Constraint Satisfaction Problems

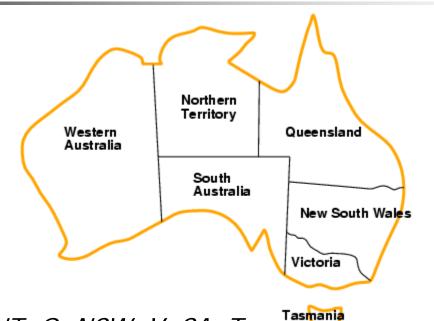
Chapter 5
Sections 1 – 3

- Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs
- Local search for CSPs

Constraint satisfaction problems (CSPs)

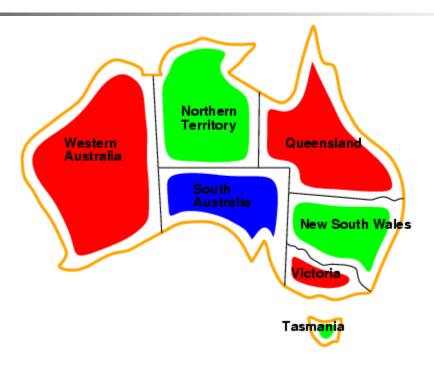
- Standard search problem:
 - state is a "black box" any data structure that supports successor function, heuristic function, and goal test
- CSP:
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring



- Variables WA, NT, Q, NSW, V, SA, T
- Domains $D_i = \{\text{red,green,blue}\}$
- Constraints: adjacent regions must have different colors
- e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)}

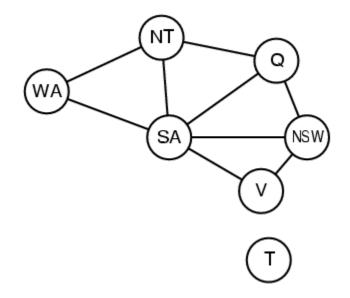
Example: Map-Coloring



Solutions are complete and consistent assignments,
 e.g., WA = red, NT = green,Q = red,NSW =
 green,V = red,SA = blue,T = green

Constraint graph

- Binary CSP: each constraint relates two variables
- Constraint graph: nodes are variables, arcs are constraints



Varieties of CSPs

Discrete variables

- finite domains:
 - *n* variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
- infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., StartJob₁ + 5 ≤ StartJob₃

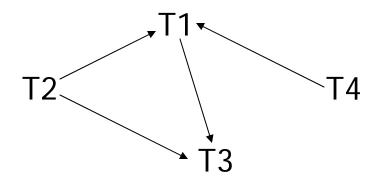
Continuous variables

- e.g., start/end times for Hubble Space Telescope observations
- linear constraints solvable in polynomial time by linear programming

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ green
- Binary constraints involve pairs of variables,
 - e.g., SA ≠ WA
- Higher-order constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints

Example: Task Scheduling



T1 must be done during T3

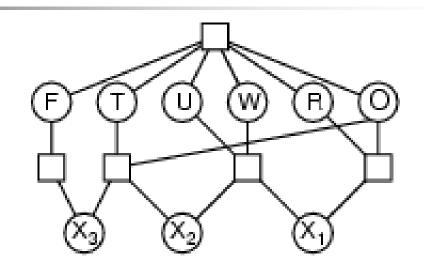
T2 must be achieved before T1 starts

T2 must overlap with T3

T4 must start after T1 is complete

Example: Cryptarithmetic

• Variables: F T U W $R O X_1 X_2 X_3$



- Domains: {0,1,2,3,4,5,6,7,8,9}
- Constraints: Alldiff (F,T,U,W,R,O)

•
$$O + O = R + 10 \cdot X_1$$

$$X_1 + W + W = U + 10 \cdot X_2$$

$$X_2 + T + T = O + 10 \cdot X_3$$

•
$$X_3 = F$$
, $T \neq 0$, $F \neq 0$

Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- Notice that many real-world problems involve realvalued variables

Standard search formulation (incremental)

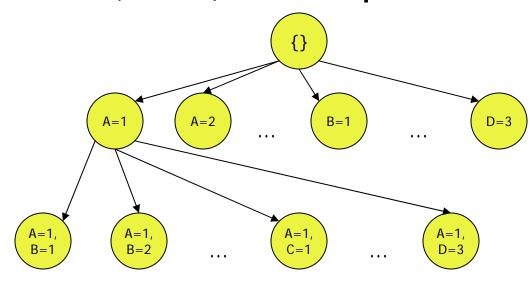
Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

