
14 Jan 2004 CS 3243 - Blind Search 1

Solving problems by searching

Chapter 3

14 Jan 2004 CS 3243 - Blind Search 2

Outline

Problem-solving agents
Problem types
Problem formulation
Example problems
Basic search algorithms

14 Jan 2004 CS 3243 - Blind Search 3

Problem-solving agents

14 Jan 2004 CS 3243 - Blind Search 4

Example: Romania

On holiday in Romania; currently in Arad.
 Flight leaves tomorrow from Bucharest

Formulate goal:
 be in Bucharest

Formulate problem:
states: various cities
actions : drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras,

 Bucharest

14 Jan 2004 CS 3243 - Blind Search 5

Example: Romania

14 Jan 2004 CS 3243 - Blind Search 6

Problem types

Deterministic, fully observable single-state problem
Agent knows exactly which state it will be in; solution is a

 sequence
Non-observable sensorless problem (conformant
problem)

 Agent may have no idea where it is; solution is a sequence
Nondeterministic and/or partially observable contingency
problem

percepts provide new information about current state
often interleave } search, execution

Unknown state space exploration problem

14 Jan 2004 CS 3243 - Blind Search 7

Example: vacuum world

Single-state, start in #5.
Solution?

14 Jan 2004 CS 3243 - Blind Search 8

Example: vacuum world

Single-state, start in #5.
Solution? [Right, Suck]

Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?

14 Jan 2004 CS 3243 - Blind Search 9

Example: vacuum world

Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

Contingency
Nondeterministic: Suck may
dirty a clean carpet
Partially observable: location, dirt at current location.
Percept: [L, Clean], i.e., start in #5 or #7
Solution?

14 Jan 2004 CS 3243 - Blind Search 10

Example: vacuum world

Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

Contingency
Nondeterministic: Suck may
dirty a clean carpet
Partially observable: location, dirt at current location.
Percept: [L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]

14 Jan 2004 CS 3243 - Blind Search 11

Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., "at Arad "
2. actions or successor function S(x) = set of action–state pairs

e.g., S(Arad) = {<Arad Zerind, Zerind>, … }
3. goal test, can be

explicit, e.g., x = "at Bucharest"
implicit, e.g., Checkmate(x)

4. path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a
 goal state

14 Jan 2004 CS 3243 - Blind Search 12

Selecting a state space

Real world is absurdly complex
state space must be abstracted for problem solving

 (Abstract) state = set of real states
(Abstract) action = complex combination of real actions

e.g., "Arad Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

For guaranteed realizability, any real state "in Arad“ must
get to some real state "in Zerind "
(Abstract) solution =

 set of real paths that are solutions in the real world
Each abstract action should be "easier" than the original

 problem

14 Jan 2004 CS 3243 - Blind Search 13

Vacuum world state space graph

states?
actions?
goal test?

 path cost?

14 Jan 2004 CS 3243 - Blind Search 14

Vacuum world state space graph

states? integer dirt and robot location
actions? Left, Right, Suck
goal test? no dirt at all locations
path cost? 1 per action

14 Jan 2004 CS 3243 - Blind Search 15

Example: The 8-puzzle

states?
actions?
goal test?
path cost?

14 Jan 2004 CS 3243 - Blind Search 16

Example: The 8-puzzle

states? locations of tiles
actions? move blank left, right, up, down
goal test? = goal state (given)
path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP- hard]

14 Jan 2004 CS 3243 - Blind Search 17

Example: robotic assembly

states?: real-valued coordinates of robot joint
 angles parts of the object to be assembled

actions? : continuous motions of robot joints
goal test? : complete assembly
path cost? : time to execute

14 Jan 2004 CS 3243 - Blind Search 18

Tree search algorithms

Basic idea:
offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a.~expanding states)

14 Jan 2004 CS 3243 - Blind Search 19

Tree search example

14 Jan 2004 CS 3243 - Blind Search 20

Tree search example

14 Jan 2004 CS 3243 - Blind Search 21

Tree search example

14 Jan 2004 CS 3243 - Blind Search 22

Implementation: general tree search

14 Jan 2004 CS 3243 - Blind Search 23

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the problem

 to create the corresponding states.

14 Jan 2004 CS 3243 - Blind Search 24

Search strategies

A search strategy is defined by picking the order of node
expansion
Strategies are evaluated along the following dimensions:

completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least- cost solution?

Time and space complexity are measured in terms of
b: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be ∞)

14 Jan 2004 CS 3243 - Blind Search 25

Uninformed search strategies

Uninformed search strategies use only the
information available in the problem

 definition
Breadth- first search
Uniform- cost search
Depth- first search
Depth- limited search

 Iterative deepening search

14 Jan 2004 CS 3243 - Blind Search 26

Breadth-first search

 Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go
 at end

14 Jan 2004 CS 3243 - Blind Search 27

Breadth-first search

 Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go
 at end

14 Jan 2004 CS 3243 - Blind Search 28

Breadth-first search

 Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go
 at end

14 Jan 2004 CS 3243 - Blind Search 29

Breadth-first search

 Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go
 at end

14 Jan 2004 CS 3243 - Blind Search 30

Properties of breadth-first search

Complete? Yes (if b is finite)
Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)
Space? O(bd+1) (keeps every node in memory)
Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

14 Jan 2004 CS 3243 - Blind Search 31

Uniform-cost search

Expand least- cost unexpanded node
Implementation:

fringe = queue ordered by path cost
Equivalent to breadth- first if step costs all equal
Complete? Yes, if step cost ≥ ε
Time? # of nodes with g ≤ cost of optimal solution,
O(bceiling(C*/ ε)) where C* is the cost of the optimal solution
Space? # of nodes with g ≤ cost of optimal solution,
O(bceiling(C*/ ε))
Optimal? Yes – nodes expanded in increasing order of
g(n)

14 Jan 2004 CS 3243 - Blind Search 32

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 33

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 34

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 35

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 36

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 37

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 38

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 39

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 40

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 41

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 42

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 43

Depth-first search

 Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

14 Jan 2004 CS 3243 - Blind Search 44

Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces
with loops

 Modify to avoid repeated states along path
 complete in finite spaces

Time? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than
breadth- first

Space? O(bm), i.e., linear space!
Optimal? No

14 Jan 2004 CS 3243 - Blind Search 45

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

14 Jan 2004 CS 3243 - Blind Search 46

Iterative deepening search

14 Jan 2004 CS 3243 - Blind Search 47

Iterative deepening search l =0

14 Jan 2004 CS 3243 - Blind Search 48

Iterative deepening search l =1

14 Jan 2004 CS 3243 - Blind Search 49

Iterative deepening search l =2

14 Jan 2004 CS 3243 - Blind Search 50

Iterative deepening search l =3

14 Jan 2004 CS 3243 - Blind Search 51

Iterative deepening search

Number of nodes generated in a depth-limited search to
depth d with branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

For b = 10, d = 5 ,
NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

14 Jan 2004 CS 3243 - Blind Search 52

Properties of iterative
deepening search

Complete? Yes
Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd =
O(bd)
Space? O(bd)
Optimal? Yes, if step cost = 1

14 Jan 2004 CS 3243 - Blind Search 53

Summary of algorithms

14 Jan 2004 CS 3243 - Blind Search 54

Repeated states

Failure to detect repeated states can turn a
 linear problem into an exponential one!

14 Jan 2004 CS 3243 - Blind Search 55

Graph search

14 Jan 2004 CS 3243 - Blind Search 56

Summary

Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be

 explored

 Variety of uninformed search strategies

Iterative deepening search uses only linear space and not
 much more time than other uninformed algorithms

