Logical Agents

Chapter 7

Outline

- Knowledge-based agents
- Wumpus world
- Logic in general - models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
- forward chaining
- backward chaining
- resolution

Knowledge bases

Inference engine
Knowledge base

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
- Tell it what it needs to know
- Then it can Ask itself what to do - answers should follow from the KB
- Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented
- Or at the implementation level
- i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

```
function KB-AGENT(percept) returns an action
static: }KB\mathrm{ , a knowledge base
    t, a counter, initially 0, indicating time
    Tell(KB,Make-Percept-Sentence(percept,t))
    action }\leftarrow\operatorname{Ask}(KB,MAKe-Action-Query (t))
    Tell(KB,Make-Action-Sentence(action, t))
    t\leftarrowt+1
    return action
```

- The agent must be able to:
- Represent states, actions, etc.
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden properties of the world
- Deduce appropriate actions

Wumpus World PEAS description

- Performance measure
- gold +1000, death -1000
- -1 per step, -10 for using the arrow
- Environment
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow

- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization

- Fully Observable No - only local perception
- Deterministic Yes - outcomes exactly specified
- Episodic No - sequential at the level of actions
- Static Yes - Wumpus and Pits do not move
- Discrete Yes
- Single-agent? Yes - Wumpus is essentially a natural feature

Exploring a wumpus world

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
- i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
- $x+2 \geq y$ is a sentence; $x 2+y>\{ \}$ is not a sentence
- $x+2 \geq y$ is true iff the number $x+2$ is no less than the number y
- $x+2 \geq y$ is true in a world where $x=7, y=1$
- $x+2 \geq y$ is false in a world where $x=0, y=6$

Entailment

- Entailment means that one thing follows from another:

KB $=\alpha$

- Knowledge base $K B$ entails sentence a if and only if a is true in all worlds where $K B$ is true
- E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"
- E.g., $x+y=4$ entails $4=x+y$
- Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence a if a is true in m
- $M(a)$ is the set of all models of a
- Then $K B \neq \mathrm{a}$ iff $M(K B) \subseteq M(\mathrm{a})$
- E.g. $K B=$ Giants won and Reds won $\mathrm{a}=$ Giants won

Entailment in the wumpus world

Situation after detecting nothing in $[1,1]$, moving right, breeze in $[2,1]$

Consider possible models for $K B$ assuming only pits

3 Boolean choices $\Rightarrow 8$ possible models

Wumpus models

Wumpus models

- $K B=$ wumpus-world rules + observations

Wumpus models

- $K B=$ wumpus-world rules + observations
- $\mathrm{a}_{1}=$ " $[1,2]$ is safe", $K B=\mathrm{a}_{1}$, proved by model checking

Wumpus models

- $K B=$ wumpus-world rules + observations

Wumpus models

- $K B=$ wumpus-world rules + observations
- $\mathrm{a}_{2}=$ " $[2,2]$ is safe", $K B \not \models \mathrm{a}_{2}$

Inference

- Define: $K B \vdash_{i} a=$ sentence a can be derived from $K B$ by procedure i
- Soundness: j is sound if whenever $K B \vdash_{i}$ a, it is also true that $K B=\mathbf{a d}$
- Completeness: i is complete if whenever $K B \equiv \mathrm{a}$, it is also true that $K B \vdash_{i}$ a
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That is, the procedure will answer any question whose answer follows from what is known by the $K B$.

Propositional logic: Syntax

- Propositional logic is the simplest logic - illustrates basic ideas
- The proposition symbols P_{1}, P_{2} etc are sentences
- If S is a sentence, $\neg S$ is a sentence (negation)
- If S_{1} and S_{2} are sentences, $S_{1} \wedge S_{2}$ is a sentence (conjunction)
- If S_{1} and S_{2} are sentences, $S_{1} \vee S_{2}$ is a sentence (disjunction)
- If S_{1} and S_{2} are sentences, $S_{1} \Rightarrow S_{2}$ is a sentence (implication)
- If S_{1} and S_{2} are sentences, $S_{1} \Leftrightarrow S_{2}$ is a sentence (biconditional)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g.$P_{1,2}$ $P_{2,2}$	$P_{3,1}$	
false	true	false

With these symbols, 8 possible models, can be enumerated automatically. Rules for evaluating truth with respect to a model m :

