Learning from Observations

Chapter 18
Sections 1-3

Outline

- Learning
- Hypothesis Spaces
- Decision Trees
- Naïve Bayes
- Not in the text
- Training and Testing

What is Learning

- Memorizing something
- Learning facts through observation and exploration
- Generalizing a concept from experience
"Learning denotes changes in the system that are adaptive in the sense that they enable the system to do the task or tasks drawn from the same population more efficiently and more effectively the next time" - Herb Simon

Why is it necessary?

Three reasons:

- Unknown environment - need to deploy an agent in an unfamiliar territory
- Save labor - we may not have the resources to encode knowledge
- Can't explicitly encode knowledge - may lack the ability to articulate necessary knowledge.

[Learnina aqents
 Performance standard

Learning element

Design of a learning element is affected by

- Which components of the performance element are to be learned
- What feedback is available to learn these components
- What representation is used for the components
- Type of feedback:
- Supervised learning: correct answers for each example
- Unsupervised learning: correct answers not given
- Reinforcement learning: occasional rewards

Induction

Making predictions about the future based on the past.

If asked why we believe the sun will rise tomorrow, we shall naturally answer, "Because it has always risen every day." We have a firm belief that it will rise in the future, because it has risen in the past. - Bertrand Russell

- Is induction sound? Why believe that the future will look similar to the past?

Inductive learning

Simplest form: learn a function from examples
f is the target function
An example is a pair $(x, f(x))$
Problem: find a hypothesis h
such that $h \approx f$
given a training set of examples
This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes examples are given
- Memorization
- Noise
- Unreliable function
- Unreliable sensors

Inductive learning method

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

Inductive learning method

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

Inductive learning method

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

Inductive learning method

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

Inductive learning method

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

Inductive learning method

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

- Ockham's razor: prefer the simplest hypothesis consistent with data

Home Page
World
U.S.
Weather
Business at cnnmaney
Spore an

Updated: 12:30 a.m. EST (05:30 GMT) Warch 15, 2004

Israeli helicopters fire at Gaza targets

MORE TOP STORIES

- Terror-scarred Spain votes in Socialists | * Video | Gallery
- Son: Murder suspect the 'best dad' \mid * Video | Gallery - CNN/Money. Microsoft facing European sanctions
- Ashcroft discharged from hospital
- Sl.com: March Madness field unveiled | March Madness
- 1794 siver dollar may be the country's first
- 'Passion' stays on top at box office
- EWIs

RMMDARIR uInce
mare videa

[Learning Ad blocking

- Width and height of image
- Binary Classification: Ad or \neg Ad?

width

Nearest Neighbor

- A type of instance based learning
- Remember all of the past instances
- Use the nearest old data point as answer

width
- Generalize to kNN, that is take the average class of the closest k neighbors.

Application: Eating out

Problem: Decide on a restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range (\$, \$\$, \$\$\$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Attribute representation

Examples described by attribute or feature values (Boolean, discrete, continuous)

- E.g., situations where I will/won't wait for a table:

Example	Attributes										Target Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X_{1}	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_{2}	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_{3}	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_{4}	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_{5}	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_{6}	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_{7}	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_{8}	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X_{9}	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

- Classification of examples is positive (T) or negative (F)

[Bayes Rule

$$
P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)}
$$

Which is shorthand for:

$$
P\left(Y=y_{i} \mid X=x_{j}\right)=\frac{P\left(X=x_{j} \mid Y=y_{i}\right) P\left(Y=y_{i}\right)}{P\left(X=x_{j}\right)}
$$

Naïve Bayes Classifier

Calculate most probable function value
$V_{\text {map }}=\operatorname{argmax} P\left(v_{j} \mid a_{1}, a_{2}, \ldots, a_{n}\right)$

$$
\begin{aligned}
& =\frac{\operatorname{argmax} P\left(a_{1}, a_{2}, \ldots, a_{n} \mid v_{j}\right) P\left(v_{j}\right)}{P\left(a_{1}, a_{2}, \ldots, a_{n}\right)} \\
& =\operatorname{argmax} P\left(a_{1}, a_{2}, \ldots, a_{n} \mid v_{j}\right) P\left(v_{j}\right)
\end{aligned}
$$

Naïve assumption: $\mathrm{P}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right)=$

$$
P\left(a_{1}\right) P\left(a_{2}\right) \ldots P\left(a_{n}\right)
$$

Naïve Bayes Algorithm

NaïveBayesLearn(examples)
For each target value v_{j}
$P^{\prime}\left(v_{j}\right) \leftarrow$ estimate $P\left(v_{j}\right)$
For each attribute value a_{i} of each attribute a

$$
P^{\prime}\left(a_{i} \mid v_{j}\right) \leftarrow \text { estimate } P\left(a_{i} \mid v_{j}\right)
$$

