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Bayesian networks

Chapter 14 
Sections 1 – 2
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Outline

Syntax
Semantics
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Bayesian networks

A simple, graphical notation for conditional independence 
assertions and hence for compact specification of full joint 
distributions

Syntax:
 a set of nodes, one per variable

a directed, acyclic graph (link ≈ "directly influences")
a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

In the simplest case, conditional distribution represented as 
a conditional probability table (CPT) giving the distribution 
over Xi for each combination of parent values
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Example

Topology of network encodes conditional independence 
assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent given 
Cavity
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Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary 
doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:
A burglar can set the alarm off
An earthquake can set the alarm off
The alarm can cause Mary to call
The alarm can cause John to call
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Example contd.
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Compactness

A CPT for Boolean Xi with k Boolean parents has 2k rows for the combinations of 
parent values

Each row requires one number p for Xi = true
(the number for  Xi = false is just 1-p)

If each variable has no more than k parents, the complete network requires 
O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)
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Semantics

The full joint distribution is defined as the product of the local conditional 
 distributions:

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi  ))

e.g., P(j ∧ m ∧ a ∧ ¬b ∧ ¬  e)
= P (j | a) P (m | a) P (a | ¬b, ¬e) P (¬b) P (¬  e)

 

n
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Constructing Bayesian networks

1. Choose an ordering of variables X1, … ,Xn

2. For i = 1 to n
add Xi  to the network
select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

 This choice of parents guarantees:
P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1) (chain rule)

= πi =1P (Xi | Parents(Xi)) (by construction)

n

n



10 Mar 2004 CS 3243 - Bayesian Networks 10

Suppose we choose the ordering  M, J, A, B, E

P(J | M) = P  (J)?

Example
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Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P  (J)? No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?

Example
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Suppose we choose the ordering  M, J, A, B, E

P(J | M) = P  (J)? No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? 
P(B | A, J, M) = P(B)?

Example
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 Suppose we choose the ordering M, J, A, B, E

P(J | M) = P  (J)? No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? Yes
P(B | A, J, M) = P(B)? No
P(E | B, A ,J, M) = P(E | A)?
P(E | B, A, J, M) = P(E | A, B)?

Example
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 Suppose we choose the ordering M, J, A, B, E

P(J | M) = P  (J)? No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? Yes
P(B | A, J, M) = P(B)? No
P(E | B, A ,J, M) = P(E | A)? No
P(E | B, A, J, M) = P(E | A, B)? Yes

Example
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Example contd.

Deciding conditional independence is hard in noncausal  directions
(Causal models and conditional independence seem hardwired for 

 humans!)
 Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed
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Summary

Bayesian networks provide a natural 
representation for (causally induced) 
conditional independence
Topology + CPTs = compact representation 
of joint distribution
Generally easy for domain experts to 
construct


