

TRACER: A Framework for Facilitating Accurate and Interpretable Analytics for High Stakes Applications

Kaiping Zheng, Shaofeng Cai, Horng Ruey Chua, Wei Wang, Kee Yuan Ngiam, Beng Chin Ooi

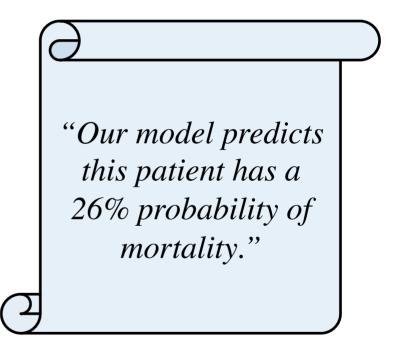
Speaker: Kaiping Zheng

Outline

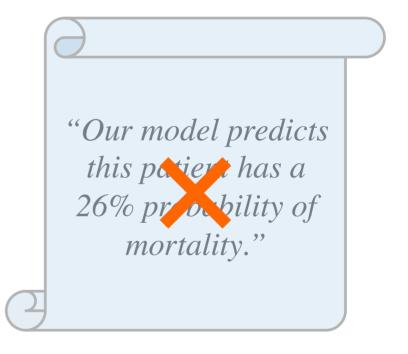
- Introduction
- TRACER Framework
- TITV Model
- Evaluation
- Conclusion

- Healthcare analytics refers to data analytics on a selected cohort of patients for tasks like diagnosis, prognosis, etc
- Neural network based models have emerged to improve the accuracy over traditional machine learning models
- An accurate analytic model helps healthcare workers and organizations make effective decisions on patient management and resource allocation, and thus reduces healthcare cost
- However, accuracy alone is not sufficient

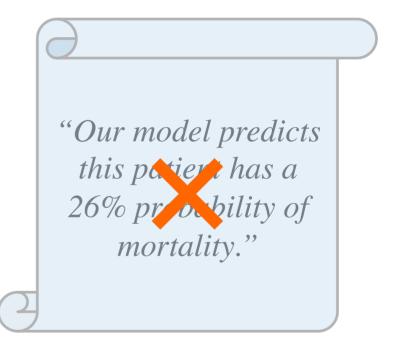
If train an accurate model for in-hospital mortality prediction



If train an accurate model for in-hospital mortality prediction



If train an accurate model for in-hospital mortality prediction



- This is unacceptable to doctors
- Cannot trust our model if there is no explanation of the prediction results
- Essential to devise a model which can derive interpretable as well as medically meaningful results

Feature - "time-invariant" and "time-variant" feature importance

- Exhibit a kind of time-invariant influence on a patient over the whole time series
- Its influence also has some variations in different time periods or visits

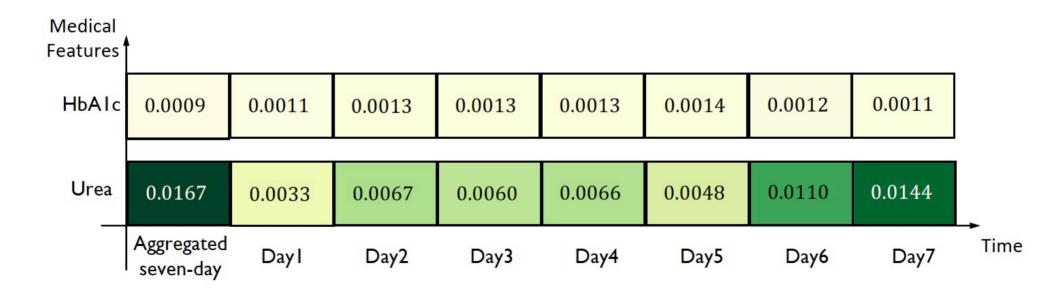


Figure: The normalized coefficients in both an LR model trained on the aggregated seven-day data (leftmost) and seven LR models trained separately. We illustrate with two representative laboratory tests HbAIc and Urea.

