
21 Jan 2004 CS 3243 - Heuristics 1

Informed search algorithms

Chapter 4

21 Jan 2004 CS 3243 - Heuristics 2

Material

Chapter 4 Section 1 - 3
Excludes memory-bounded heuristic

 search

21 Jan 2004 CS 3243 - Heuristics 3

Outline

Best-first search
Greedy best-first search
A* search
Heuristics
Local search algorithms
Hill-climbing search
Simulated annealing search
Local beam search
Genetic algorithms

21 Jan 2004 CS 3243 - Heuristics 4

Review: Tree search

A search strategy is defined by picking the
order of node expansion

21 Jan 2004 CS 3243 - Heuristics 5

Best-first search

Idea: use an evaluation function f(n) for each node
 estimate of "desirability"

 Expand most desirable unexpanded node

Implementation:
Order the nodes in fringe in decreasing order of

 desirability

Special cases:
greedy best-first search
A* search

21 Jan 2004 CS 3243 - Heuristics 6

Romania with step costs in km

21 Jan 2004 CS 3243 - Heuristics 7

Greedy best-first search

Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal
e.g., hSLD(n) = straight-line distance from n

 to Bucharest
Greedy best-first search expands the node
that appears to be closest to goal

21 Jan 2004 CS 3243 - Heuristics 8

Greedy best-first search example

21 Jan 2004 CS 3243 - Heuristics 9

Greedy best-first search example

21 Jan 2004 CS 3243 - Heuristics 10

Greedy best-first search example

21 Jan 2004 CS 3243 - Heuristics 11

Greedy best-first search example

21 Jan 2004 CS 3243 - Heuristics 12

Properties of greedy best-first
search

Complete? No – can get stuck in loops, e.g.,
Iasi Neamt Iasi Neamt
Time? O(bm), but a good heuristic can give

 dramatic improvement
Space? O(bm) -- keeps all nodes in

 memory
Optimal? No

21 Jan 2004 CS 3243 - Heuristics 13

A* search

Idea: avoid expanding paths that are already
 expensive

Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal
f(n) = estimated total cost of path through n

 to goal

21 Jan 2004 CS 3243 - Heuristics 14

A* search example

21 Jan 2004 CS 3243 - Heuristics 15

A* search example

21 Jan 2004 CS 3243 - Heuristics 16

A* search example

21 Jan 2004 CS 3243 - Heuristics 17

A* search example

21 Jan 2004 CS 3243 - Heuristics 18

A* search example

21 Jan 2004 CS 3243 - Heuristics 19

A* search example

21 Jan 2004 CS 3243 - Heuristics 20

Admissible heuristics

A heuristic h(n) is admissible if for every node n,
h(n) ≤ h*(n), where h*(n) is the true cost to reach
the goal state from n .
An admissible heuristic never overestimates the
cost to reach the goal, i.e., it is optimistic
Example: hSLD(n) (never overestimates the actual

 road distance)
Theorem: If h(n) is admissible, A* using TREE-
SEARCH is optimal

21 Jan 2004 CS 3243 - Heuristics 21

Optimality of A* (proof)

Suppose some suboptimal goal G2 has been generated and is in the
fringe. Let n be an unexpanded node in the fringe such that n is on a
shortest path to an optimal goal G .

f(G2) = g(G2) since h(G2) = 0
g(G2) > g(G) since G2 is suboptimal
f(G) = g(G) since h(G) = 0
f(G2) > f(G) from above

21 Jan 2004 CS 3243 - Heuristics 22

Optimality of A* (proof)

Suppose some suboptimal goal G2 has been generated and is in the
fringe. Let n be an unexpanded node in the fringe such that n is on
a shortest path to an optimal goal G .

f(G2) > f(G) from above
h(n) ≤ h^*(n) since h is admissible
g(n) + h(n) ≤ g(n) + h*(n)
f(n) ≤ f(G)