- Initial state: the empty assignment { }
- Successor function: assign a value to an unassigned variable that does not conflict with current assignment
 - → fail if no legal assignments
- Goal test: the current assignment is complete
- 1. This is the same for all CSPs
- Every solution appears at depth n with n variables
 → use depth-first search
- 3. Path is irrelevant, so can also use complete-state formulation

CSP Search tree size

b = (n - l)d at depth l, hence $n! \cdot d^n$ leaves



Variables: A,B,C,D

Domains: 1,2,3

Depth 1: 4 variables x 3 domains

= 12 states

Depth 2: 3 variables x 3 domains

= 9 states

Depth 3: 2 variables x 3 domains

= 6 states

Depth 4: 1 variable x 3 domains

= 3 states (leaf level)

Backtracking search

- Variable assignments are commutative, i.e.,
 [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each node
 - Fix an order in which we'll examine the variables
 - \rightarrow b = d and there are dⁿ leaves
- Depth-first search for CSPs with single-variable assignments is called backtracking search
 - Is the basic uninformed algorithm for CSPs
 - Can solve n-queens for n≈ 25

Backtracking search

```
function Backtracking-Search (csp) returns a solution, or failure return Recursive-Backtracking (\{\}, csp)

function Recursive-Backtracking (assignment, csp) returns a solution, or failure

if assignment is complete then return assignment

var \leftarrow Select-Unassigned-Variable (variables[csp], assignment, csp)

for each value in Order-Domain-Values (var, assignment, csp) do

if value is consistent with assignment according to Constraints [csp] then

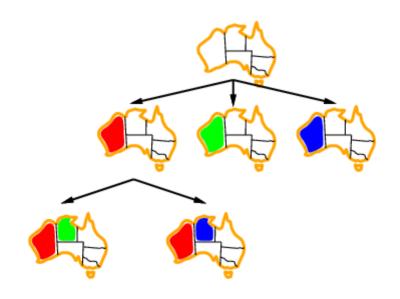
add { var = value } to assignment

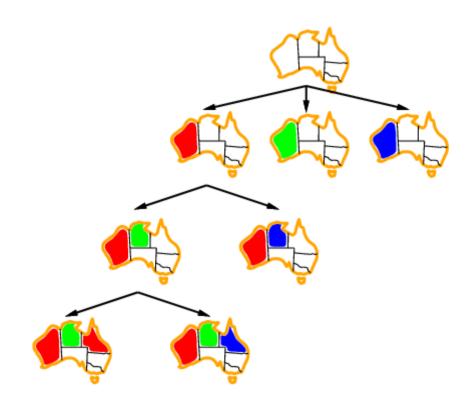
result \leftarrow Recursive-Backtracking (assignment, csp)

if result \neq failue then return result

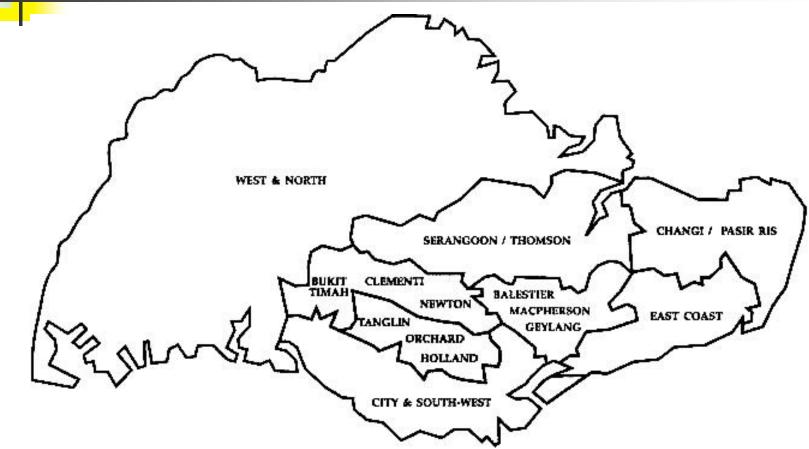
remove { var = value } from assignment

return failure
```