$\neg S$	is true iff	S is false	
$S_{1} \wedge S_{2}$	is true iff	S_{1} is true and	S_{2} is true
$S_{1} \vee S_{2}$	is true iff	S_{1} is true or	S_{2} is true
$S_{1} \Rightarrow S_{2}$ is true iff	S_{1} is false or	S_{2} is true	
i.e.,	is false iff	S_{1} is true and	S_{2} is false
$S_{1} \Leftrightarrow S_{2}$ is true iff	$S_{1} \Rightarrow S_{2}$ is true and $S_{2} \Rightarrow S_{1}$ is true		

Simple recursive process evaluates an arbitrary sentence, e.g.,

$$
\neg \mathrm{P}_{1,2} \wedge\left(\mathrm{P}_{2,2} \vee \mathrm{P}_{3,1}\right)=\text { true } \wedge(\text { true } \vee \text { false })=\text { true } \wedge \text { true }=\text { true }
$$

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false		
false	true	true	false	true		
true	false	false	false	true		
true	true	false	true	true		

Wumpus world sentences

Let $P_{i, j}$ be true if there is a pit in $[i, j]$. Let $B_{i, j}$ be true if there is a breeze in $[i, j]$.

$$
\begin{aligned}
& \neg \mathcal{P}_{1,1}^{\prime \prime} \\
& \neg \mathrm{B}_{1,1} \\
& \mathrm{~B}_{2,1}
\end{aligned}
$$

- "Pits cause breezes in adjacent squares"

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_{1}
false	true							
false	false	false	false	false	false	true	false	true
\vdots								
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	true	true
false	true	false	false	false	true	false	true	true
false	true	false	false	false	true	true	true	true
false	true	false	false	true	false	false	false	true
\vdots								
true	false	false						

Inference by enumeration

- Depth-first enumeration of all models is sound and complete

```
function TT-Entalls?(KB,\alpha) returns true or false
    symbols }\leftarrow\textrm{a}\mathrm{ list of the proposition symbols in KB and }
    return TT-CHECK-AlL(KB, , symbols, [])
```

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
if Empty? (symbols) then
if PL-TruE? (KB, model) then return PL-TruE? $(\alpha$, model)
else return true
else do
$P \leftarrow \mathrm{First}($ symbols); rest $\leftarrow \mathrm{REST}($ symbols $)$
return TT-Check-All($K B, \alpha$, rest, $\operatorname{Extend}(P$, true, model $)$ and
TT-Check-All($K B, \alpha$, rest, Extend $(P$, false, model $)$

- For n symbols, time complexity is $O\left(2^{n}\right)$, space complexity is $O(n)$

Logical equivalence

- Two sentences are logically equivalent iff true in same models: $a \equiv \beta$ iff $a \equiv \beta$ and β = ${ }^{\circ}$ ■

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \quad \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { de Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { de Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \quad \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, $\quad A \vee \neg A, \quad A \Rightarrow A, \quad(A \wedge(A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:
$K B \neq \mathrm{a}$ if and only if $(K B \Rightarrow \mathrm{a})$ is valid
A sentence is satisfiable if it is true in some model
e.g., AvB, C

A sentence is unsatisfiable if it is true in no models e.g., $\mathrm{A} \wedge \neg \mathrm{A}$

Satisfiability is connected to inference via the following:
$K B$ ́a if and only if ($K B \wedge \neg a$) is unsatisfiable

Proof methods

- Proof methods divide into (roughly) two kinds:
- Application of inference rules
- Legitimate (sound) generation of new sentences from old
- Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search algorithm

- Typically require transformation of sentences into a normal form
- Model checking
- truth table enumeration (always exponential in n)
- improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
- heuristic search in model space (sound but incomplete)
e.g., min-conflicts like hill-climbing algorithms

Resolution

Conjunctive Normal Form (CNF)
conjunction of disjunctions of literals
clauses
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

- Resolution inference rule (for CNF):
where ${f_{\mathrm{i}}}$ and m_{j} are complementary literals. E.g., $\frac{P_{1,3} \vee P_{2,2 \prime} \quad \neg P_{2,2}}{P_{1,3}}$
- Resolution is sound and complete for propositional logic

Resolution

Soundness of resolution inference rule:

$$
\begin{aligned}
& \neg m_{\mathrm{j}} \Rightarrow\left(m_{1} \vee \ldots \vee m_{\mathrm{j}-1} \vee m_{\mathrm{j}+1} \vee \ldots \vee m_{\mathrm{n}}\right) \\
& \overline{\neg\left(\wp_{\mathrm{i}} \vee \ldots \vee \wp_{\mathrm{i}-1} \vee \oint_{\mathrm{i}+1} \vee \ldots \vee \digamma_{\mathrm{k}}\right) \Rightarrow\left(m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{\mathrm{n}}\right)}
\end{aligned}
$$

where ε_{i} and m_{j} are complementary literals.