Hence f(G2) > f(n), and A* will never select G2 for expansion

21 Jan 2004 CS 3243 - Heuristics 23

Consistent heuristics
A heuristic is consistent if for every node n, every successor n' of n
generated by any action a ,

h(n) ≤ c(n,a,n') + h(n')

If h is consistent, we have
f(n') = g(n') + h(n')

= g(n) + c(n,a,n') + h(n')
≥ g(n) + h(n)
= f(n)

i.e., f(n) is non- decreasing along any path.
Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

21 Jan 2004 CS 3243 - Heuristics 24

Optimality of A*

A* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes
Contour i has all nodes with f=fi, where fi < fi+1

21 Jan 2004 CS 3243 - Heuristics 25

Properties of A*

Complete? Yes (unless there are infinitely
many nodes with f ≤ f(G))
Time? Exponential
Space? Keeps all nodes in memory
Optimal? Yes

21 Jan 2004 CS 3243 - Heuristics 26

Admissible heuristics

E.g., for the 8- puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

 (i.e., no. of squares from desired location of each tile)

h1(S) = ?
h2(S) = ?

21 Jan 2004 CS 3243 - Heuristics 27

Admissible heuristics

E.g., for the 8- puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

 (i.e., no. of squares from desired location of each tile)

h1(S) = ? 8
h2(S) = ? 3+1+2+2+2+3+3+2 = 18

21 Jan 2004 CS 3243 - Heuristics 28

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1
h2 is better for search

Typical search costs (average number of nodes
 expanded):

d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

d=24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

21 Jan 2004 CS 3243 - Heuristics 29

Relaxed problems

A problem with fewer restrictions on the actions is
called a relaxed problem
The cost of an optimal solution to a relaxed
problem is an admissible heuristic for the original

 problem
If the rules of the 8-puzzle are relaxed so that a tile
can move anywhere, then h1(n) gives the shortest

 solution
If the rules are relaxed so that a tile can move to
any adjacent square, then h2(n) gives the shortest

 solution

21 Jan 2004 CS 3243 - Heuristics 30

Local search algorithms

In many optimization problems, the path to the
goal is irrelevant; the goal state itself is the

 solution

State space = set of "complete" configurations
Find configuration satisfying constraints, e.g., n-
queens

In such cases, we can use local search algorithms
 keep a single "current" state, try to improve it

21 Jan 2004 CS 3243 - Heuristics 31

Example: n-queens

Put n queens on an n × n board with no two
queens on the same row, column, or

 diagonal

21 Jan 2004 CS 3243 - Heuristics 32

Hill-climbing search

"Like climbing Everest in thick fog with
 amnesia"

21 Jan 2004 CS 3243 - Heuristics 33

Hill-climbing search

Problem: depending on initial state, can get
 stuck in local maxima

21 Jan 2004 CS 3243 - Heuristics 34

Hill-climbing search: 8-queens problem

h = number of pairs of queens that are attacking each other, either
directly or indirectly
h = 17 for the above state

21 Jan 2004 CS 3243 - Heuristics 35

Hill-climbing search: 8-queens problem

A local minimum with h = 1

21 Jan 2004 CS 3243 - Heuristics 36

Simulated annealing search

Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

21 Jan 2004 CS 3243 - Heuristics 37

Properties of simulated annealing search

One can prove: If T decreases slowly enough, then
simulated annealing search will find a global

 optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling,
 etc

21 Jan 2004 CS 3243 - Heuristics 38

Genetic algorithms

A successor state is generated by combining two parent
 states

Start with k randomly generated states (population)

A state is represented as a string over a finite alphabet
 (often a string of 0s and 1s)

Evaluation function (fitness function). Higher values for
 better states.

Produce the next generation of states by selection,
 crossover, and mutation

21 Jan 2004 CS 3243 - Heuristics 39

Genetic algorithms

Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 × 7/2 = 28)

 24/(24+23+20+11) = 31%
 23/(24+23+20+11) = 29% etc

21 Jan 2004 CS 3243 - Heuristics 40

Genetic algorithms

