CS3243 Foundations of Artificial Intelligence (2005/2006 Semester 2) Tutorial 5

```
function AC-3( \(c s p\) ) returns the CSP, possibly with reduced domains
    inputs: csp, a binary CSP with variables \(\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\)
    local variables: queue, a queue of arcs, initially all the arcs in \(c s p\)
    while queue is not empty do
        \(\left(X_{i}, X_{j}\right) \leftarrow\) Remove- \(\operatorname{First}(q u e u e)\)
        if RM-Inconsistent- \(\operatorname{Values}\left(X_{i}, X_{j}\right)\) then
            for each \(X_{k}\) in Neighbors \(\left[X_{i}\right]\) do
                add \(\left(X_{k}, X_{i}\right)\) to queue
```

function RM-Inconsistent-Values $\left(X_{i}, X_{j}\right)$ returns true iff remove a value
removed \leftarrow false
for each x in Domain $\left[X_{i}\right]$ do
if no value y in Domain $\left[X_{j}\right]$ allows (x, y) to satisfy constraint $\left(X_{i}, X_{j}\right)$
then delete x from Domain $\left[X_{i}\right]$; removed \leftarrow true
return removed

1. In the AC-3(csp) function of Figure 5.7, can the last line "add (X_{k}, X_{i}) to queue" be replaced by "if $X_{k} \neq X_{j}$ then add (X_{k}, X_{i}) to queue"? Justify your answer.
2. Consider the following constraint satisfaction problem:

Variables: A, B, C
Domains: $\mathrm{D}_{\mathrm{A}}=\mathrm{D}_{\mathrm{B}}=\mathrm{D}_{\mathrm{C}}=\{0,1,2,3,4\}$
Constraints: $\quad \mathrm{A}=\mathrm{B}+1$

$$
\mathrm{B}=2 \mathrm{C}
$$

Construct a constraint graph for this problem. Show a trace of the AC-3 algorithm on this problem. Assume that initially, the arcs in queue are in the order (A, B), (B, A), (B, C), (C, B).
3. Consider the 4 -queens problem on a 4×4 chess board. Suppose the leftmost column is column 1, and the topmost row is row 1 . Let Q_{i} denote the row number of the queen in column $i, i=1,2,3,4$. Assume that variables are assigned in the order $Q_{1}, Q_{2}, Q_{3}, Q_{4}$, and the domain values of Q_{i} are tried in the order $1,2,3,4$. Show a trace of the backtracking algorithm with forward checking to solve the 4 -queens problem.
4. Show a trace of the backtracking algorithm with forward checking to solve the cryptarithmetic problem in Figure 5.2. Use the most constrained variable heuristic, and assume that the domain values (digits) are tried in ascending order (i.e., $0,1,2, \ldots$).

