readings from a continuous
high dimension space to a one-dimensional discrete space. The
reduced feature space has relatively small vocabulary size(e.g.,
k=200, as used in one of our experiments). Empirical results
show, however, that such quantization does not affect the end-
to-end system performance. Similarly, we quantize all possible
displacements seen in the training data, for the sampling time
interval, Dt. In the subsequent discussion, we refer to the
quantized acceleration values and the displacement valuesas
motion labels and displacement labels, respectively.

C. ProbIN Model

ProbIN builds a statistical model to map the sensor readings
directly to the displacement. From the training data, ProbIN
learns the probability of translating a displacement labelD
to its corresponding motion labelM with probability P(MjD).
Again, there are alternativeMs to translate to oneD because
of the inherent noise in sensor data. The conditional translation
probabilities for a particular value ofD = d have to satisfy:

å
M

P(MjD = d) = 1 (1)

In addition to the translation model, ProbIN also models the
trajectory pattern. The underlying assumption is that there are
regularities in a vehicle's trajectory and we can calculatethe
probability of a trajectory given the trained trajectory model.
Intuitively, it is more likely to have a trajectory where thecar
drives forward and then makes a left turn than a trajectory with
a sequence of alternating turns (e.g., left, right, left, then right).
From the collected training data, we can build a trajectory
model and estimate the likelihood of a trajectoryD̃ which is a
sequence of displacement labelsD.

Combined, the goal of ProbIN is to �nd an optimal displace-
ments vectorD̃� such that:

D̃� = argmax
D̃

P(M̃jD̃)P(D̃) (2)

The translation model is used to estimateP(M̃jD̃). Assuming
that the translating conditional probability is independent and
identically distributed (i.i.d.), we can break down the condi-
tional probability of the sequenceP(M̃ = M1;M2; : : : ;MT jD̃ =
D1;D2; : : : ;DT ) to:

P(M̃jD̃) =
T

Õ
t= 1

P(Mt jDt): (3)

By assuming that the trajectories satis�es the Markov as-
sumption that the displacement at timet only depends onn� 1

Fig. 5. An example of trajectory hypotheses with the highest probability
generated by the decoder (in meters)

previous displacement segments in the past, we can break down
the trajectory probabilitiesP(D̃) down to:

P( ˜D = D1;D2; : : : ;DT ) =
T

Õ
t= 1

P(Dt jDt� n+ 1; : : : ;Dt� 1): (4)

D. Training ProbIN

Both statistical translation and trajectory models
need to be trained in order to estimateP(MjD) and
P(Dt jDt� n+ 1; : : : ;Dt� 1). If the training data is labeled (i.e., we
know the corresponding displacement for each sensor reading),
it is straightforward to calculateP(MjD) using the Maximum
Likelihood Estimation (MLE) and P(Dt jDt� n+ 1; : : : ;Dt� 1)
using MLE with proper smoothing mechanism such as the
modi�ed Kneser-Ney method [3]. Labeled data requires
recording the displacement corresponding to each sensor
sample. In our case samples occur every 0.02 to 0.1 seconds
depending on the sampling frequency, rendering this approach
is impractical. To solve this problem, ProbIN uses an
approximated EM algorithm to train both the translation and
trajectory models.The main idea of this solution is to treatthe
displacement at each time as “hidden” information. Through
the iterative EM process, we approximate the unknown
displacement and update the model accordingly.

The training data contains multiple trips of a car driving
normally with the smartphone constantly collecting motion
sensor data. For each trip, we record the actual starting and
ending positions through the GPS receiver. The training process
goes through the following steps:

1) Initialize the model by assuming the sensor readings are
correct and apply a physics-based approach to estimate
D for eachM.

2) E-step: based on the current translation model and the
trajectory model, estimate the trajectory of each trip with
the constraint that the starting and ending positions of
the estimated trajectory match the true starting/ending
positions.

3) M-step: from estimated trajectories for all trips, update
the translation model and the trajectory model. Go to E-
step. Repeat till model converges.



E. Decoding Trajectory

Once the statistical models are trained, we can apply the
model on the input sensor reading sequence and decode it with
an optimal trajectory (as shown in Figure 5).