Medical Features	k)								
HbAlc	0.0009	0.0011	0.0013	0.0013	0.0013	0.0014	0.0012	0.0011	
Urea	0.0167	0.0033	0.0067	0.0060	0.0066	0.0048	0.0110	0.0144	-
	Aggregated seven-day	Dayl	Day2	Day3	Day4	Day5	Day6	Day7	Time

Figure: The normalized coefficients in both an LR model trained on the aggregated seven-day data (leftmost) and seven LR models trained separately. We illustrate with two representative laboratory tests HbAIc and Urea.

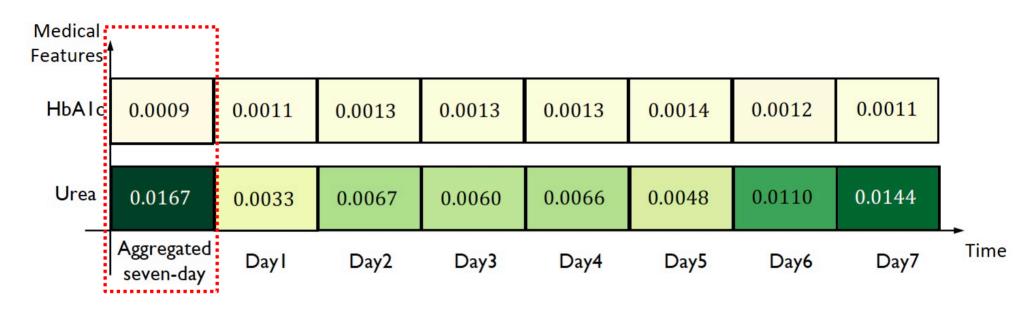


Figure: The normalized coefficients in both an LR model trained on the aggregated seven-day data (leftmost) and seven LR models ined separately. We illustrate with two representative laboratory tests HbA1c and Urea.

Time-Invariant Feature Importance

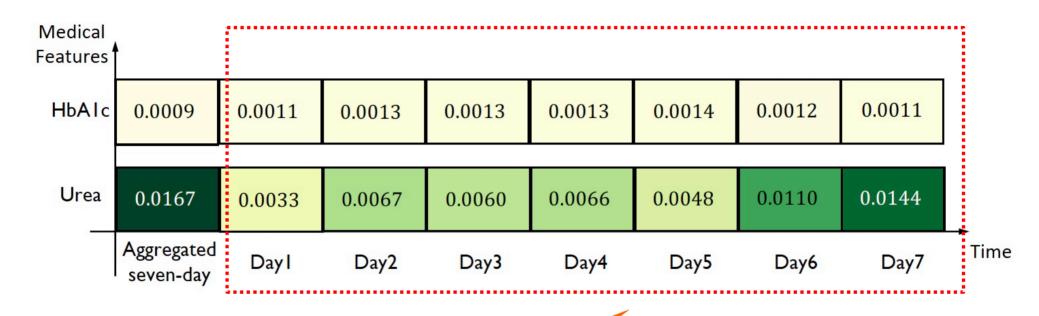


Figure: The normalized coefficients in both an LR model trained on the aggregated seven-day data (leftmost) and seven LR models trained separately. We illustrate with type presentative laboratory tests HbAIc and Urea.