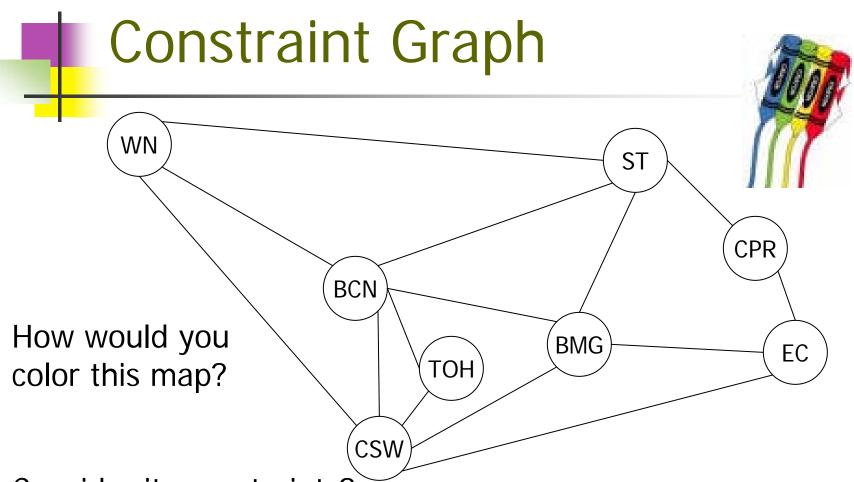





Exercise - paint the town!



Districts across corners can be colored using the same color.



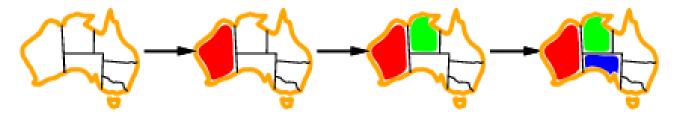
Consider its constraints? Can you do better than blind search?

Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?

Most constrained variable

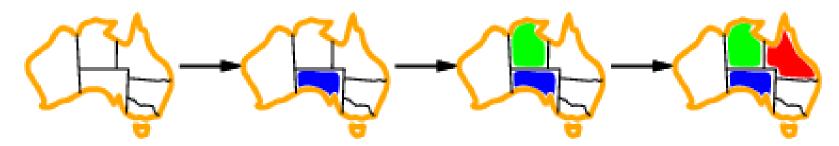
Most constrained variable:
 choose the variable with the fewest legal values



 a.k.a. minimum remaining values (MRV) heuristic

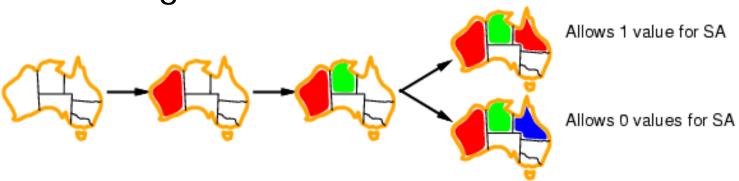
Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables



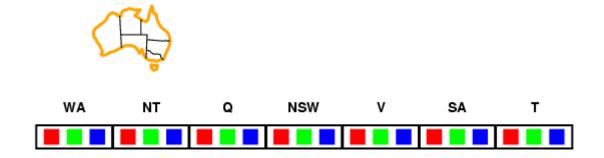
Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

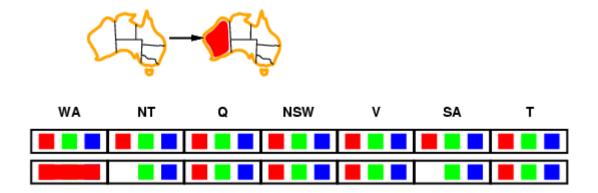


 Combining these heuristics makes 1000 queens feasible

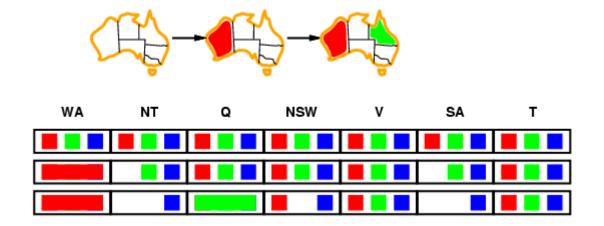
- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values



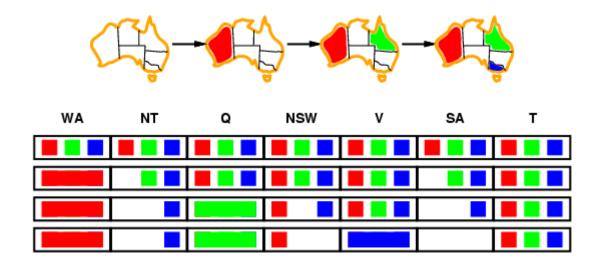
- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values



- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

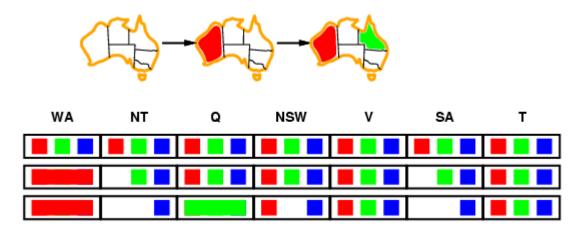


- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values



Constraint propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

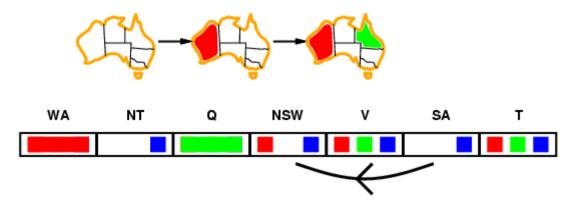


- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed y

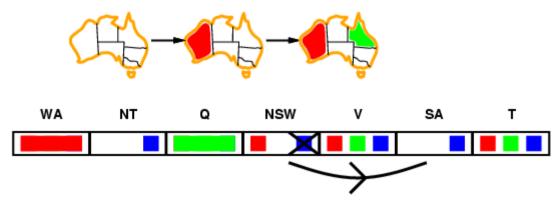


More on arc consistency

- Arc consistency is based on a very simple concept
 - if we can look at just one constraint and see that x=v is impossible ...
 - obviously we can remove the value x=v from consideration
- How do we know a value is impossible?
- If the constraint provides no support for the value
- e.g. if $D_x = \{1,4,5\}$ and $D_y = \{1, 2, 3\}$
 - then the constraint x > y provides no support for x=1
 - we can remove x=1 from D_x

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

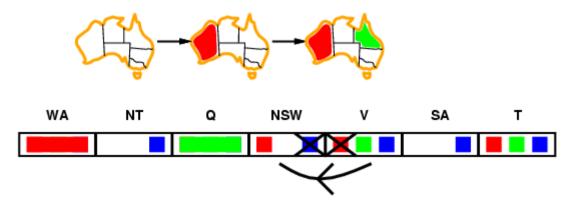


- Arcs are directed, a binary constraint becomes two arcs
- NSW ⇒ SA arc originally not consistent, is consistent after deleting blue

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed y



If X loses a value, neighbors of X need to be (re)checked

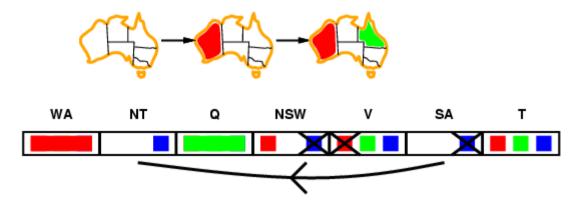
Arc Consistency Propagation

- When we remove a value from D_x, we may get new removals because of it
- E.g. $D_x = \{1,4,5\}, D_y = \{1, 2, 3\}, D_z = \{2, 3, 4, 5\}$
 - X > Y, Z > X
 - As before we can remove 1 from D_x , so $D_x = \{4,5\}$
 - But now there is no support for $D_7 = 2.3.4$
 - So we can remove those values, $D_z = \{5\}$, so z=5
 - Before AC applied to y-x, we could not change D_z
- This can cause a chain reaction

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed y



- If X loses a value, neighbors of X need to be (re)checked
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3

```
function AC-3( csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{Remove-First}(queue) if RM-Inconsistent-Values(X_i, X_j) then for each X_k in Neighbors[X_i] do add (X_k, X_i) to queue function RM-Inconsistent-Values(X_i, X_j) returns true iff remove a value removed \leftarrow false for each x in Domain[X_i] do if no value y in Domain[X_j] allows (x,y) to satisfy constraint(X_i, X_j) then delete x from Domain[X_i]; removed \leftarrow true return removed
```

Time complexity: O(n²d³)