In the probabilistic navigation framework, each motion la-
bel can be translated into multiple displacement labels with
different probabilities. For an input sensor reading sequence
of T labels, if the average number of displacement labels
for a motion label ism then the total number of possible
trajectories ismT . The goal of the decoder is to search through
all possible trajectories and �nd the one with the highest
probability P(D̃jM̃).

It is infeasible to calculateP(D̃jM̃) for each of themT

trajectories and select the best one as the output. Instead,we
use a stack decoder to approximate the optimal trajectory and
keep the computing time complexity linear toT. After applying
the translation model on the input motion label sequence and
building a lattice, the stack decoder scans the lattice from
left t = 1 to the end of the sequencet = T. At each timet,
the decoder extends the partial hypotheses fromt � 1 with
all possible displacements translated fromMt and calculate
corresponding translation and trajectory probabilities for the
augmented partial hypotheses. As then-gram trajectory model
can only differentiate trajectory sequences that have different
n� 1 ending displacement labels, the stack decoder only needs
to keep the best partial hypothesis for each trajectory model
endings. Also, we prune out partial hypotheses at each timet
if their probabilities are much worse than the best alternative
at this stage.

III. T RAJECTORYMAPPING

We now present the process for associating the motion
trajectories obtained from ProbIN to the most likely location
on a map. We thus demonstrate that an adversary can deduce
the trajectory and starting point from acceleration information.

The mapping of a motion trajectory to a path on a map is the
�rst challenge we need to address. This problem is complicated
by the noise in the motion trajectory. InxIII-A we describe
our approach to map matching. The map matching algorithm
outputs a score of how closely a motion trajectory matches a
given path on the map.

Using the similarity score as our guide we search the map
for the best �t. We follow a brute-force approach for �nding
the starting position by computing a similarity for all starting
locations. Our predicted map location will be the one containing
a driving route most similar to our trajectory.

While this approach is computationally expensive, we make
use of several constraints that reduce the number of candidate
paths. We make use of the fact that trajectories can be uniquely
identi�ed. For example, the inherent idiosyncrasies of roads and
the fact that every turn adds an additional constraint reduces
the number of potential trajectory candidates. There are more
optimizations that can be incorporated in a sophisticated attack.
We discuss areas for optimization inxV.

(a) (b)

Fig. 6. An example step of the map matching algorithm. (a) and (b) are the
before and after steps asPi is mapped to a candidate road segment.

A. Map Matching Algorithm

Our map matching algorithm maps motion trajectory points,
MT= [P1, P2,..., Pn], to corresponding points on a road net-
work. This matching is accomplished by mapping each motion
trajectory point to the best corresponding candidate segment.

Our algorithm follows Green�eld's approach for map match-
ing [7], by utilizing similarity measures to assign scores of can-
didate road segments. We use distance and angle as similarity
measures to map motion trajectory onto road segments.

Consider the problem of matching pointPi to a road segment
as illustrated by Figure 6. Assuming thatPi� 1 is mapped to a
point on road segmentC1, potential road segment candidates
for Pi are compared. The candidate edges are de�ned as a road
segment onto which the previous trajectory point is mapped,
and its adjacent segments. In this case, in addition toC1,
segmentsC2, C3, andC4 are all candidate segments. In order
to mapPi to a candidate road segment, we use two similarity
measuresSd and Sa . Sd is calculated using the orthogonal
projection,d, of Pi to a candidate road segment.Pi has four
projections to its possible candidate segments,d1, d2, d3, and
d4 corresponding to each of its candidate segments. Speci�cally
Sd can be computed with the following equation:

Sd = a� d� 1 (5)

where a is a weighting constant empirically determined to
be 100.Sa is calculated using the anglea between a motion
trajectory segment and a candidate segment by computing the
following:

Sa = C� cos(a )N (6)

whereC andN are the weighting and rate constants, respec-
tively. The rate constant N is used to vary the rate of decrease of
Sa with respect toa . The constants are determined empirically:
C= 25 andN = 4. The �nal score is computed by the following:

STotal = Sd + Sa (7)

where a greaterSTotal denotes a better score for the corre-
sponding candidate.