Time-Variant Feature Importance

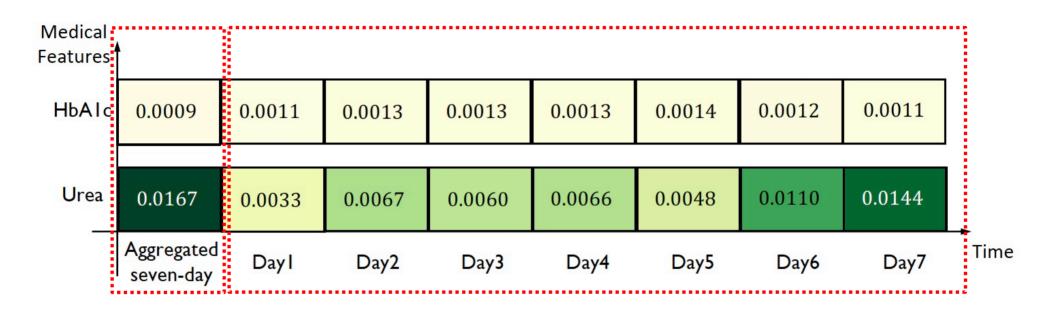


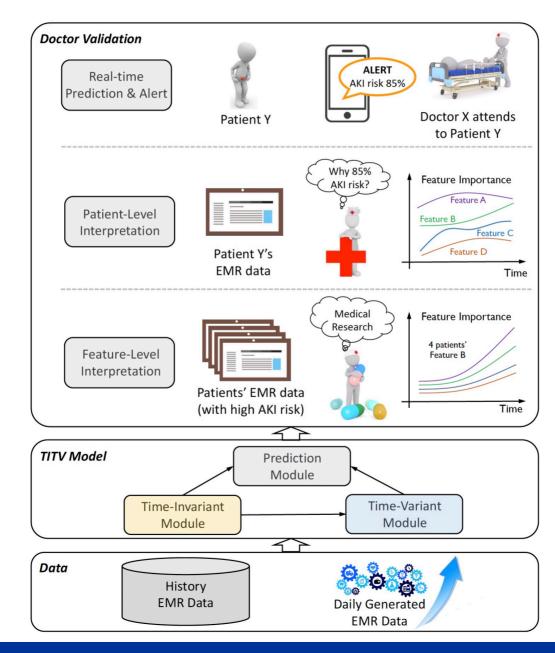
Figure: The normalized coefficients in both an LR model trained on the aggregated seven-day data (leftmost) and seven LR models trained separately. We illustrate with two representative laboratory tests HbA1c and Urea.

 Existing approaches do not differentiate time-invariant and time-variant feature importance (e.g., Choi et al. 2016; Ma et al. 2017; Sha et al. 2017)

Outline

- Introduction
- TRACER Framework
- TITV Model
- Evaluation
- Conclusion

TRACER Framework

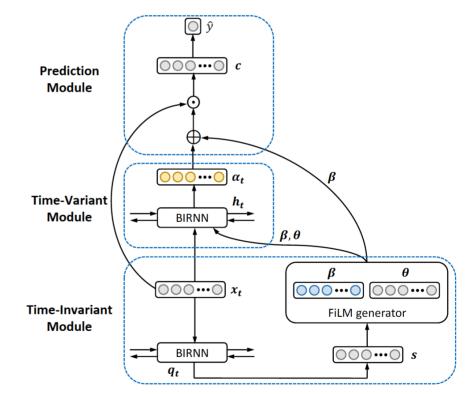


Outline

- Introduction
- TRACER Framework
- TITV Model
- Evaluation
- Conclusion

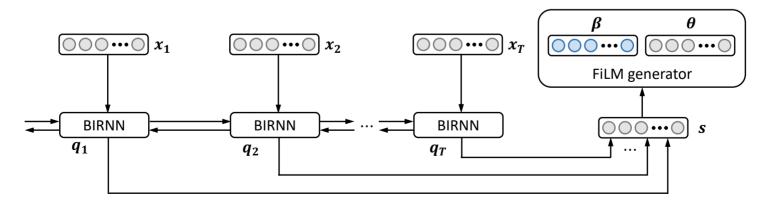
TITV Model

- TITV: an interpretable model capturing both time-invariant and time-variant feature importance for each sample
- Time-Invariant Module
 - \rightarrow time-invariant feature importance
 - via FiLM mechanism
- Time-Variant Module
 - \rightarrow time-variant feature importance
 - via self-attention mechanism
- Prediction Module
 - \rightarrow derive TITV's final prediction

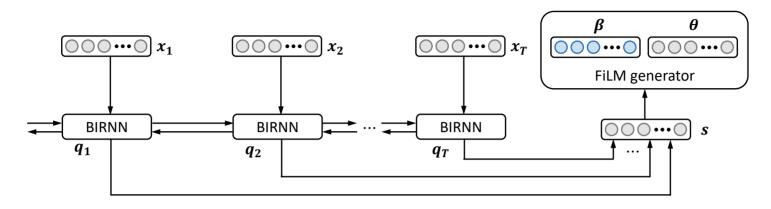


Time-Invariant Module

- Aim: model the time-invariant feature importance shared across time where data in all time windows are exploited
- FiLM feature-wise linear modulation
- → good at modelling feature importance
 (Dumoulin et al. 2018, Kim et al., 2017, Perez et al., 2018)
- Integrate FiLM in Time-Invariant Module



Time-Invariant Module



■ Bi-directional RNN computation → capture both the forward and the backward temporal relationship

$$(q_1, \cdots, q_t, \cdots, q_T) = BIRNN(x_1, \cdots, x_t, \cdots, x_T)$$

• Summary vector computation \rightarrow utilize all available data in all time windows.

