Resolving the Bias in Electronic Medical Records

Kaiping Zheng, Jinyang Gao, Kee Yuan Ngiam, Beng Chin Ooi, Wei Luen James Yip

National University of Singapore, National University Health System

- Patients tend to visit hospital more often when they feel sick \bullet
- Doctors tend to prescribe the lab examinations that show abnormality ۲

METHODOLOGY

EMR Regularization

Inspiration

- EMR Series Ψ is not a randomly sampled subset of Patients' Hidden Conditions Φ
- Probability that one tuple $\langle p, t, d, v \rangle$ (p: patient, t: time point, d: feature, v: value) is observed may depend on the medical feature and its value

Target of our work

Estimate the unobserved hidden conditions $\Phi - \Psi$ using EMR series Ψ

Benefits for Analytical Tasks

Characteristics of Medical Features

Condition Change Rate (CCR)

How a medical feature is likely to change from its condition in the previous observation

Observation Rate (OR)

Probability that a medical feature is exposed at a time point based on its actual condition at that time point

A Hidden Markov Model (HMM) Variant for Learning and Inference

Algorithm 1: EMR regularization with smoothing

Input: medical features Ω_D , observation sequences

MSE for NUH-CKD disease progression modelling R value for NUH-CKD disease progression modelling

CONCLUSION AND FUTURE WORK

EMR Regularization to Resolve Bias

- Consider CCR and OR as characteristics of medical features
- Employ an HMM variant for learning and inference •
- Impute missing values in EMR data more accurately •
- Improve the analytical performance after resolving the bias \bullet

 $\Omega_S^d = \{Y^{d,s} | Y^{d,s} = y_1^{d,s}, \cdots, y_T^{d,s}\}$ for each feature *d* and for each sequence s. A's prior for feature d is $Beta(a_A^d, b_A^d)$, B's prior for feature d is $Beta(a_B^d, b_B^d)$. **Output:** parameters $\lambda^d = (\Pi^d, A^d, B^d)$ for each $d \in \Omega_D$, hidden state probability sequence $P(q_t^{d,s} = z_i | Y^{d,s}, \lambda^d)$. 1: For each medical feature $d \in \Omega_D$ Initialize $\lambda^d = (\Pi^d, A^d, B^d)$ Iterate EM process until convergence

- E-Step:
- For each observation sequence $s \in \Omega_S^d$
 - Compute $\xi_t(q_t^{d,s} = z_i, q_{t+1}^{d,s} = z_j)$ (Equation 3)
 - Compute $\gamma_t(q_t^{d,s} = z_j)$ (Equation 4)
 - M-Step:
- Update $\hat{\Pi}_{i}^{d}$ (Equation 5)
- Update transition matrix $\hat{A}_{i,i}^d$ (Equation 6) 10:
- Update emission matrix \hat{B}_{j,v_k}^d (Equation 7) 11:
- Compute $P(q_t^{d,s} = z_i | Y^{d,s}, \lambda^d)$ (Equation 8) **return** $\lambda^d = (\Pi^d, A^d, B^d), P(q_t^{d,s} = z_i | Y^{d,s}, \lambda^d)$

Future Directions

- Model different diseases jointly in the probabilistic graphical model for capturing the \bullet relationships in between
- Model the patient personalization as different patients might behave differently in terms • of CCR and OR

ACKNOWLEDGMENTS

NUHS **National University** Health System