Based on this scoring mechanism,Pi is mapped to a point on
C3. The remaining points of the motion trajectory are realigned
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Fig. 7. Veri�cation of map matching algorithm with the known starting point. (a) and (b) show Experiment 2a (Pittsburgh, PA)and Experiment 2b (Mountain
View, CA), respectively. The green (star) curve indicates the motion trajectory obtained from ProbIN. The red (circle) curve indicates the mapped points. The
blue (x-mark) curve indicates the ground truth (i.e., actualroute traveled) obtained from GPS data.

to the mapped point onC3, which is depicted in Figure 6(b).
This realignment mitigates the effect of the noise inherentin
the motion trajectory.

To verify the results, we perform the aforementioned map
matching algorithm on a map with a known starting point. We
pre-processed motion paths to remove highly transient noise in
the motion trajectory, which smooths the data while preserving
key features of the trajectory. Figure 7 illustrates the map
matching process of a motion trajectory.

Figures 7(a) and (b) show matching procedures for Experi-
ment 2a and Experiment 2b, respectively. The green (star) curve
shows the motion trajectory obtained from ProbIN. The red
(circle) curve illustrates the corresponding mapped points on
a map. The blue (x-mark) curve shows the ground truth using
GPS data to validate our algorithm.

B. Starting Point Prediction

This section explains an algorithm that can be used to predict
a starting point of a trajectory by applying the map matching
algorithm to all points on a given map. First the trajectory
is aligned to every point on the map (each node represents
a possible starting point). In order to determine the most likely
starting point, we compare each mapped route using a trajectory
difference metric (explained below).

We take the �rst point of the trajectory,P0, and plot all
candidate starting pionts. LetMi be a point on a road network
that has been matched toPi , a point on the motion trajectory.
We de�ne Dist(Mi ;Pi) as the distance betweenMi and Pi .
Summing upDist(Mi ;Pi) from 1 to s, where s is the number
of mapped points, we obtain the difference scoreDS, given by
the following equation:

DS=
s

å
i= 1

Dist(Mi ;Pi) (8)

Figure 8 showsDist(Mi ;Pi) for all corresponding points
between the motion trajectory and the mapped points. The
difference scoreDS in Figure 8(a) is the sum of lengths of
Dist(Mi ;Pi) for all i. OnceDS is computed for each starting
point on the map, the starting points are ranked in ascending
order because a smallDS is a good indicator that the actual
and predicted paths are similar.

In the case of erroneous starting points, the map matching
algorithm can encounter a dead end or may not be able to match
any road on the map to the motion trajectory, in which case the
map matching algorithm simply maps several motion trajectory
points to a single map location. Many starting points will not
result in any valid candidate paths, especially for longer paths
– we detect these cases and reject those paths.

We then take the top ten ranked points sorted in ascending
order ofDSto locate the actual starting point. Among the highly
ranked points, the points are likely to form a few clusters of
nodes that have closely matched routes with the aligned motion
trajectory. If only a few clusters on a map are found, it is an
indication with strong certainty that the actual starting point is
in one of the clusters.

However, the motion trajectory is a noisy estimate of an
actual traveled route. Because the map matching algorithm is
topologically sensitive, some trajectories may not be accurately
scaled. In order to account for this fact, we stretch the motion
trajectory and repeat the prediction algorithm. With varied
trajectory scales, the probability of �nding a valid match
between motion trajectory and the actual traveled route greatly
increases. The following section provides evaluation data.
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Fig. 8. Difference Metric usingDist(Mi ;Pi ). (a) shows the entire motion
trajectory and the corresponding mapped points on the map. (b)shows a close-
up of (a)

IV. EVALUATION

This section discusses the experiments used to evaluate
the methodologies mentioned inxII and xIII. First, we show
how ProbIN is achieved from data sample collected while
driving. Second, we demonstrate map matching and starting
point identi�cation with collected data from different driving
routes.

A. Experiment 1: ProbIN

1) Con�guration: In our research, we focus on the mobile
smartphones in common use. Each device is usually equipped
with a 3-axis accelerometer and magnetometer providing infor-
mation about the acceleration in the device's coordinate system
and the azimuth angle identifying the direction showing to the
north.