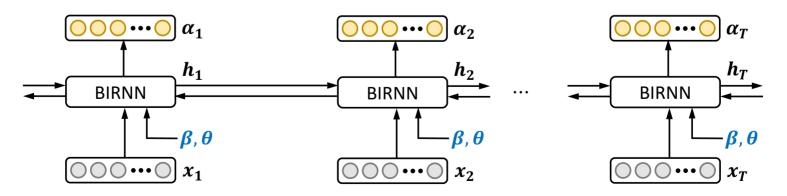
$$\boldsymbol{s} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{q}_t$$

• FiLM generator \rightarrow compute scaling parameter β and shifting parameter θ

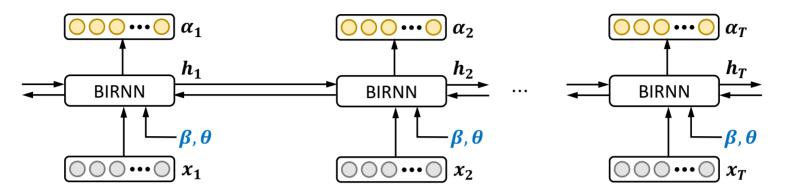
$$\beta = W_{\beta}s + b_{\beta}$$
$$\theta = W_{\theta}s + b_{\theta}$$

Time-Variant Module

- Aim: differentiate the influence of different features in different time windows
- Self-attention mechanism
- → successfully applied for many similar tasks
 (Cheng et al. 2016, Xu et al., 2015)
- Integrate self-attention mechanism in Time-Variant Module



Time-Variant Module



Process time-series input data via BIRNN_{FiLM}

$$(\mathbf{h}_1, \cdots, \mathbf{h}_t, \cdots, \mathbf{h}_T) = BIRNN_{FiLM}(\mathbf{x}_1, \cdots, \mathbf{x}_t, \cdots, \mathbf{x}_T; \boldsymbol{\beta}, \boldsymbol{\theta})$$

• $BIRNN_{FiLM}$ computation, with $FiLM(x; \beta, \theta) = \beta \odot x + \theta$

$$z_{t} = \sigma(FiLM(W_{z}x_{t}; \beta, \theta) + U_{z}h_{t-1})$$

$$r_{t} = \sigma(FiLM(W_{r}x_{t}; \beta, \theta) + U_{r}h_{t-1})$$

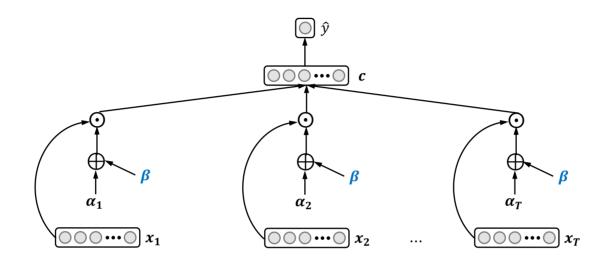
$$\widetilde{h_{t}} = \tanh(FiLM(\widetilde{W}x_{t}; \beta, \theta) + r_{t}\odot\widetilde{U}h_{t-1})$$

$$h_{t} = (1 - z_{t})\odot\widetilde{h_{t}} + z_{t}\odot h_{t-1}$$

Self-attention mechanism

$$\alpha_t = \tanh(W_\alpha h_t + b_\alpha)$$

Prediction Module



Obtain the overall influence from time-invariant and time-variant feature importance

$$\xi_t = \beta \oplus \alpha_t$$

Compute context vector by summarizing information at each time window t

$$\boldsymbol{c} = \sum_{t=1}^{T} \boldsymbol{\xi}_t \odot \boldsymbol{x}_t$$

Derive final predicted label

$$\hat{y} = \sigma(\langle \boldsymbol{w}, \boldsymbol{c} \rangle + b)$$

Feature Importance $FI(\hat{y}, x_{t,d})$

• Risk of a sample falling into the positive class \hat{y}

$$\hat{y} = \sigma \left(\sum_{t=1}^{T} \langle \boldsymbol{w}, (\boldsymbol{\beta} \bigoplus \boldsymbol{\alpha}_{t}) \odot \boldsymbol{x}_{t} \rangle + b \right)$$

