SurFi: Detecting Surveillance Camera Looping Attacks with Wi-Fi Channel State Information

Nitya Lakshmanan*, Inkyu Bang*, Min Suk Kang*, Jun Han*, Jong Taek Lee#

*National University of Singapore, †Agency for Defense Development, #Electronics and Telecommunications Research Institute

+ research done while working in NUS
Surveillance cameras are now everywhere

China to have 626 million surveillance cameras within 3 years

Consumer Video Surveillance Market to Top $1 Billion in 2018, IHS Markit Says

Acceptance of video surveillance for the home has grown, in part because people now have more control over their surveillance systems

Nov 08, 2018
Surveillance camera looping attack

Place of interest

Surveillance system

Video shows a normal activity!

valuable

Security guard

video feed
Surveillance camera looping attack

Place of interest

Surveillance system

No activity

Video shows a normal activity!
Surveillance camera looping attack

Place of interest

valuable

video feed
looped!

Surveillance system

security guard

Video shows a normal activity!

No activity

Looped
Surveillance camera looping attack

Place of interest

- valuable

Robbery

Surveillance system

- security guard

Video feed

looped!

No activity

- Looped

Reality

Seen by the guard
Surveillance camera looping is a *reality now*

Exploiting Surveillance Cameras
Like a Hollywood Hacker
BlackHat 2013

Looping Surveillance Cameras
like in the movies
DefCon 2015

Live video

Replayed image

Modified timestamp
Mitigation of camera looping attack is hard

Surveillance camera with integrity protection

Video frame comparison

Incur prohibitive cost

Not robust against an adversary who can manipulate the video
Mitigation of camera looping attack is **hard**

- Surveillance camera with integrity protection
- Video frame comparison

Can we mitigate the camera looping attack effectively at no extra hardware cost?

- Incur prohibitive cost
- Not robust against an adversary who can **manipulate** the video
SurFi (Surveillance with Wi-Fi) detects camera looping attack

Valuable place of interest

Video feed *looped*!

Wi-Fi receiver

Channel state information (CSI)

SurFi (Surveillance with Wi-Fi) compares channel state information (CSI) with the video feed to detect attacks.

No extra hardware cost

Surveillance system

Video shows a normal activity!

Low false alarms

Security guard

Attack detected!
SurFi (Surveillance with Wi-Fi) detects camera looping attack

SurFi achieves attack detection accuracy of 98.8% and false positive rate of 0.1%
System model: *indoor space* under *video surveillance*

- ✓ Place of interest such as bank or jewelry store
- ✓ Field-of-view of the camera
- ✓ CSI measurement cannot be compromised
Threat model: adversary can loop surveillance video feed

- ✓ Manipulate video feed
- ✓ Evade detection of his unauthorized activities
Challenge: *video* and *CSI* signals are **different**

- ✓ Displacement of body keypoints (e.g., wrist, elbow)
- ✓ Amplitude of subcarriers
Challenge: *video* and *CSI* signals are *different*

How to find *common attributes* for reliable comparison of two different sensing modalities?

- Displacement of body keypoints (e.g., wrist, elbow)
- Amplitude of subcarriers
Main intuition: Both signals capture the similar *timing* and *frequency* components

- **Timing components:** Start and end time of the activity
- **Frequency component:** Prominent frequency
Main intuition: Both signals capture the similar *timing* and *frequency* components

- **Timing components:** Start and end time of the activity
- **Frequency component:** Prominent frequency

Reliable detection observed consistently across *different activities, people, and times*
System design of SurFi

Data Pre-processing module
- OpenPose
- Denoise

CSI event detector module
- New Event (i) detected

Attribute extraction module
- Video attributes
- CSI attributes

Comparison module
- Compute similarity score \(S(i) \)

Decision module
- Event(1), \(S(1) \)
- Event(i), \(S(i) \)
- Event(N), \(S(N) \)

looped or not?
1) Data preprocessing module: *Preprocesses* the raw video and CSI signals.
1) Data preprocessing module: **Preprocesses** the raw video and CSI signals

- **Raw video signal**
 - Video

- **Processed video signal**
 - OpenPose
 - Filter high frequency noises

- **Raw CSI signal**
 - CSI

- **Processed CSI signal**
 - Denoise
 - ✓ Filter high frequency noises
2) CSI event detector module:
Uses the **motion energy** to detect the **start of a new event**
3) Attribute extraction module:

Extracts *common attributes*
4) Comparison module: Computes the **per-event similarity score** of a single event

![Diagram showing comparison of video and CSI data](image)
5) Decision module:
Outputs *looped or not* after observing *multiple events*

The more the events seen, the higher the confidence for the final decision
Experiment setup

- Redmi Note 4 phone camera (13-Megapixel)
- Wi-Fi transmitter receiver pair set up on Thinkpad laptops running Linux 802.11n CSI tools
Three events

(E1) stand/arm waving

(E2) sit/fist thumping

(E3) sit/clapping
Clear difference in the per-event similarity

Legit: High similarity score

Attack: Low similarity score

Per-event similarity score

Tested Events

E1 E2 E3
Multiple events are observed for a duration of time

Example:
Attack detection accuracy *increases* with more events.
Future improvements

• **Stronger adversary**
 • Performs criminal activities while replicating start + end times, prominent frequency of legitimate events
 • **Future work:** Investigate more attributes

• **Multiple events in sequence**
 • **Future work:** Activity recognition techniques
Deployment consideration

- **Threshold calibration**
 - Adjust to the new environment

- **Placement of the receiver**
 - Strategically placing the receiver way from the wall
Conclusion

• First *practical system* to detect surveillance camera looping attack in real-time

• Defense technique requiring *no additional hardware deployment*

• Attack detection accuracy of **98.8%** with false positive rate of **0.1%**

• *Future work*: more diverse events, sophisticated adversary model
Questions?

nityalak@comp.nus.edu.sg
Extra Slides
Activities *behind-the-wall* may degrade the performance of SurFi.

Conduct experiments to test behind-the-wall activities.
Strategically placing the receiver at a **certain distance** from the wall will minimize false alarms.

- Varying motion energy may lead to false detection of an activity.
- Activities are not detected since the corresponding motion energy is close to zero.