Our approach is evaluated on the iPhone 4, which is addition-
ally equipped with a 3-axis gyroscope. By utilizing the rotation
rate that is provided by the gyroscope a more accurate orien-
tation can be calculated. However, since the most smartphones
do not have a gyroscope, in our experiments we will derive
the vehicle's position based solely on the accelerometer and
magnetometer reading. We use the magnetometer to improve
the accuracy of the trajectory inference phase. However, we
are able to obtain a trajectory with only accelerometer mea-
surements.

The orientation pitch and roll angle can be calculated from
the accelerometer reading when the phone is not moving. We
assume that at the beginning of each drive the phone is lying
still in the car and that the car is standing still on a level street.
Thus, we will be able to estimate the rough initial orientation
of the phone. During the drive, the acceleration values are not a
reliable source for recalculating the pitch and roll angle.Even
if the car would be temporarily standing (e.g., at a stop sign)
the vibration caused by the running car engine adds additional
noise to the accelerometer reading. Therefore, the initialpitch
and roll angles will be used for transforming the acceleration
into the world's coordinate system during the entire drive.

In the training phase, the raw sensor reading is transformed
into the acceleration in world's coordinate system, which is
then double integrated in order to calculate the displacement.
By summing up the displacements the trajectory of the car
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Fig. 9. A comparison of trajectories produced by GPS (a), a physics-based
positioning technique (b), and the ProbIN statistical model(c)

can be estimated. This trajectory is used for bootstrappingthe
ProbIN statistical model.

In the evaluation phase, the statistical model is applied to
translate the raw sensor readings into the displacements, which
form the vehicle's trajectory. By applying a map-matching
technique introduced inxIII the estimated trajectory can be
overlayed on the map in order to identify and correct different
turns.

We demonstrate ProbIN based on a data sample collected
during 22 kilometers of driving. We used the �rst 18 kilometers
of the collected data for training the ProbIN model. Then we
used the remaining 4 kilometers for evaluation.

In our approach the estimation provided by the physics model
is used for bootstrapping the ProbIN model. However, the tra-
jectory of the physics-based estimation contains an error,which
grows with time and traveled distance. Thus, the trajectoryof 18
kilometers estimated by the physics model would be inaccurate
and inappropriate for bootstrapping the ProbIN model. In our
approach we split the long data sequence of 18 kilometers into
short sequences based on GPS data. The idea is to identify
the locations where the car stopped temporarily (e.g., at a stop
sign, at a traf�c light, in a traf�c jam, etc.). These locations
indicate the end of one short sequence and the start of the next
short sequence. Thus, instead of using the 18 kilometer long
trajectory estimation we utilize the physics based estimation of
shorter trajectories, which are more accurate. The short data
sequences are then used for creating the ProbIN model, which
is then used for estimating the 4 kilometer long test trajectory.

Figure 9 (a) depicts the trajectory of the vehicle based on
the collected GPS data in the testing phase. This trajectoryis
considered to be the true trajectory. Figure 9 (b) is the result
achieved by applying the state-of-the-art physics-based posi-
tioning technique. As depicted, the estimated trajectory differs
signi�cantly from GPS-based trajectory in shape, direction and
size.



Figure 9 (c) shows the trajectory estimated based on applica-
tion of the ProbIN statistical model. The shape of this trajectory
is very similar to the shape of the reference trajectory. Based
on the shape, different turns can be identi�ed. Additionally,
the similarity in the direction and the size of both trajectories
allows the application of the map-matching. Then the trajectory
can be “snapped” to the road of a map in order to identify the
vehicle's current position in the world's coordinate system.

B. Experiment 2: Map Matching

To evaluate the algorithm, we conducted two experiments
in different cities and states. We conducted Experiment 2a in
Pittsburgh, PA; with a driving distance of� 9.7 km for 15
minutes. Experiment 2a utilized a map of Pittsburgh with an
area of size 11 km x 10 km, with a total of 10108 number of
points. We conducted Experiment 2b in Mountain View, CA;
with a driving distance of� 4.4 km for 13 minutes. Experiment
2b accessed a map covering parts of Mountain View, Sunnyvale,
and Santa Clara, with an area of size 12 km x 10 km, with a
total of 10096 number of points. This is shown in Table I.