Conversion to CNF

$$
\mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $a \Leftrightarrow \beta$ with $(a \Rightarrow \beta) \wedge(\beta \Rightarrow a)$.

$$
\left(\mathrm{B}_{1,1} \Rightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge\left(\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \Rightarrow \mathrm{B}_{1,1}\right)
$$

2. Eliminate \Rightarrow, replacing $\mathrm{a} \Rightarrow \beta$ with $\neg \mathrm{a} \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \vee \mathrm{B}_{1,1}\right)
$$

3. Move \neg inwards using de Morgan's rules and doublenegation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \vee \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law (\wedge over \vee) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Resolution algorithm

- Proof by contradiction, i.e., show $K B \wedge \neg a$ unsatisfiable

```
function PL-ReSOLUTION(KB,\alpha) returns true or false
    clauses }\leftarrow\mathrm{ the set of clauses in the CNF representation of KB ^}\neg
    new}\leftarrow{
    loop do
    for each C}\mp@subsup{C}{i}{},\mp@subsup{C}{j}{}\mathrm{ in clauses do
        resolvents }\leftarrow\textrm{PL}-\textrm{RESOLVE}(\mp@subsup{C}{i}{\prime},\mp@subsup{C}{j}{}
        if resolvents contains the empty clause then return true
        new}\leftarrow\mathrm{ new }\cup\mathrm{ resolvents
    if new \subseteqclauses then return false
    clauses}\leftarrow\mathrm{ clauses }\cup\mathrm{ new
```


Resolution example

- $K B=\left(\mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge \neg \mathrm{B}_{1,1}$
- $\mathrm{a}=\neg \mathrm{P}_{1,2}$ (negate the premise for proof by refutation)

Forward and backward chaining

- Horn Form (restricted)

KB = conjunction of Horn clauses

- Horn clause =
- proposition symbol; or
- (conjunction of symbols) \Rightarrow symbol
- E.g., $C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B)$
- Modus Ponens (for Horn Form): complete for Horn KBs

- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

Forward chaining

- Idea: fire any rule whose premises are satisfied in the $K B$,
- add its conclusion to the $K B$, until query is found

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Forward chaining algorithm

function PL-FC-Entails? $(K B, q)$ returns true or false

local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known to be true
while agenda is not empty do

$$
p \leftarrow \operatorname{PoP}(\text { agenda })
$$

unless inferred $[p]$ do

$$
\operatorname{inferred}[p] \leftarrow \text { true }
$$

for each Horn clause c in whose premise p appears do
decrement count $[c]$
if count $[c]=0$ then do if $\operatorname{HEAD}[c]=q$ then return true Push($\mathrm{HEAD}[c]$, agenda)
return false

- Forward chaining is sound and complete for Horn KB

Forward chaining example

Proof of completeness

- FC derives every atomic sentence that is entailed by $K B$

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original $K B$ is true in m

$$
a_{1} \wedge \ldots \wedge a_{k \Rightarrow} b
$$

4. Hence m is a model of $K B$
5. If $K B \equiv q, q$ is true in every model of $K B$, including m

Backward chaining

Idea: work backwards from the query q : to prove q by BC,
check if q is known already, or
prove by BC all premises of some rule concluding q
Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed

Backward chaining example

Forward vs. backward chaining

- FC is data-driven, automatic, unconscious processing,
- e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
- e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

Efficient propositional inference

Two families of efficient algorithms for propositional inference:

Complete backtracking search algorithms

- DPLL algorithm (Davis, Putnam, Logemann, Loveland)
- Incomplete local search algorithms
- WalkSAT algorithm

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:

1. Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.
2. Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses $(A \vee \neg B),(\neg B \vee \neg C),(C \vee A), A$ and B are pure, C is impure.
Make a pure symbol literal true.
3. Unit clause heuristic

Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

The DPLL algorithm

function DPLL-SATISFIABLE? (s) returns true or false
inputs: s, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of s
symbols \leftarrow a list of the proposition symbols in s return DPLL(clauses, symbols, [])
function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true if some clause in clauses is false in model then return false P, value \leftarrow Find-PURE-Symbol (symbols, clauses, model) if P is non-null then return DPLL(clauses, symbols $-P,[P=$ value \mid model $]$) P, value \leftarrow Find-Unit-Clause (clauses, model)
if P is non-null then return DPLL(clauses, symbols $-P,[P=$ value \mid model $]$)
$P \leftarrow \operatorname{First}($ symbols); rest $\leftarrow \operatorname{REST}($ symbols $)$
return DPLL(clauses, rest, $[P=$ true \mid model $]$) or
DPLL(clauses, rest, $[P=$ false \mid model $])$

