

Chapter 8

Outline

- Why FOL?
- Syntax and semantics of FOL
- Using FOL
- Wumpus world in FOL
- Knowledge engineering in FOL

Pros and cons of propositional logic

Propositional logic is declarativePropositional logic allows partial/disjunctive/negated information- (unlike most data structures and databases)Propositional logic is compositional:
- meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$Meaning in propositional logic is context-independent
- (unlike natural language, where meaning depends on context)
: Propositional logic has very limited expressive power
- (unlike natural language)
- E.g., cannot say "pits cause breezes in adjacent squares"
- except by writing one sentence for each square

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, colors, baseball games, wars, ...
- Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions: father of, best friend, one more than, plus, ...

Syntax of FOL: Basic elements

- Constants KingJohn, 2, NUS,...
- Predicates Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables $\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b}, \ldots$
- Connectives $\neg, \Rightarrow, \wedge, \vee, \Leftrightarrow$
- Equality =
- Quantifiers \forall, \exists

Atomic sentences

Atomic sentence $=$ predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term ${ }_{1}=$ term $_{2}$
$\begin{array}{ll}\text { Term } \quad & \begin{array}{l}\text { function }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\ \text { or constant or variable }\end{array}\end{array}$

- E.g., Brother(KingJohn,RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

- Complex sentences are made from atomic sentences using connectives
$\neg S, S_{1} \wedge S_{2}, S_{1} \vee S_{2}, S_{1} \Rightarrow S_{2}, S_{1} \Leftrightarrow S_{2}$,
E.g. Sibling(KingJohn,Richard) \Rightarrow

Sibling(Richard,KingJohn)

$$
\begin{aligned}
& >(1,2) \vee \leq(1,2) \\
& >(1,2) \wedge \neg>(1,2)
\end{aligned}
$$

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for
constant symbols $\rightarrow \quad$ objects
predicate symbols $\rightarrow \quad$ relations function symbols $\quad \rightarrow \quad$ functional relations
- An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term $_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate

Universal quantification

- <variables> <sentence>

Everyone at NUS is smart:
$\forall x \operatorname{At}(x, N U S) \Rightarrow \operatorname{Smart}(x)$

- $\quad \forall x P$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

At(KingJohn,NUS) \Rightarrow Smart(KingJohn)
$\wedge \quad \operatorname{At}($ Richard,NUS $) \Rightarrow$ Smart(Richard)
$\wedge \quad \operatorname{At}(\mathrm{NUS}, \mathrm{NUS}) \Rightarrow$ Smart(NUS)

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall :
$\forall x \operatorname{At}(x, N U S) \wedge$ Smart(x)
means "Everyone is at NUS and everyone is smart"

Existential quantification

- ヨ<variables> <sentence>
- Someone at NUS is smart:
- $\exists x \operatorname{At}(\mathrm{x}, \mathrm{NUS}) \wedge$ Smart(x)
- $\exists x P$ is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P

At(KingJohn,NUS) ^ Smart(KingJohn)
\vee At(Richard,NUS) ^ Smart(Richard)
$\vee \operatorname{At}(N U S, N U S) \wedge$ Smart(NUS)
V ...

[Another common mistake to avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x \operatorname{At}(\mathrm{x}, \mathrm{NUS}) \Rightarrow \operatorname{Smart}(\mathrm{x})
$$

is true if there is anyone who is not at NUS!

Properties of quantifiers

- $\forall \mathrm{x} \forall \mathrm{y}$ is the same as $\forall \mathrm{y} \forall \mathrm{x}$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$
- $\exists x \forall y$ Loves (x, y)
- "There is a person who loves everyone in the world"
- $\quad \forall y \exists x \operatorname{Loves}(x, y)$
- "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- $\forall x$ Likes(x,IceCream) $\quad \neg \exists x \neg$ Likes(x,IceCream)
- $\exists x$ Likes(x, Broccoli) $\quad \neg \forall x \neg$ Likes(x, Broccoli)

Equality

- term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term $_{1}$ and term ${ }_{2}$ refer to the same object
- E.g., definition of Sibling in terms of Parent:
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge$ $\operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge$ Parent (f, y)]

Using FOL

The kinship domain:

- Brothers are siblings
$\forall x, y$ Brother $(x, y) \Rightarrow \operatorname{Sibling}(x, y)$
- One's mother is one's female parent $\forall \mathrm{m}, \mathrm{c}$ Mother $(\mathrm{c})=\mathrm{m} \Leftrightarrow($ Female $(\mathrm{m}) \wedge$ Parent(m, c))
■ "Sibling" is symmetric $\forall x, y$ Sibling $(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$

