Towards Boosting Performance of Healthcare Analytics: Resolving Challenges in Electronic Medical Records

Presenter: Kaiping Zheng
Oct 3rd, 2018
Outline

- Electronic Medical Records
- Disease Progression Modelling
- Resolving the Irregularity Challenge
- Resolving the Bias Challenge
- GEMINI Platform
Electronic Medical Records (EMR)

- Time series data that records patients’ visits to hospitals
- Including a wide range of medical data

<table>
<thead>
<tr>
<th>Age</th>
<th>xx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>xx</td>
</tr>
</tbody>
</table>

Socio-demographic information

Structured Medical Features
- Diagnoses
- Lab Tests
- Medications
- Procedures

Unstructured Medical Features
Electronic Medical Records (EMR)

- May 1, 2016
- May 10, 2016
- August 10, 2016
- February 12, 2017

Diabetes
Glucose
Insulin
Amputation
An example patient’s time series EMR data with lab tests (eGFR, HbA1c, Creatinine, Glucose), diagnoses (N18.3, N17.9, E11.9), medications (Insulin) and procedures (Dialysis). This longitudinal patient matrix denotes different challenges in EMR data.

- Irregularity
- Bias
- High Dimensionality
- Missing Data
- …
Outline

- Electronic Medical Records
- Disease Progression Modelling
- Resolving the Irregularity Challenge
- Resolving the Bias Challenge
- GEMINI Platform
EMR Data Analytics

Predictive Application

Disease Progression Modeling

Stable & Severe

Deteriorating

Stable & Mild

Others

ICU In-hospital Mortality Prediction
ICU Diagnosis by Category Prediction
Readmission Prediction

Basic Application

Cohort Analysis

Medical Feature Embedding

Diabetes Phenotype

- Diabetes with ketoacidosis
- Diabetes with renal manifestations

- Abnormal HbA1C
- Abnormal Blood Pressure
- Abnormal Cholesterol

Phenotyping

Image Analysis

Input images

Deep learning model
Disease Progression Modelling

Comparably Stable Progression Trajectory

- Patient1
- Patient2
- Patient3
- Patient4
- Patient5
- Patient6

GFR Value vs. Time

Deteriorating Progression Trajectory

- Patient1
- Patient2
- Patient3

GFR Value vs. Time

Medical Features:
- DM
- HbA1C
- CKD
- Glucose
- Insulin
- Dialysis

Severity Score Labeled vs. Time

CutPoint t_ψ
Outline

- Electronic Medical Records
- Disease Progression Modelling
- Resolving the Irregularity Challenge
- Resolving the Bias Challenge
- GEMINI Platform
Irregularity Challenge

Two-Level Irregularity

- Visit-level irregularity, Feature-level irregularity

 - Visit-Level Irregularity
 - EMR data appears irregularly with time
 - Time span between consecutive visits is irregular

 - Feature-Level Irregularity
 - Same feature appears irregularly in EMR data with time
 - Time span between a feature’s consecutive occurrences is irregular
Irregularity Challenge

Electronic Medical Records (EMR)

May 1, 2016 May 10, 2016 August 10, 2016 Visit-Level Irregularity February 10, 2017

Diag:
- CKD
- DM
- AKF

Lab:
- GLU
- HbA1C

Diag:
- CKD
- DM
- AKF

Lab:
- GLU
- HbA1C

Diag:
- CKD
- DM
- AKF

Lab:
- GLU
- HbA1C

Feature-Level Irregularity
Methodology

Disease Progression Modeling (DPM)

Given a set of training samples \(\{< x, y, \Delta t >\} \), the objective of DPM is to obtain a mapping function \(\Phi \) that minimizes the following loss function over all samples:

\[
L(\Phi(x, \Delta t), y)
\]
Methodology

Loss function: \(L = \frac{1}{|\{<x,y,\Delta t>\}|} \sum (y^{(n)} - y)^2 \)

Back-propagation algorithm for updating the model parameters
Compute a decay term q using $\tau(t)$ and multiply q to $z(t)$

- $q = 1 - \tanh(W_\tau \tau(t) + b_\tau)$
- $z(t) = \text{sigmoid} \left((W_z x(t) + U_z h(t-1)) \odot q \right)$
Evaluation

ADNI dataset
- Public Alzheimer’s disease dataset from Alzheimer’s Disease Neuroimaging Initiative
- Severity is measured by Mini-Mental State Examination (MMSE) test ($\in [0,30]$)

NUH-CKD dataset
- Extract from a chronic kidney disease (CKD) dataset from National University Hospital in Singapore
- Choose patients with Stage 3 CKD or higher as cohort, “NUH-CKD” dataset
- Severity is measured by Glomerular Filtration Rate (GFR) test ($\in [0,60]$)

