Informed search algorithms

Chapter 4
Material

- Chapter 4 Section 1 - 3
- Excludes memory-bounded heuristic search
Outline

- Best-first search
- Greedy best-first search
- A* search

- Heuristics
- Local search algorithms
- Online search problems
Review: Tree search

A search strategy is defined by picking the order of node expansion.
Best-first search

- **Idea:** use an evaluation function $f(n)$ for each node
 - estimate of "desirability"
 - Expand most desirable unexpanded node

- **Implementation:**
 Order the nodes in fringe in decreasing order of desirability

- **Special cases:**
 - greedy best-first search
 - A^* search
Romania with step costs in km

<table>
<thead>
<tr>
<th>Place</th>
<th>Step Cost to Bucharest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobreta</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>10</td>
</tr>
<tr>
<td>Rimnicu Vilea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy best-first search

- Evaluation function $f(n) = h(n)$ (heuristic)
- $= \text{estimate of cost from } n \text{ to goal}$
- e.g., $h_{\text{SLD}}(n) = \text{straight-line distance from } n \text{ to Bucharest}$
- Greedy best-first search expands the node that appears to be closest to goal
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example

Diagram showing a search tree with cities Sibiu, Arad, Fagaras, Oradea, Timisoara, and Zerind, illustrating the greedy best-first search algorithm.
Greedy best-first search example

Greedy Best-First demo?
Properties of greedy best-first search

- **Complete?**
- **Time?**
- **Space?**
- **Optimal?**
A* search

- Idea: avoid expanding paths that are already expensive

- Evaluation function $f(n) = g(n) + h(n)$
 - $g(n) = \text{cost so far to reach } n$
 - $h(n) = \text{estimated cost from } n \text{ to goal}$
 - $f(n) = \text{estimated total cost of path through } n \text{ to goal}$
A* search example

- Arad
 - Fagaras: 646=280+366
 - Odaia: 671=391+380
 - Sibiu: 591=338+253
 - Bucharest: 450=450+0
 - Sibiu: 526=366+160
 - Craiova: 553=300+253
 - Timisoara: 447=118+329
 - Zerind: 449=75+374
- A* demo?
Admissible heuristics

- A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance).
- Theorem: If $h(n)$ is admissible, A* using TREE-SEARCH is optimal.
Optimality of A^* (proof)

- Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $g(G_2) > g(G)$ since G_2 is suboptimal
- $f(G) = g(G)$ since $h(G) = 0$
- $f(G_2) > f(G)$ from above
Optimality of A* (proof)

- Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) > f(G)$ from above
- $h(n) \leq h^*(n)$ since h is admissible
- $g(n) + h(n) \leq g(n) + h^*(n)$
- $f(n) \leq f(G)$

Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion
Consistent heuristics

- A heuristic is **consistent** if for every node n, every successor n' of n generated by any action a,

 $$ h(n) \leq c(n,a,n') + h(n') $$

- If h is consistent, we have

 \[
 f(n') = g(n') + h(n') \\
 = g(n) + c(n,a,n') + h(n') \\
 \geq g(n) + h(n) \\
 = f(n)
 \]

- i.e., $f(n)$ is non-decreasing along any path.

- **Theorem:** If $h(n)$ is consistent, A* using `GRAPH-SEARCH` is optimal
Optimality of A*

- A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$
Properties of A*

- **Complete?** Yes (unless there are infinitely many nodes with $f \leq f(G)$)
- **Time?** Exponential
- **Space?** Keeps all nodes in memory
- **Optimal?** Yes
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance (i.e., no. of squares from desired location of each tile)

Average solution depth?

Average branching factor?