The WalkSAT algorithm

- Incomplete, local search algorithm
- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Balance between greediness and randomness

The WalkSAT algorithm

> function WALKSAT(clauses, p, max-flips) returns a satisfying model or failure inputs: clauses, a set of clauses in propositional logic
> \quad p, the probability of choosing to do a "random walk" move max-flips, number of flips allowed before giving up
> model \leftarrow a random assignment of true/false to the symbols in clauses
> for $i=1$ to max-flips do
> if model satisfies clauses then return model
> clause \leftarrow a randomly selected clause from clauses that is false in model
> with probability p flip the value in model of a randomly selected symbol from clause
> else flip whichever symbol in clause maximizes the number of satisfied clauses return failure

Hard satisfiability problems

- Consider random 3-CNF sentences. e.g.,
$(\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \neg B$
$\vee E) \wedge(E \vee \neg D \vee B) \wedge(B \vee E \vee \neg C)$
$m=$ number of clauses
$n=$ number of symbols
- Hard problems seem to cluster near $m / n=4.3$ (critical point)

Hard satisfiability problems

Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, $n=50$

Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

$$
\begin{aligned}
& \neg P_{1,1} \\
& \neg W_{1,1} \\
& B_{x, y} \Leftrightarrow\left(P_{x, y+1} \vee P_{x, y-1} \vee P_{x+1, y} \vee P_{x-1, y}\right) \\
& S_{x, y} \Leftrightarrow\left(W_{x, y+1} \vee W_{x, y-1} \vee W_{x+1, y} \vee W_{x-1, y}\right) \\
& W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4} \\
& \neg W_{1,1} \vee \neg W_{1,2} \\
& \neg W_{1,1} \vee \neg W_{1,3}
\end{aligned}
$$

$\Rightarrow 64$ distinct proposition symbols, 155 sentences
function PL-WUMPUS-AGENT(percept) returns an action inputs: percept, a list, [stench,breeze, glitter]
static: $K B$, initially containing the "physics" of the wumpus world x, y, orientation, the agent's position (init. $[1,1]$) and orient. (init. right) visited, an array indicating which squares have been visited, initially false action, the agent's most recent action, initially null plan, an action sequence, initially empty
update x, y,orientation, visited based on action
if stench then $\operatorname{TelL}\left(K B, S_{x, y}\right)$ else $\operatorname{Tell}\left(K B, \neg S_{x, y}\right)$
if breeze then $\operatorname{Tell}\left(K B, B_{x, y}\right)$ else $\operatorname{TelL}\left(K B, \neg B_{x, y}\right)$
if glitter then action \leftarrow grab
else if plan is nonempty then action $\leftarrow \operatorname{Pop}($ plan $)$
else if for some fringe square $[i, j], \operatorname{Ask}\left(K B,\left(\neg P_{i, j} \wedge \neg W_{i, j}\right)\right)$ is true or for some fringe square $[i, j], \operatorname{ASK}\left(K B,\left(P_{i, j} \vee W_{i, j}\right)\right)$ is false then do plan $\leftarrow \mathrm{A}^{*}$-Graph-SEARCH $($ Route- $\mathrm{PB}([x, y]$, orientation,$[i, j]$, visited $))$ action $\leftarrow \operatorname{POP}($ plan $)$
else action \leftarrow a randomly chosen move
return action

Expressiveness limitation of propositional logic

- KB contains "physics" sentences for every single square
- For every time t and every location $[x, y]$,
$L_{\substack{x, y}} \wedge$ FacingRight \wedge Forward $\Rightarrow \underset{\substack{x+1, y \\ L_{t}}}{ }$
- Rapid proliferation of clauses

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundness: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Resolution is complete for propositional logic Forward, backward chaining are linear-time, complete for Horn clauses
- Propositional logic lacks expressive power

Midterm test

- Five questions, first hour of class (be on time!)
- Topics to be covered (CSP, prop logic not on the midterm):
- Chapter 2 - Agents
- Chapter 3 - Uninformed Search
- Chapter 4 - Informed Search
- Not including the parts of 4.1 (memory-bounded heuristic search) and 4.5
- Chapter 6 - Adversarial Search
- Not including 6.5 (games with chance)

