Logical Agents

Chapter 7 (continued)

Outline: Inference

- Resolution in CNF
- Sound and Complete
- Forward and Backward Chaining using Modus Ponens in Horn Form
- Sound and Complete

Proof methods

- Proof methods divide into (roughly) two kinds:
- Application of inference rules
- Legitimate (sound) generation of new sentences from old
- Proof $=$ a sequence of inference rule applications

Can use inference rules as operators in a standard search algorithm

- Typically require transformation of sentences into a normal form

Model checking

truth table enumeration (always exponential in n) improved backtracking, e.g., Davis-Putnam-Logemann-Loveland (DPLL)
heuristic search in model space (sound but incomplete)
e.g., min-conflicts like hill-climbing algorithms

Inference by enumeration

- Depth-first enumeration of all models is sound and complete
function TT-Entails? $(K B, \alpha)$ returns true or false
symbols $\leftarrow \mathrm{a}$ list of the proposition symbols in $K B$ and α
return TT-ChECK-AlL(KB, α, symbols, [])
function TT-CHECK-ALL($K B, \alpha$, symbols, model) returns true or false
if Empty? (symbols) then
if PL-True?(KB, model) then return PL-True? $(\alpha$, model)
else return true
else do
$P \leftarrow \operatorname{First}($ symbols); rest $\leftarrow \operatorname{ReST}($ symbols)
return TT-Check-All($K B, \alpha$, rest, $\operatorname{Extend}(P$, true, model $)$ and TT-Check-All($K B, \alpha$, rest, Extend $(P$, false, model)
- For n symbols, time complexity is $O\left(2^{n}\right)$, space complexity is $O(n)$

> This is a Model Checking version of proof

Wumpus world sentences

Let $P_{i, j}$ be true if there is a pit in $[i, j]$.
Let $\mathrm{B}_{\mathrm{i}, \mathrm{j}}$ be true if there is a breeze in $[\mathrm{i}, \mathrm{j}]$.

$$
\neg \mathrm{P}_{1,1}
$$

$\neg B_{1,1}$
$B_{2,1}$

- "Pits cause breezes in adjacent squares"

$$
\begin{aligned}
& B_{1,1} \Leftrightarrow \quad\left(P_{1,2} \vee P_{2,1}\right) \\
& B_{2,1} \Leftrightarrow \quad\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)
\end{aligned}
$$

Truth tanies for inference

| $B_{1,1}$ | $B_{2,1}$ | $P_{1,1}$ | $P_{1,2}$ | $P_{2,1}$ | $P_{2,2}$ | $P_{3,1}$ | KB | α_{1} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| false | true |
| false | false | false | false | false | false | true | false | true |
| \vdots |
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	true	true
false	true	false	false	false	true	false	true	true
false	true	false	false	false	true	true	true	true
false	true	false	false	true	false	false	false	true
\vdots								
true	false	false						

$$
\begin{aligned}
& \mathbf{R}_{\mathbf{1}}=\neg \mathbf{P}_{1,1} \\
& \mathbf{R}_{4}=\neg \mathbf{B}_{1,1} \\
& \mathbf{R}_{5}=\mathrm{B}_{2,1}
\end{aligned}
$$

Proof methods

- Proof methods divide into (roughly) two kinds:

Application of inference rules

Legitimate (sound) generation of new sentences from old
Proof $=$ a sequence of inference rule applications
Can use inference rules as operators in a standard search
algorithm
Typically require transformation of sentences into a normal form

- Model checking
- truth table enumeration (always exponential in n)
- improved backtracking, e.g., Davis-Putnam-Logemann-Loveland (DPLL)
- heuristic search in model space (sound but incomplete)
e.g., min-conflicts like hill-climbing algorithms

Reasoning Patterns in Prop Logic

Given(s)
Conclusion
$A \Rightarrow B, A$
B
$\frac{B \wedge A}{A}$

Rules that allow us to
introduce new propositions
while preserving truth
values: logically equivalent

Two Examples:

- Modus Ponens
- And Elimination

Logical equivalence

- Two sentences are logically equivalent iff true in same models: $a \equiv \beta$ iff $a \equiv \beta$ and β = a

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { de Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { de Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \quad \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Resolution

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals

clauses

$$
\text { E.g., }(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)
$$

- Resolution inference rule (for CNF):

$$
\frac{\mathscr{C}_{\mathrm{i}} \vee \ldots \vee \complement_{k},}{m_{1} \vee \ldots \vee m_{\mathrm{n}}}
$$

where ${\varsigma_{\mathrm{i}}}$ and m_{j} are complementary literals.
E.g., $\frac{P_{1,3} \vee P_{2,2 \prime} \quad \neg P_{2,2}}{P_{1,3}}$

- Resolution is sound and complete for propositional logic

Resolution example

- $K B=\left(\mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge \neg \mathrm{B}_{1,1}$
- $\mathrm{a}=\neg \mathrm{P}_{1,2}$ (negate the premise for proof by refutation)

The power of false

- Given: $(P) \wedge(\neg P)$
- Prove: Z

$\neg \mathrm{P}$	Given
P	Given
$\neg \mathrm{Z}$	Given
\square	Unsatisfiable

- Can we prove $\neg Z$ using the givens above?