Experiment 2a Experiment 2b
Geographical Location Pittsburgh, PA Mountain View, CA

Driving Length � 9.7 km � 4.4 km
Driving Time � 15 minutes � 13 minutes

Map Size 11 km x 10 km 12 km x 10 km

TABLE I
DESCRIPTION OF EXPERIMENTS FOR MAP MATCHING.

As mentioned fromxIII-B, probability of �nding a valid
match increases by scaling the motion trajectory because ofits
inherent noise. For both experiments, we repeated the prediction
algorithm by varying the lengths of the motion trajectory with
stretch factors of 1.0, 1.25, and 1.50 fold. The prediction
algorithm formed two starting point clusters for Experiment
2a highlighted in Figure 11(a). We de�ne a cluster to be any
�ve or more predicted points located within 200 meter radius.
As shown in the �gure, the actual starting point is within one
of the two clusters. Similarly, Figure 11(b) for Experiment
2b also illustrates two clusters indicating the probable starting
point. The two experiments clearly show that the adversary can
accurately pin-point the starting point as well as the traveled
route with high probability. A limitation of our implementation
is that we often identify more than one possible starting point
clusters. However, reducing the search space to a few locations
is signi�cant. Moreover, other information can be used to
eliminate some of the clusters.

An adversary can deduce a starting point with higher proba-
bility for longer trajectories because as the length of trajectory
increases, it creates globally unique constraints. We demon-
strate this effect empirically in Figure 10. As lengths of the
two experiments were varied from 1 km to 9.7 km and 4.4
km for Experiments 2a and 2b, respectively, we �nd that the
accuracy of our starting point prediction increases.
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Experiment 2a: Pittsbugh, PA
Experiment 2b: Mountain View, CA

Fig. 10. This �gure depicts the crowding of predicted starting point locations,
within a 200 meter radius from the true starting point, as the trajectory length
increases.

V. D ISCUSSION

We now address several topics not yet explained in detail.
First, we discuss why an application vetting process may not
prevent this sort of attack. Second, we discuss methods for re-
ducing the search space during the map matching phase. Third,
we discuss how reducing the sampling frequency can limit
the effectiveness of the attack. Fourth, we explore alternative
methods for location inference on smartphones.

A. Application Vetting

Apple's vetting process may seem to help in detecting appli-
cations that attempt to misuse accelerometer readings to infer
location. In an effort to identify low-quality and potentially
malicious applications, Apple implements a vetting process
in which moderators must approve of any application that is
developed for the iPhone before it gets distributed to the market.
The application vetting cycle is best illustrated by the following
process: (1) developers submit an application to Apple, (2)
Apple decides to approve or disapprove of the application,
(3) the application is distributed to the market via the App
Store or iTunes. At �rst glance it would seem that this vetting
process provides for greater security against malicious use of
sensory data as compared to models that rely on end users to
report suspicious software. However, applications can easily use
accelerometer data to violate user privacy even on the iPhone:

� Accelerometer information is currently viewed as harm-
less; thus an application that uses accelerometer data
maliciously is likely to be approved.

� Since it is challenging to detect applications that misuse
accelerometer information, application vetting by the mar-
ketplace is unlikely to help against this threat.

B. Map Search Tractability

xII showed how one can deduce the trajectory and the starting
location from acceleration data given a map of a city. Initially,
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Fig. 11. This �gure shows the top ten predictions made by the mapmatching algorithm for each stretch factor. Notice that many of the predictions gather in
clusters. This is because a trajectory with a slightly different starting point can still trace a similar route as the ground truth; leading to a lowDS. Experiments
2a and 2b are shown on the left and right, respectively.

the search space may seem intractable to search. This would
certainly be an issue if the attacker needed to search the entire
map of the United States, let alone the entire world. However
in many cases the attacker has access to other sources of
information, including publicly available data, that can help
reduce the search space from a global scale down to a more
tractable area such as a region or a city.

If the attacker knows the name or e-mail address, they can
easily reduce the search space using online search (e.g., social
networks, city and state public records, etc.). In cases where
the victim's phone is accessing a network through Wi-Fi, the
attacker can make use of the IP address for geo-ip location
lookup.