<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Start State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Goal State
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

- $h_1(S) = ? \ 8$
- $h_2(S) = ? \ 3+1+2+2+2+3+3+2 = 18$
Dominance

- If $h_2(n) \geq h_1(n)$ for all n (both admissible)
- then h_2 dominates h_1
- h_2 is better for search

- Typical search costs (average number of nodes expanded):
 - $d=12$
 - IDS = 3,644,035 nodes
 - $A^*(h_1) = 227$ nodes
 - $A^*(h_2) = 73$ nodes
 - $d=24$
 - IDS = too many nodes
 - $A^*(h_1) = 39,135$ nodes
 - $A^*(h_2) = 1,641$ nodes
Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem.
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution.

- State space = set of "complete" configurations

- Find configuration satisfying constraints, e.g., n-queens

- In such cases, we can use local search algorithms

- keep a single "current" state, try to improve it
Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal.
Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

```plaintext
function HILL-CLIMBING(problem) returns a state that is a local maximum
    inputs: problem, a problem
    local variables: current, a node
                    neighbor, a node

    current ← MAKE-NODE(INITIAL-STATE[problem])
    loop do
        neighbor ← a highest-valued successor of current
        if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
        current ← neighbor
    end loop
```

Hill-climbing search

- Problem: depending on initial state, can get stuck in local maxima
Hill-climbing search: 8-queens problem

- $h = \text{number of pairs of queens that are attacking each other, either directly or indirectly}$
- $h = 17$ for the above state
Hill-climbing search: 8-queens problem

- A local minimum with $h = 1$
Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but **gradually decrease** their frequency

```python
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
            schedule, a mapping from time to "temperature"
    local variables: current, a node
                     next, a node
                     T, a "temperature" controlling prob. of downward steps

    current ← MAKE-NODE(Initial-State[problem])
    for t ← 1 to ∞ do
        T ← schedule[t]
        if T = 0 then return current
         next ← a randomly selected successor of current
        ΔE ← VALUE[next] - VALUE[current]
        if ΔE > 0 then current ← next
        else current ← next only with probability e^{ΔE/T}
```
Properties of simulated annealing search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1.

- Widely used in VLSI layout, airline scheduling, etc.
Local Beam Search

- Why keep just one best state?

- Can be used with randomization too
Genetic algorithms

- A successor state is generated by combining two parent states

- Start with k randomly generated states (population)

- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)

- Evaluation function (fitness function). Higher values for better states.

- Produce the next generation of states by selection, crossover, and mutation
Genetic algorithms

- Fitness function: number of non-attacking pairs of queens
 \(\text{min} = 0, \text{max} = 8 \times \frac{7}{2} = 28 \)
- \(24/(24+23+20+11) = 31\% \)
- \(23/(24+23+20+11) = 29\% \) etc.
Genetic algorithms
Online search and exploration

- Many problems are **offline**
 - Do search for action and then perform action

- **Online** search interleave search & execution
 - Necessary for exploration problems
 - New observations only possible after acting
Competitive Ratio

Actual cost of path
\[\frac{\text{Actual cost of path}}{\text{Best possible cost}} \]
(if agent knew space in advance)

30/20 = 1.5

For cost, lower is better
Exploration problems

- Exploration problems: agent physically in some part of the state space.
 - e.g. solving a maze using an agent with local wall sensors
 - Sensible to expand states easily accessible to agent (i.e. local states)
 - Local search algorithms apply (e.g., hill-climbing)
Hex!
Hex!

- First player tries to build row of stones from upper right to lower left.
- Second player tries to build row of stones from upper left to lower right.

Go play the demo to try it out: [http://www.mazeworks.com/hex7/]

There’s a lot of history behind this game as well, you can read about it, it may help your assignment.
Assignment

- Build a game player
- Restricted by time per move (specifications TBA)

- Interact with the game driver through command line
 - Each turn, we will run your program, providing a grid as input.
 - Your output will be just the coordinates of your stone placement.
Homework #1 - Hex

Note: we haven’t yet covered all of the methods to solve this problem

This week: start thinking about it, discuss among yourselves (remember the G.I. Rule!)
 - What heuristics are good to use?
 - What type of search makes sense to use?