Using FOL

The set domain:

- $\forall \mathrm{s} \operatorname{Set}(\mathrm{s}) \Leftrightarrow(\mathrm{s}=\{ \}) \vee\left(\exists x, \mathrm{~s}_{2} \operatorname{Set}\left(\mathrm{~s}_{2}\right) \wedge \mathrm{s}=\left\{x \mid \mathrm{s}_{2}\right\}\right)$
- $\neg \exists \mathrm{x}, \mathrm{s}\{\mathrm{x} \mid \mathrm{s}\}=\{ \}$
- $\forall x, s x \in S \Leftrightarrow s=\{x \mid s\}$
- $\left.\forall x, s x \in s \Leftrightarrow\left[\exists y, s_{2}\right\}\left(s=\left\{y \mid s_{2}\right\} \wedge\left(x=y \vee x \in s_{2}\right)\right)\right]$
- $\forall \mathrm{s}_{1}, \mathrm{~s}_{2} \mathrm{~s}_{1} \subseteq \mathrm{~s}_{2} \Leftrightarrow\left(\forall \mathrm{xx} \in \mathrm{s}_{1} \Rightarrow \mathrm{x} \in \mathrm{s}_{2}\right)$
- $\forall \mathrm{s}_{1}, \mathrm{~s}_{2}\left(\mathrm{~s}_{1}=\mathrm{s}_{2}\right) \Leftrightarrow\left(\mathrm{s}_{1} \subseteq \mathrm{~s}_{2} \wedge \mathrm{~s}_{2} \subseteq \mathrm{~s}_{1}\right)$
- $\forall x, s_{1}, s_{2} x \in\left(s_{1} \cap s_{2}\right) \Leftrightarrow\left(x \in s_{1} \wedge x \in s_{2}\right)$
- $\forall x, s_{1}, s_{2} x \in\left(s_{1} \cup s_{2}\right) \Leftrightarrow\left(x \in s_{1} \vee x \in s_{2}\right)$

Interacting with FOL KBs

- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:

Tell(KB,Percept([Smell,Breeze,None],5))
Ask(KB, ヨa BestAction(a,5))

- I.e., does the KB entail some best action at $t=5$?
- Answer: Yes, $\{a /$ Shoot $\}$
\leftarrow substitution (binding list)
- Given a sentence S and a substitution σ,
- So denotes the result of plugging σ into S; e.g.,

S = Smarter (x, y)
$\sigma=\{x /$ Hillary,y/Bill $\}$
S $\sigma=$ Smarter(Hillary,Bill)

- Ask(KB,S) returns some/all σ such that $K B \equiv \sigma$

[Knowledge base for the wumpus world

- Perception
- $\forall \mathrm{t}, \mathrm{s}, \mathrm{b}$ Percept([s,b,Glitter],t) \Rightarrow Glitter(t)
- Reflex
- $\forall \mathrm{t}$ Glitter(t) \Rightarrow BestAction(Grab,t)

Deducing hidden properties

- $\forall \mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b} \operatorname{Adjacent}([\mathrm{x}, \mathrm{y}],[\mathrm{a}, \mathrm{b}]) \Leftrightarrow$

$$
[a, b] \in\{[x+1, y],[x-1, y],[x, y+1],[x, y-1]\}
$$

Properties of squares:

- $\forall \mathrm{s}, \mathrm{t} \operatorname{At}($ Agent, $\mathrm{s}, \mathrm{t}) \wedge \operatorname{Breeze}(\mathrm{t}) \Rightarrow \operatorname{Breezy}(\mathrm{s})$

Squares are breezy near a pit:

- Diagnostic rule - infer cause from effect
\forall s Breezy(s) $\Rightarrow \exists$ ́ Adjacent(r,s) \wedge Pit(r)
- Causal rule - infer effect from cause
$\forall r \operatorname{Pit}(\mathrm{r}) \Rightarrow[\forall$ s Adjacent(r,s) \Rightarrow Breezy(s)]

Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base

The electronic circuits domain

One-bit full adder

The electronic circuits domain

Identify the task

- Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

- Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
- Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary

- Alternatives:

Type $\left(\mathrm{X}_{1}\right)=\mathrm{XOR}$
Type (X_{1}, XOR)
$\operatorname{XOR}\left(\mathrm{X}_{1}\right)$

