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Informed search algorithms

Chapter 4
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Material

Chapter 4 Section 1 -  3
Excludes memory-bounded heuristic 

 search
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Outline

Best-first search
Greedy best-first search
A* search
Heuristics
Local search algorithms
Hill-climbing search
Simulated annealing search
Local beam search
Genetic algorithms
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Review: Tree search

A search strategy is defined by picking the 
order of node expansion 
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Best-first search

Idea: use an evaluation function f(n) for each node
 estimate of "desirability"

 Expand most desirable unexpanded node

Implementation:
Order the nodes in fringe in decreasing order of 

 desirability

Special cases:
greedy best-first search
A*  search
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Romania with step costs in km
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Greedy best-first search

Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal 
e.g., hSLD(n) = straight-line distance from n

 to Bucharest
Greedy best-first search expands the node 
that appears  to be closest to goal
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Greedy best-first search example
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Greedy best-first search example
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Greedy best-first search example
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Greedy best-first search example
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Properties of greedy best-first 
search

Complete? No – can get stuck in loops, e.g., 
Iasi Neamt Iasi Neamt  
Time? O(bm), but a good heuristic can give 

 dramatic improvement
Space? O(bm) -- keeps all nodes in 

 memory
Optimal?  No
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A* search

Idea: avoid expanding paths that are already 
 expensive

Evaluation function f(n) = g(n) + h(n) 
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal
f(n) = estimated total cost of path through n

 to goal
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A* search example
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A* search example
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A* search example
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A* search example
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A* search example
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A* search example
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Admissible heuristics

A heuristic h(n) is admissible if for every node n,
h(n) ≤ h*(n), where h*(n) is the true cost to reach 
the goal state from n  .
An admissible heuristic never overestimates the 
cost to reach the goal, i.e., it is optimistic 
Example: hSLD(n) (never overestimates the actual 

 road distance)
Theorem: If h(n) is admissible, A* using TREE-
SEARCH  is optimal



21 Jan 2004 CS 3243 - Heuristics 21

Optimality of A* (proof)

Suppose some suboptimal goal G2 has been generated and is in the 
fringe. Let n be an unexpanded node in the fringe such that n is on a 
shortest path to an optimal goal G  .

f(G2)  = g(G2) since h(G2) = 0 
g(G2) > g(G) since G2 is suboptimal 
f(G)   = g(G) since h(G) = 0 
f(G2)  > f(G) from above 
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Optimality of A* (proof)

Suppose some suboptimal goal G2 has been generated and is in the 
fringe. Let n be an unexpanded node in the fringe such that n is on 
a shortest path to an optimal goal G  .

f(G2) > f(G) from above 
h(n) ≤ h^*(n) since h is admissible
g(n) + h(n) ≤ g(n) + h*(n) 
f(n) ≤ f(G  )

Hence f(G2) > f(n), and A* will never select G2  for expansion
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Consistent heuristics
A heuristic is consistent if for every node n, every successor n' of n
generated by any action a  ,   

h(n) ≤ c(n,a,n') + h(n') 

If h  is consistent, we have
f(n') = g(n') + h(n') 

= g(n) + c(n,a,n') + h(n') 
≥ g(n) + h(n) 
= f(n  )

i.e., f(n) is non-  decreasing along any path.
Theorem: If h(n) is consistent, A* using GRAPH-SEARCH  is optimal



21 Jan 2004 CS 3243 - Heuristics 24

Optimality of A*

A* expands nodes in order of increasing f  value

Gradually adds "f-contours" of nodes 
Contour i has all nodes with f=fi, where fi < fi+1 
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Properties of A*

Complete? Yes (unless there are infinitely 
many nodes with f ≤ f(G)  )
Time?  Exponential
Space?  Keeps all nodes in memory
Optimal?  Yes
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Admissible heuristics

E.g., for the 8-  puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

 (i.e., no. of squares from desired location of each tile)

h1(S) = ? 
h2(S) = ?  
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Admissible heuristics

E.g., for the 8-  puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

 (i.e., no. of squares from desired location of each tile)

h1(S) = ? 8
h2(S) = ? 3+1+2+2+2+3+3+2 = 18
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Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1
h2  is better for search

Typical search costs (average number of nodes 
 expanded):

d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes 
A*(h2) = 73 nodes 

d=24 IDS = too many nodes
A*(h1) = 39,135 nodes 
A*(h2  ) = 1,641 nodes 
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Relaxed problems

A problem with fewer restrictions on the actions is 
called a relaxed problem 
The cost of an optimal solution to a relaxed 
problem is an admissible heuristic for the original 

 problem
If the rules of the 8-puzzle are relaxed so that a tile 
can move anywhere, then h1(n) gives the shortest 

 solution
If the rules are relaxed so that a tile can move to 
any adjacent square, then h2(n) gives the shortest 

 solution
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Local search algorithms

In many optimization problems, the path to the 
goal is irrelevant; the goal state itself is the 

 solution

State space = set of "complete" configurations
Find configuration satisfying constraints, e.g., n-
queens

In such cases, we can use local search algorithms
 keep a single "current" state, try to improve it
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Example: n-queens

Put n queens on an n × n board with no two 
queens on the same row, column, or 

 diagonal
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Hill-climbing search

"Like climbing Everest in thick fog with 
 amnesia"
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Hill-climbing search

Problem: depending on initial state, can get 
 stuck in local maxima
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Hill-climbing search: 8-queens problem

h = number of pairs of queens that are attacking each other, either 
directly or indirectly 
h = 17  for the above state
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Hill-climbing search: 8-queens problem

A local minimum with h = 1 
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Simulated annealing search

Idea: escape local maxima by allowing some "bad" 
moves but gradually decrease  their frequency
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Properties of simulated annealing search

One can prove: If T decreases slowly enough, then 
simulated annealing search will find a global 

 optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, 
 etc
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Genetic algorithms

A successor state is generated by combining two parent 
 states

Start with k randomly generated states (population  )

A state is represented as a string over a finite alphabet 
 (often a string of 0s and 1s)

Evaluation function (fitness function). Higher values for 
 better states.

Produce the next generation of states by selection, 
 crossover, and mutation
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Genetic algorithms

Fitness function: number of non-attacking pairs of queens 
(min = 0, max = 8 ×  7/2 = 28)

 24/(24+23+20+11) = 31%
 23/(24+23+20+11) = 29% etc
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Genetic algorithms