Applying inference rules

Equivalent to a search problem

- KB state = node
- Inference rule application = edge

Inference

Do the operators make conclusions that aren't always true?

- Define: $K B \vdash_{i} \mathrm{a}=$ sentence a can be derived from $K B$ by procedure i
- Soundness: j is sound if whenever $K B \vdash_{i} a$, it is also true that $K B \equiv$ a
- Completeness: i is complete if whenever $K B \vDash \mathrm{a}$, it is also true that $K B \vdash_{i}$ a
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That Is a set of inference operators complete and sound?

Completeness

Completeness: i is complete if whenever $K B=\mathrm{a}$, it is also true that $K B \vdash_{i} a$

- An incomplete inference algorithm cannot reach all possible conclusions
- Equivalent to completeness in search (chapter 3)

Resolution

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals
clauses
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

- Resolution inference rule (for CNF):

where ς_{i} and m_{j} are complementary literals.

- Resolution is sound and complete for propositional logic

Resolution

Soundness of resolution inference rule:

$$
\begin{aligned}
& \neg\left(\mathcal{F}_{\mathrm{i}} \vee \ldots \vee \mathcal{F}_{\mathrm{i}-1} \vee \mathcal{F}_{\mathrm{i}+1} \vee \ldots \vee G_{\mathrm{k}}\right) \Rightarrow \mathscr{F}_{\mathrm{i}} \\
& \neg m_{\mathrm{j}}^{*} \Rightarrow\left(m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{\mathrm{n}}\right)
\end{aligned}
$$

where ε_{i} and m_{j} are complementary literals.

- What if ε_{i} and $\neg m_{\mathrm{j}}$ are false?
- What if ξ_{i} and $\neg m_{\mathrm{j}}$ are true?

Completeness of Resolution

- That is, that resolution can decide the truth value of S
- $S=$ set of clauses
- $R C(S)=$ Resolution closure of $S=$ Set of all clauses that can be derived from S by the resolution inference rule.
- RC(S) has finite cardinality (finite number of symbols $P_{1}, P_{2}, \ldots P_{k}$), thus resolution refutation must terminate.

Completeness of Resolution (cont)

- Ground resolution theorem = if S unsatisfiable, RC(S) contains empty clause.
- Prove by proving contrapositive:
- i.e., if RC(S) doesn't contain empty clause, S is satisfiable
- Do this by constructing a model:
- For each P_{i}, if there is a clause in $R C(S)$ containing $\neg P_{i}$ and all other literals in the clause are false, assign $P_{i}=$ false
- Otherwise $P_{i}=$ true
- This assignment of P_{i} is a model for S.

Forward and backward chaining

- Horn Form (restricted)

KB = conjunction of Horn clauses

- Horn clause =
- proposition symbol; or
- (conjunction of symbols) \Rightarrow symbol
- E.g., $C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B)$
- Modus Ponens (for Horn Form): complete for Horn KBs
$\frac{a_{1}, \ldots, a_{n},}{a_{1} \wedge \ldots \wedge a_{n} \Rightarrow \beta}$
- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

Forward chaining example

Forward chaining example

Forward chaining example

Proof of completeness

FC derives every atomic sentence that is entailed by $K B$ (only for clauses in Horn form)

FC reaches a fixed point (the deductive closure) where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original $K B$ is true in m

$$
a_{1} \wedge \ldots \wedge a_{\mathrm{k} \Rightarrow} b
$$

4. Hence m is a model of $K B$
5. If $K B \neq q, q$ is true in every model of $K B$, including m

Backward chaining example

Backward chaining example

Backward chaining example

Proof methods

- Proof methods divide into (roughly) two kinds:
- Application of inference rules
- Legitimate (sound) generation of new sentences from old
- Proof $=$ a sequence of inference rule applications

Can use inference rules as operators in a standard search algorithm

- Typically require transformation of sentences into a normal form

Model checking

truth table enumeration (always exponential in n) improved backtracking, e.g., Davis-Putnam-Logemann-Loveland (DPLL)
heuristic search in model space (sound but incomplete)
e.g., min-conflicts like hill-climbing algorithms

Efficient propositional inference

Two families of efficient algorithms for propositional inference:

Complete backtracking search algorithms

- DPLL algorithm (Davis, Putnam, Logemann, Loveland)
- Incomplete local search algorithms
- WalkSAT algorithm

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.
Improvements over truth table enumeration:

1. Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.
2. Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses $(A \vee \neg B),(\neg B \vee \neg C),(C \vee A), A$ and B are pure, C is impure.
Make a pure symbol literal true.
3. Unit clause heuristic

Unit clause: only one literal in the clause
Least constraining value

The only literal in a unit clause must be true.
Most constrained value

What are correspondences between
DPLL and in general CSPs?

