CS3243 Foundations of Artificial Intelligence (2005/2006 Semester 2) Tutorial 9

1. Based on the following Venn diagram, complete the joint probability distribution in the table on its right.

	\mathbf{X}	$\neg \mathbf{X}$
\mathbf{Y}	$\frac{3}{24}$	
$\neg \mathbf{Y}$		

Based on the joint probability distribution, find the following: $P(X), P(Y), P(\neg X)$, $P(\neg Y), P(X \mid Y), P(Y \mid X), P(X \mid \neg Y), P(\neg Y \mid X), P(\neg X \mid Y), P(Y \mid \neg X), P(\neg X \mid \neg Y), P(\neg Y \mid \neg X)$. Substituting the values of these conditional probabilities, verify the following:

$$
\begin{aligned}
& P(X \mid Y)=1-P(\neg X \mid Y) \\
& P(X \mid \neg Y)=1-P(\neg X \mid \neg Y) \\
& P(\neg Y \mid X)=\frac{P(X \mid \neg Y) P(\neg Y)}{P(X \mid \neg Y) P(\neg Y)+P(X \mid Y) P(Y)}
\end{aligned}
$$

2. Assume that 2% of the population in a country carry a particular virus. A test kit developed by a pharmaceutical firm is able to detect the presence of the virus from a patient's blood sample. The firm claims that the test kit has a high accuracy of detection in terms of the following conditional probabilities obtained from their quality control testing:
$P($ the kit shows positive \mid the patient is a carrier $)=0.998$
$P($ the kit shows negative \mid the patient is not a carrier $)=0.996$
If a patient is tested to be positive using this kit, what is the likelihood of a false positive (i.e., that he actually is not a carrier but the kit shows positive)?
3. (Question 13.1 from the textbook) Show from first principles that $P(a \mid b \wedge a)=1$.
4. (Question 13.7 from the textbook) Show that the three forms of independence below:
(a) $P(a \mid b)=P(a)$
(b) $P(b \mid a)=P(b)$
(c) $P(a \wedge b)=P(a) P(b)$
are equivalent.