• $x_{t,d}$'s Feature Importance to TITV's predicted label \hat{y} $FI(\hat{y}, x_{t,d}) = (\beta_d + \alpha_{t,d}) \cdot w_d$

• All appearing features collaboratively contribute to \hat{y} $\hat{y} = \sigma \left(\sum_{t=1}^{T} \sum_{d=1}^{D} FI(\hat{y}, x_{t,d}) \cdot x_{t,d} + b \right)$

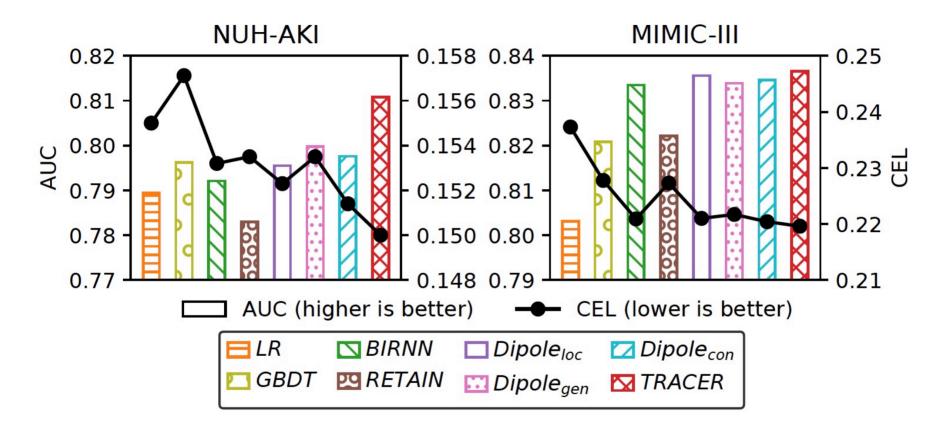
Outline

- Introduction
- TRACER Framework
- TITV Model
- Evaluation
- Conclusion

Evaluation

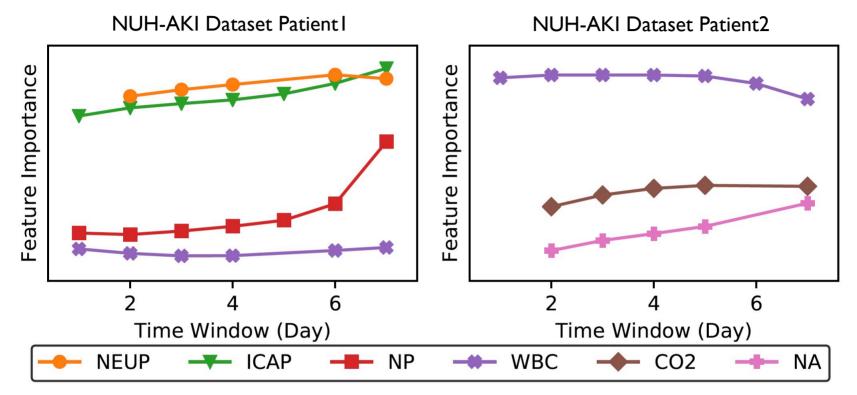
Datasets and Applications

- NUH-AKI dataset hospital-acquired AKI prediction
- MIMIC-III dataset in-hospital mortality prediction
- Baselines
 - LR
 - GBDT
 - BIRNN
 - RETAIN (Choi et al. 2016)
 - Dipole (Dipole_{loc}, Dipole_{gen}, Dipole_{con}) (Ma et al. 2017)
- Prediction Results
 - comparison results in terms of AUC and CEL
- Interpretation Results
 - patient-level interpretation & feature-level interpretation