The electronic circuits domain

4. Encode general knowledge of the domain

- $\quad \forall \mathrm{t}_{1}, \mathrm{t}_{2} \operatorname{Connected}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow \operatorname{Signal}\left(\mathrm{t}_{1}\right)=\operatorname{Signal}\left(\mathrm{t}_{2}\right)$
- $\quad \forall \mathrm{t}$ Signal $(\mathrm{t})=1 \vee \operatorname{Signal}(\mathrm{t})=0$
- $1 \neq 0$
- $\quad \forall \mathrm{t}_{1}, \mathrm{t}_{2} \operatorname{Connected}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow \operatorname{Connected}\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)$
- $\quad \forall \mathrm{g}$ Type $(\mathrm{g})=\mathrm{OR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow \exists \mathrm{n}$ Signal $(\ln (\mathrm{n}, \mathrm{g}))=1$
- $\quad \forall \mathrm{g}$ Type $(\mathrm{g})=$ AND $\Rightarrow \operatorname{Signal}($ Out $(1, \mathrm{~g}))=0 \Leftrightarrow \exists \mathrm{n}$ Signal $(\ln (\mathrm{n}, \mathrm{g}))=0$
- $\quad \forall \mathrm{g}$ Type $(\mathrm{g})=\mathrm{XOR} \Rightarrow \operatorname{Signal}(\mathrm{Out}(1, \mathrm{~g}))=1 \Leftrightarrow$ Signal $(\ln (1, \mathrm{~g})) \neq$ Signal $(\ln (2, \mathrm{~g}))$
- $\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{NOT} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g})) \neq \operatorname{Signal}(\operatorname{In}(1, \mathrm{~g}))$

[The electronic circuits domain

5. Encode the specific problem instance

$$
\begin{array}{ll}
\operatorname{Type}\left(\mathrm{X}_{1}\right)=\text { XOR } & \text { Type }\left(\mathrm{X}_{2}\right)=\text { XOR } \\
\operatorname{Type}\left(\mathrm{A}_{1}\right)=\text { AND } & \text { Type }\left(\mathrm{A}_{2}\right)=\text { AND } \\
\operatorname{Type}\left(\mathrm{O}_{1}\right)=\text { OR } &
\end{array}
$$

Connected(Out(1, $\left.\left.\mathrm{X}_{1}\right), \ln \left(1, \mathrm{X}_{2}\right)\right) \quad$ Connected $\left(\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{X}_{1}\right)\right)$ Connected(Out(1, $\left.\left.\mathrm{X}_{1}\right), \ln \left(2, \mathrm{~A}_{2}\right)\right)$ Connected $\left(\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{1}\right)\right)$
Connected(Out(1, $\left.\left.\mathrm{A}_{2}\right), \ln \left(1, \mathrm{O}_{1}\right)\right)$ Connected($\left.\operatorname{In}\left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{1}\right)\right)$
Connected(Out(1, $\left.\left.\mathrm{A}_{1}\right), \ln \left(2, \mathrm{O}_{1}\right)\right)$ Connected($\left.\operatorname{In}\left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{~A}_{1}\right)\right)$
Connected(Out(1, $\left.\left.\mathrm{X}_{2}\right), \operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right) \quad$ Connected $\left(\ln \left(3, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{2}\right)\right)$
Connected(Out(1, $\left.\mathrm{O}_{1}\right)$, Out $\left.\left(2, \mathrm{C}_{1}\right)\right) \quad$ Connected $\left(\ln \left(3, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{2}\right)\right)$

The electronic circuits domain

6. Pose queries to the inference procedure What are the possible sets of values of all the terminals for the adder circuit?
$\exists \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{o}_{1}, \mathrm{o}_{2} \operatorname{Signal}\left(\operatorname{In}\left(1, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{1} \wedge \operatorname{Signal}\left(\ln \left(2, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{2} \wedge$ Signal $\left(\ln \left(3, C_{1}\right)\right)=i_{3} \wedge \operatorname{Signal}\left(\operatorname{Out}\left(1, C_{1}\right)\right)=o_{1} \wedge$ Signal(Out $\left.\left(2, \mathrm{C}_{1}\right)\right)=\mathrm{o}_{2}$
7. Debug the knowledge base May have omitted assertions like $1 \neq 0$

Summary

- First-order logic:
- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers
- Increased expressive power: sufficient to define wumpus world