ClassfyingNewInstance(x)

$$
\mathrm{v}_{\mathrm{nb}}=\underset{\mathrm{v}_{\mathrm{j}} \varepsilon \vee}{\operatorname{argmax}} P^{\prime}\left(v_{j}\right) \prod_{\mathrm{a}_{\mathrm{j}} \varepsilon \mathrm{x}} P^{\prime}\left(a_{i} \mid v_{j}\right)
$$

An Example

(due to MIT's open coursework slides)

f_{1}	f_{2}	f_{3}	f_{4}	\boldsymbol{y}
0	1	1	0	$\mathbf{1}$
0	0	1	1	$\mathbf{1}$
1	0	1	0	$\mathbf{1}$
0	0	1	1	$\mathbf{1}$
0	0	0	0	$\mathbf{1}$
1	0	0	1	$\mathbf{0}$
1	1	0	1	$\mathbf{0}$
1	0	0	0	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	0	1	$\mathbf{0}$
1	0	1	1	$\mathbf{0}$

$\mathbf{R}_{1}(\mathbf{1}, \mathbf{1})=1 / 5$: fraction of all positive examples that have feature $1=1$ $\mathbf{R}_{\mathbf{1}}(\mathbf{0}, \mathbf{1})=4 / 5$: fraction of all positive examples that have feature $1=0$
$\mathbf{R}_{\mathbf{1}}(\mathbf{1}, \mathbf{0})=5 / 5$: fraction of all negative examples that have feature $1=1$ $\mathbf{R}_{1}(\mathbf{0}, \mathbf{0})=0 / 5$: fraction of all negative examples that have feature $1=0$

Continue calculation of $R_{2}(1,0) \ldots$

An Example

(due to MIT's open coursework slides)

f_{1}	f_{2}	f_{3}	f_{4}	y
0	1	1	0	1
0	0	1	1	1
1	0	1	0	1
0	0	1	1	1
0	0	0	0	1
1	0	0	1	0
1	1	0	1	0
1	0	0	0	0
1	1	0	1	0
1	0	1	1	0

$$
\begin{aligned}
& \quad(1,1)(0,1)(1,0)(0,0) \\
& \mathbf{R}_{1}=1 / 5,4 / 5,5 / 5,0 / 5 \\
& \mathbf{R}_{2}=1 / 5,4 / 5,2 / 5,3 / 5 \\
& \mathbf{R}_{3}=4 / 5,1 / 5,1 / 5,4 / 5 \\
& \mathbf{R}_{4}=2 / 5,3 / 5,4 / 5,1 / 5 \\
& \text { New } x=<0,0,1,1>
\end{aligned}
$$

$$
S(1)=R_{1}(0,1)^{*} R_{2}(0,1)^{*} R_{3}(1,1)^{*} R_{4}(1,1)=.205
$$

$$
S(0)=R_{1}(0,0)^{*} R_{2}(0,0) * R_{3}(1,0) * R_{4}(1,0)=0
$$

$$
S(1)>S(0) \text {, so predict } v=1 \text {. }
$$

Decision trees

- Developed simultaneously by statistics and AI
- E.g., here is the "true" tree for deciding whether to wait:

Expressiveness

Decision trees can express any function of the input attributes.

- E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples
- Prefer to find more compact decision trees

Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$

- E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$

- E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry $\wedge \neg$ Rain)?

- Each attribute can be in (positive), in (negative), or out
$\Rightarrow 3^{n}$ distinct conjunctive hypotheses
- More expressive hypothesis space
- increases chance that target function can be expressed
- increases number of hypotheses consistent with training set
\Rightarrow may get worse predictions

The best hypothesis

Find best function that models given data.

- How to define the best function?
- Fidelity to the data - error on existing data: E(h,D)
- Simplicity - how complicated is the solution: C(h)
- One measure: how many possible hypotheses forsthe Lselass?