- TRACER outperforms LR and GBDT
- TRACER outperforms RETAIN
- TRACER achieves better prediction performance than BIRNN and Dipole

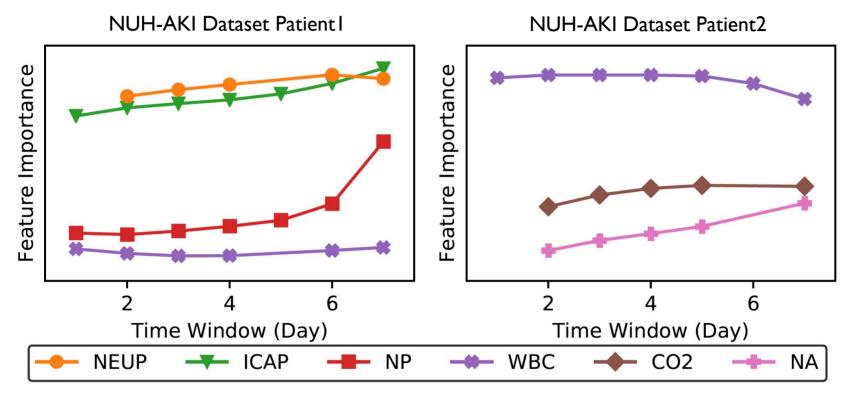
Patient-Level Interpretation



Features involved: "Neutrophils %" (NEUP), "Ionised CA, POCT" (ICAP), "Sodium, POCT" (NP), "White Blood Cell" (WBC), "Carbon Dioxide" (CO2) and "Serum Sodium" (NA).

- Patient I
 - NEUP and WBC: worsening infection
 - ICAP and NP: worsening electrolyte imbalance

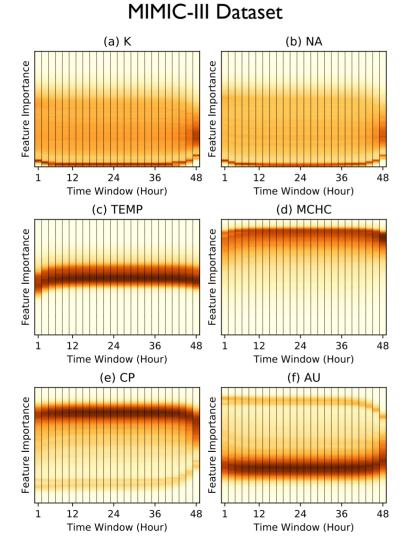
Patient-Level Interpretation



Features involved: "Neutrophils %" (NEUP), "Ionised CA, POCT" (ICAP), "Sodium, POCT" (NP), "White Blood Cell" (WBC), "Carbon Dioxide" (CO2) and "Serum Sodium" (NA).

- Patient2
 - WBC: presence of inflammation or infection
 - CO2: acidosis that builds up with progressive kidney dysfunction
 - NA: progressive NA-fluid imbalance and worsening kidney function

Feature-Level Interpretation



Features involved: "Serum Potassium" (K), "Serum Sodium" (NA), "Temperature" (TEMP), "Mean Corpuscular Hemoglobin Concentration" (MCHC), "Cholesterol, Pleural" (CP) and "Amylase, Urine" (AU).

- Low Feature Importance detected for common features which are not generally highly related to mortality
 - K & NA
- High Feature Importance detected for common features that are generally highly related to mortality
 - TEMP & MCHC
- Same feature's diverging patterns indicate different patient clusters
 - CP & AU

Outline

- Introduction
- TRACER Framework
- TITV Model
- Evaluation
- Conclusion

Conclusion

- Capture the feature importance in two aspects
- Time-invariant feature importance: overall influence of feature shared across time
- Time-variant feature importance: time-related influence varying along with time

Propose TRACER framework

- provide accurate and interpretable clinical decision support to doctors
- Devise an interpretable model TITV in TRACER
- Time-invariant feature importance via FiLM mechanism
- Time-variant feature importance via self-attention mechanism
- Evaluate the effectiveness of TRACER
- Prediction performance
- Interpretation capability: both patient-level and feature-level

Thank you!