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of s
symbols \leftarrow a list of the proposition symbols in s return DPLL(clauses, symbols, [])
function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value \leftarrow Find-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols $-P,[P=$ value \mid model $]$)
P, value \leftarrow Find-Unit-Clause (clauses, model)
if P is non-null then return DPLL(clauses, symbols $-P,[P=$ value \mid model $]$)
$P \leftarrow \mathrm{FIRST}($ symbols); rest $\leftarrow \operatorname{REST}$ (symbols)
return DPLL(clauses, rest, $[P=$ true \mid model $]$) or
DPLL(clauses, rest, $[P=$ false \mid model $])$

The WalkSAT algorithm

- Incomplete, local search algorithm
- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Balance between greediness and randomness

The WalkSAT algorithm

function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move max-flips, number of flips allowed before giving up
model \leftarrow a random assignment of true/false to the symbols in clauses for $i=1$ to max-flips do
if model satisfies clauses then return model
clause \leftarrow a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol
from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses return failure

Let's ask ourselves: Why is it incomplete?

Hard satisfiability problems

- Consider random 3-CNF sentences. e.g.,
$(\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \neg B$
$\vee E) \wedge(E \vee \neg D \vee B) \wedge(B \vee E \vee \neg C)$
$m=$ number of clauses
$n=$ number of symbols
- Hard problems seem to cluster near $m / n=4.3$ (critical point)

Hard satisfiability problems

Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, $n=50$

Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

$$
\begin{aligned}
& \neg P_{1,1} \\
& \neg W_{1,1} \\
& B_{x, y} \Leftrightarrow\left(P_{x, y+1} \vee P_{x, y-1} \vee P_{x+1, y} \vee P_{x-1, y}\right) \\
& S_{x, y} \Leftrightarrow\left(W_{x, y+1} \vee W_{x, y-1} \vee W_{x+1, y} \vee W_{x-1, y}\right) \\
& W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4} \\
& \neg W_{1,1} \vee \neg W_{1,2} \\
& \neg W_{1,1} \vee \neg W_{1,3} \\
& \ldots
\end{aligned}
$$

$\Rightarrow 64$ distinct proposition symbols, 155 sentences

function PL-WUMPUS-AGENT(percept) returns an action

inputs: percept, a list, [stench,breeze, glitter]
static: $K B$, initially containing the "physics" of the wumpus world
x, y, orientation, the agent's position (init. $[1,1]$) and orient. (init. right) visited, an array indicating which squares have been visited, initially false action, the agent's most recent action, initially null plan, an action sequence, initially empty
update x, y,orientation, visited based on action
if stench then $\operatorname{TelL}\left(K B, S_{x, y}\right)$ else $\operatorname{Tell}\left(K B, \neg S_{x, y}\right)$
if breeze then $\operatorname{Tell}\left(K B, B_{x, y}\right)$ else $\operatorname{Tell}\left(K B, \neg B_{x, y}\right)$
if glitter then action \leftarrow grab
else if plan is nonempty then action $\leftarrow \operatorname{POP}($ plan $)$
else if for some fringe square $[i, j], \operatorname{Ask}\left(K B_{,}\left(\neg P_{i, j} \wedge \neg W_{i, j}\right)\right)$ is true or
for some fringe square $[i, j], \operatorname{Ask}\left(K B,\left(P_{i, j} \vee W_{i, j}\right)\right)$ is false then do plan $\leftarrow \mathrm{A}^{*}$-Graph-SEARCh $($ Route- $\mathrm{PB}([x, y]$, orientation, $[i, j]$,visited $)$) action $\leftarrow \operatorname{POP}($ plan $)$
else action \leftarrow a randomly chosen move
return action

Expressiveness limitation of propositional logic

- We didn't keep track of location and time in the KB. To do this we need more variables:
- $\mathrm{L}_{1,1}$ to show that agent in $\mathrm{L}_{1,1}$. Does this work?
- KB contains "physics" sentences for every single square
- For every time t and every location $[x, y]$,
$L_{x, y}^{\mathrm{t}} \wedge$ FacingRight $^{\mathrm{t}} \wedge$ Forward $^{\mathrm{t}} \Rightarrow L_{\mathrm{x}+1, \mathrm{y}}^{\mathrm{t}}$
- Rapid proliferation of clauses

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundness: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Resolution is complete for propositional logic
- Forward, backward chaining are linear-time, complete for Horn clauses
- Propositional logic lacks expressive power