-

Time complexity of AC-3

- CSP has n² directed arcs
- Each arc X_i, X_j has d possible values.
 For each value we can reinsert the neighboring arc

```
function AC-3( csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{Remove-First}(queue) if RM-Inconsistent-Values(X_i, X_j) then for each X_k in Neighbors[X_i] do add (X_k, X_i) to queue function RM-Inconsistent-Values(X_i, X_j) returns true iff remove a value removed \leftarrow false for each x in Domain[X_i] do if no value y in Domain[X_i] allows (x,y) to satisfy constraint(X_i, X_j) then delete x from Domain[X_i]; removed \leftarrow true return removed
```

X_k,X_i at most d times because X_i has d values

- Checking an arc requires at most d² time
- $O(n^2 * d * d^2) = O(n^2d^3)$

Maintaining AC (MAC)

- Like any other propagation, we can use AC in search
- i.e. search proceeds as follows:
 - establish AC at the root
 - when AC3 terminates, choose a new variable/value
 - re-establish AC given the new variable choice (i.e. maintain AC)
 - repeat;
 - backtrack if AC gives domain wipe out
- The hard part of implementation is undoing effects of AC

Special kinds of Consistency

- Some kinds of constraint lend themselves to special kinds of arc-consistency
- Consider the all-different constraint
 - the named variables must all take different values
 - not a binary constraint
 - can be expressed as n(n-1)/2 not-equals constraints
- We can apply (e.g.) AC3 as usual
- But there is a much better option

All Different

- Suppose $D_x = \{2,3\} = D_y$, $D_z = \{1,2,3\}$
- All the constraints x≠y, y≠z, z≠x are all arc consistent
 - e.g. x=2 supports the value z = 3
- The single ternary constraint AllDifferent(x,y,z) is not!
 - We must set z = 1
- A special purpose algorithm exists for All-Different to establish GAC in efficient time
 - Special purpose propagation algorithms are vital

K-consistency

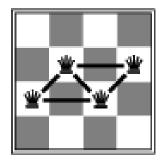
- Arc Consistency (2-consistency) can be extended to kconsistency
- 3-consistency (path consistency): any pair of adjacent variables can always be extended to a third neighbor.
 - Catches problem with D_x , D_y and D_z , as assignment of Dz = 2 and Dx = 3 will lead to domain wipe out.
 - But is expensive, exponential time
- n-consistency means the problem is solvable in linear time
 - As any selection of variables would lead to a solution
- In general, need to strike a balance between consistency and search.
 - This is usually done by experimentation.

Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns $(4^4 = 256 \text{ states})$
- Actions: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks



h = 5

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- Iterative min-conflicts is usually effective in practice

Midterm test

- Five questions, first hour of class (be on time!)
- Topics to be covered (CSP is not on the midterm):
 - Chapter 2 Agents
 - Chapter 3 Uninformed Search
 - Chapter 4 Informed Search
 - Not including the parts of 4.1 (memory-bounded heuristic search) and 4.5
 - Chapter 6 Adversarial Search
 - Not including 6.5 (games with chance)

Homework #1

- Due today by 23:59:59 in the IVLE workbin.
- Late policy given on <u>website</u>. Only one submission will be graded, whichever one is latest.
- Your tagline is used to generate the ID to identify your agent on the <u>scoreboard</u>.
- If you don't have an existing account fill out: https://mysoc.nus.edu.sg/~eform/new and send me e-mail ASAP.

Shout out: need an account?

- TEE WEI IN
- WONG AIK FONG
- LEE HUISHAN, JASMINE
- LOW CHEE WAI
- TANG HAN LIM
- CHAI KIAN PING
- TOH EU JIN
- DANESH HASAN KAMAL
- DAG FROHDE EVENSBERGET

- HAN XIAOYAN
- NAGANIVETHA THIYAGARAJAH
- WONG CHEE HOE, DERRICK
- TEO HAN KEAT
- TEH KENG SOON, JAMES
- OTSUKI TETSUAKI
- KARL ALEXANDER DAILEY

Collect your account at helpdesk (S15 Lvl 1).

(You are to bring identification and collect PERSONALLY, during office hours) You need not apply thru eform.

Please *thank* the helpdesk crew for doing this work for you.

Checklist for HW #1

- Does it compile?
- Is my code in a single file?
- Did I comment my code so that it's understandable to the reader?
- Is the main class called "MyPlayer"?
- Did I place a unique tagline so I can identify my player on the scoreboard?