Our work presents a proof-of-concept of these attacks, with
the intent to raise awareness about location privacy leakage
associated with accelerometer data. The results presentedhere
use displacements exclusively for starting point prediction. We
foresee the possibility of stronger attacks in real world examples
if attackers incorporate additional contextual information. For
instance, including additional sensors, such as an ambientlight
sensor and microphone, can further assist in determining where
the car is traveling (e.g., through tunnels, or near railroads).

Moreover, different roads have different speed limits, traf�c
patterns, road surfaces, road angles (both in the direction
of road as well as perpendicular), and road features (e.g.,
bridge transitions, speed bumps, potholes, uneven surface, etc.).
Temporal information such as traf�c light timings and road
congestion information could be used in addition for disam-
biguation, given the public availability of road congestion data.

C. Sensor Sampling Frequency

The effectiveness of the attack depends on the frequency
of the accelerometer readings. Consequently, if the sampling
frequency of the sensor is reduced, there is less information
to produce an accurate trajectory. The experiments shown here
are based on a sampling frequency of approximately 30 Hz.
However, the attack is still possible for longer trajectories due
to global constraints that accumulate.

D. Alternative Inference Methods

Similar types of attacks are possible with the use of cellular
and Wi-Fi signals. While this is true, we claim that our work
highlights a more signi�cant attack risk for two reasons. First,
inferring a trajectory with accelerometer data is more accurate
than using cellular and Wi-Fi traces. As shown from our
experiments, our trajectories and matched geo-locations indi-
cate a high degree of accuracy. Second, the method presented
in this paper is possible on the large category of devices
without cellular or Wi-Fi radio. These devices include PDAs,
tablet PCs, digital cameras, MP3 players, and handheld gaming
devices. Because these devices are widely used, this may be a
prevalent attack. Victims carrying such devices in their bags
and/or pockets may be unwittingly sharing their location with
malicious software.

VI. RELATED WORK

Several prior works show that accelerometer data collected
from wearable sensors can be used for activity recognition [1],
[10], [11], [16]. Bao et al. utilized multiple biaxial accelerom-
eters situated on different areas of the body to classify ev-
eryday activities with subject-independent training datawith



84% accuracy [1]. Ravi et al. found that using a single tri-
axial accelerometer worn near the pelvic region is suf�cient
to classify a wide variety of tasks with a high degree of
�delity, but certain tasks that involved only arm movement
were comparatively more dif�cult to identify [16]. Maurer et
al., similarly, used a single triaxial accelerometer to identify
user activities with great success [11]. In their study, however,
the accelerometer was combined with other sensors such as
ambient light and sound sensors to classify a wider gamut of
applications. Additionally, the accelerometer was placedon the
wrist instead of the pelvis. Liu et al. have created the uWave
software to use triaxial accelerometer data on mobile phones
for highly accurate gesture recognition [10].

There have also been studies on using acceleration data as
one part of a set of data to detect user locations [19], [13]. Lee
and Mase propose a dead reckoning, or incremental, approach
to using human motor data to predict user motion trajectories
given a starting point [19]. However, their device utilizeda
variety of motor sensors worn by human users of which the
accelerometer was only one component. Additionally, they
tackle the problem of determining location detection in indoor
environments via detecting how human users walked. More
closely related to our work, Mohan et al. developed Nericell, a
software package that piggybacks on mobile smartphones and
uses the accelerometer as one of a large suite of smartphone
sensors to detect traf�c conditions and road deformities such as
pot holes [13]. This study also tackles the problem of virtually
reorienting the received acceleration data, which can be of
arbitrary orientation.

VII. C ONCLUSION

As we demonstrate in this paper, accelerometer readings are
highly sensitive. Our results indicate that accelerometers can
be used to locate the device owner even if all localization
mechanisms on the device are disabled. We illustrate this
through a series of experiments conducted in Pittsburgh, Penn-
sylvania and Mountain View, California. Our proof-of-concept
implementation infers a smartphone's location to within a 200
meter radius of the true location.

We hope that this work will encourage future versions of
mobile platforms to restrict access to accelerometer information
as strictly as microphone and camera sensors.
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