Decision tree learning

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree
    if examples is empty then return default
    else if all examples have the same classification then return the classification
    else if attributes is empty then return MODE(examples)
    else
    best \leftarrow }\leftarrow\mathrm{ Choose-Attribute(attributes, examples)
    tree }\leftarrowa\mp@code{new decision tree with root test best
    for each value }\mp@subsup{v}{i}{}\mathrm{ of best do
        examples
        subtree \leftarrow DTL(examplesi, attributes - best, MODE(examples))
        add a branch to tree with label vi and subtree subtree
    return tree
```


Choosing an attribute

- Idea: a good attribute splits the training set into subsets that are (ideally) "all positive" or "all negative"

- Patrons? is a better choice

Information Content

- Entropy measures purity of sets of examples
- Normally denoted H(x)
- Or as information content: the less you need to know (to determine class of new case). the more information you have

$T($ total $)=P+N$

- With two classes (P,N):
- IC(S) = - (p/t) $\log _{2}(p / t)-(n / t) \log _{2}(n / t)$
- E.g., p=9, n=5;

$$
\begin{aligned}
&=-(9 / 14) \log _{2}(9 / 14)-(5 / 14) \log _{2}(5 / 14) \\
&=0.940 \\
&- \text { Also, IC }([14,0])=0 ; \operatorname{IC}([7,7])=1
\end{aligned}
$$

Entropy curve

- For p/t between 0 \& 1, the 2class entropy is
- 0 when $p /(p+n)$ is 0
- 1 when $p /(p+n)$ is 0.5
- 0 when $p /(p+n)$ is 1
- monotonically increasing between 0 and 0.5
- monotonically decreasing between
 0.5 and 1
- When the data is pure, only need to send 1 bit

Using information theory

- To implement Choose-Attribute in the DTL algorithm
- Entropy:

$$
\mathrm{I}\left(\mathrm{P}\left(\mathrm{v}_{1}\right), \ldots, \mathrm{P}\left(\mathrm{v}_{\mathrm{n}}\right)\right)=\Sigma_{\mathrm{i}=1}-\mathrm{P}\left(\mathrm{v}_{\mathrm{i}}\right) \log _{2} \mathrm{P}\left(\mathrm{v}_{\mathrm{i}}\right)
$$

- For a training set containing p positive examples and n negative examples:

$$
I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)=-\frac{p}{p+n} \log _{2} \frac{p}{p+n}-\frac{n}{p+n} \log _{2} \frac{n}{p+n}
$$

Information gain

- A chosen attribute A divides the training set E into subsets E_{1}, \ldots, E_{v} according to their values for A, where A has v distinct values.

$$
\operatorname{remainder}(A)=\sum_{i=1}^{v} \frac{p_{i}+n_{i}}{p+n} I\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right)
$$

- Information Gain (IG) or reduction in entropy from the attribute test:

$$
\operatorname{IG}(A)=I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)-\operatorname{remainder}(A)
$$

- Choose the attribute with the largest IG

Information gain

For the training set, $p=n=6, I(6 / 12,6 / 12)=1$ bit

Consider the attributes Patrons and Type (and others too):

$$
\begin{aligned}
& I G(\text { Patrons })=1-\left[\frac{2}{12} I(0,1)+\frac{4}{12} I(1,0)+\frac{6}{12} I\left(\frac{2}{6}, \frac{4}{6}\right)\right]=.0541 \text { bits } \\
& I G(\text { Type })=1-\left[\frac{2}{12} I\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{2}{12} I\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{4}{12} I\left(\frac{2}{4}, \frac{2}{4}\right)+\frac{4}{12} I\left(\frac{2}{4}, \frac{2}{4}\right)\right]=0 \text { bits }
\end{aligned}
$$

Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root

Example contd.

- Decision tree learned from the 12 examples:

- Substantially simpler than "true" tree---a more complex hypothesis isn’t justified by small amount of data

Performance measurement

How do we know that $h \approx f$?

- Try h on a new test set of examples

Learning curve = \% correct on test set as a function of training set size

Training and testing sets

Where does the test set come from?

1. Collect a large set of examples
2. Divide into training and testing data
3. Train on training data, assess on testing
4. Repeat 1-3 for different splits of the set.

- Same distribution
"Learning ... enable[s] the system to do the task or tasks drawn from the same population" - Herb Simon
- To think about: Why?

Overfitting

- Better training performance = test performance?
- Nope. Why?

1. Hypothesis too specific
2. Models noise

- Pruning
- Keep complexity of hypothesis low
- Stop splitting when:

1. IC below a threshold
2. Too few data points in node

Summary

- Learning needed for unknown environments, lazy designers
- Learning agent = performance element + learning element
- For supervised learning, the aim is to find a simple hypothesis approximately consistent with training examples
- Decision tree learning using information gain
- Learning performance = prediction accuracy measured on test set