Evaluation metrics
- Mean squared error (MSE)
- Pearson product-moment correlation coefficient (R) value
Evaluation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>ADNI1 Dataset</th>
<th>NUH-CKD Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td># of medical features</td>
<td>591</td>
<td>603</td>
</tr>
<tr>
<td># of demo. features</td>
<td>3 — age, gender, education time</td>
<td>2 — age, gender</td>
</tr>
<tr>
<td># of patients</td>
<td>819</td>
<td>2740</td>
</tr>
<tr>
<td>Time span</td>
<td>4 years, M00 to M48, (“M” — “month”)</td>
<td>1 year, W00 to W52, (“W” — “week”)</td>
</tr>
<tr>
<td># of time steps</td>
<td>7 (aggregated by every 6 months)</td>
<td>52 (aggregated by every week)</td>
</tr>
<tr>
<td>CutPoint (t_ψ) setting</td>
<td>M12, M18, M24</td>
<td>W16, W24, W32</td>
</tr>
<tr>
<td># of samples</td>
<td>t_ψ=M12: 1529</td>
<td>t_ψ=W16: 3601</td>
</tr>
<tr>
<td></td>
<td>t_ψ=M18: 1200</td>
<td>t_ψ=W24: 2793</td>
</tr>
<tr>
<td></td>
<td>t_ψ=M24: 558</td>
<td>t_ψ=W32: 1585</td>
</tr>
</tbody>
</table>
Evaluation

GRU-based baselines
- Window-Based Model
- Visit-Level Model
- Visit-Level Time Decay Model

Multi-task learning (MTL) methods (Zhou et al., 2012)
- Least Convex Fused Group Lasso (cFSGL)
- Least Non-Convex Fused Group Lasso (nFSGL), denote two formulations as nFSGL-1 and nFSGL-2 in experiments

Our proposed method
- Feature-Level Time Decay Model
Evaluation

For the same CutPoint setting, from Window-Based Model to Feature-Level Time Decay Model, performance is mainly on the ascending trend; Feature-Level Time Decay Model more accurate than MTL-based methods;

- When CutPoint becomes larger, MSE values of GRU-based models decrease

Figure: Experimental results in the ADNI dataset

Evaluation

- From W16 to W24, GRU-based models achieve larger MSE values - decreasing number of samples
- From W24 to W32, GRU-based models achieve smaller MSE values - more time series features
- Both the sample length and sample number affect the model performance

Summary

I. Identify the irregularity characteristic residing in EMR data both at the visit level and at the feature level

II. Capturing feature-level irregularity can benefit EMR data analytics through Feature-Level Time Decay Model

- Handle feature-level irregularity
- Decay the influence of previous information on patients’ current state
- Learn decaying parameters for different features

III. Evaluate proposed Feature-Level Time Decay Model in both a public ADNI dataset and a private NUH-CKD dataset for two chronic disease cohorts
Outline

- Electronic Medical Records
- Disease Progression Modelling
- Resolving the Irregularity Challenge
- Resolving the Bias Challenge
- GEMINI Platform
How Is EMR Data Generated?

- Say Patient1 visits hospital 12 times per year
 - Regularly sampled?
 - Patient1 visits hospital on the first day of every month?

- Randomly sampled?
 - Everyday, Patient1 tosses 5 coins, if all heads (1/32 probability), visits hospital?

- No, Patient1 visits hospital only when Patient1 feels sick
- EMR data is not regularly or randomly sampled
How Is EMR Data Generated?

- Patient1 always visits hospital due to respiratory infection
 - Can we conclude that Patient1 has respiratory infection every day?

- Patient2 always visits hospital due to chronic kidney disease
 - Can we conclude that Patient2 has chronic kidney disease every day?

- What is the difference?
If a doctor or analyst want to analyze the EMR data with missing values, they may employ traditional imputation methods directly → Misinterpretation
Bias in EMR Data

- Bias – recorded EMR series is different from patients’ actual hidden conditions
 - Patients tend to visit hospital more often when they feel sick
 - Doctors tend to prescribe the lab examinations that show abnormality

- To Solve Bias Challenge – EMR Regularization
 - Transform the biased EMR series into unbiased EMR series
Resolving Bias in EMR Data

- **Condition Change Rate (CCR)**
 - Measure how a medical feature is likely to change from its condition in the previous observation

- **Observation Rate (OR)**
 - Measure the probability that a medical feature is exposed at a time point based on its actual condition at that time point
Resolving Bias in EMR Data

- Imputation accuracy evaluation

Resolving Bias in EMR Data

Figure: MSE for NUH-CKD disease progression modelling

Resolving Bias in EMR Data

Figure: R value for NUH-CKD disease progression modelling

Summary

- **EMR Regularization to Resolve Bias**
 - Consider CCR and OR as characteristics of medical features
 - Employ an HMM variant for learning and inference
 - Impute missing values in EMR data more accurately
 - Improve the analytic performance after resolving the bias

- **Possible Extensions:**
 - Model different diseases jointly in the probabilistic graphical model for capturing the relationships in between
 - Model the patient personalization as different patients might behave differently in terms of CCR and OR
Outline

- Electronic Medical Records
- Disease Progression Modelling
- Resolving the Irregularity Challenge
- Resolving the Bias Challenge
- GEMINI Platform
GEMINI Platform

Overview of GEMINI

https://www.comp.nus.edu.sg/~dbsystem/gemini/
Advice to Doctors on Intervention

- Suggest to guarantee the monitoring for Patient 1 → may need dialysis or kidney transplant
- Suggest healthcare workers to provide more aggressive interventions to Patient 2 in advance
- Suggest to guarantee the monitoring for Patient 3
Thank you!