FOL and Prolog

First Order Logic
Chapter 8
Outline

- Why FOL?
- Syntax and semantics of FOL
- Using FOL
- Wumpus world in FOL
- Knowledge engineering in FOL
Pros and cons of propositional logic

😊 Propositional logic is declarative

😊 Propositional logic allows partial/disjunctive/negated information
 ○ (unlike most data structures and databases)

😊 Propositional logic is compositional:
 ○ meaning of $B_{1,1} \land P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$

😊 Meaning in propositional logic is context-independent
 ○ (unlike natural language, where meaning depends on context)

😊 Propositional logic has very limited expressive power
 ○ (unlike natural language)
 ○ E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square
First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
 - **Objects**: people, houses, numbers, colors, baseball games, wars, …
 - **Relations**: red, round, prime, brother of, bigger than, part of, comes between, …
 - **Functions**: father of, best friend, one more than, plus, …
Syntax of FOL: Basic elements

- Constants: KingJohn, 2, NUS,...
- Predicates: Brother, >,...
- Functions: Sqrt, LeftLegOf,...
- Variables: x, y, a, b,...
- Connectives: ¬, ⇒, ∧, ∨, ⇔
- Equality: =
- Quantifiers: ∀, ∃
Atomic sentences

Atomic sentence = \(\text{predicate} \ (\text{term}_1, \ldots, \text{term}_n) \)
or \(\text{term}_1 = \text{term}_2 \)

Term = \(\text{function} \ (\text{term}_1, \ldots, \text{term}_n) \)
or \(\text{constant} \) or \(\text{variable} \)

E.g.,
- \(\text{Brother}(\text{KingJohn}, \text{RichardTheLionheart}) \)
- \(\text{Length}(\text{LeftLegOf}(\text{Richard})) = \text{Length}(\text{LeftLegOf}(\text{KingJohn})) \)
Complex sentences

- Complex sentences are made from atomic sentences using connectives
 \(\neg S, S_1 \land S_2, S_1 \lor S_2, S_1 \Rightarrow S_2, S_1 \iff S_2, \)

E.g. \(\text{Sibling}(\text{KingJohn}, \text{Richard}) \Rightarrow \text{Sibling}(\text{Richard}, \text{KingJohn}) \)

\(> (1,2) \lor \leq (1,2) \)

\(> (1,2) \land \neg > (1,2) \)
Truth in first-order logic

- Sentences are true with respect to a **model** and an **interpretation**

- Model contains objects (**domain elements**) and relations among them

- Interpretation specifies referents for
 - **constant symbols** → **objects**
 - **predicate symbols** → **relations**
 - **function symbols** → **functional relations**

- An atomic sentence \(\text{predicate}(\text{term}_1,\ldots,\text{term}_n) \) is true iff the **objects** referred to by \(\text{term}_1,\ldots,\text{term}_n \) are in the **relation** referred to by \(\text{predicate} \)
Models for FOL: Example
Universal quantification

- $\forall<\text{variables}> <\text{sentence}>$

Everyone at NUS is smart:
$\forall x \text{At}(x, \text{NUS}) \Rightarrow \text{Smart}(x)$

- $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model

- Roughly speaking, equivalent to the conjunction of instantiations of P

 $\text{At}(\text{KingJohn}, \text{NUS}) \Rightarrow \text{Smart}(\text{KingJohn})$
 $\land \text{At}(\text{Richard}, \text{NUS}) \Rightarrow \text{Smart}(\text{Richard})$
 $\land \text{At}(\text{NUS}, \text{NUS}) \Rightarrow \text{Smart}(\text{NUS})$
 $\land \ldots$
A common mistake to avoid

- Typically, \(\Rightarrow \) is the main connective with \(\forall \).
- Common mistake: using \(\land \) as the main connective with \(\forall \):

\[
\forall x \, \text{At}(x, \text{NUS}) \land \text{Smart}(x)
\]

means “Everyone is at NUS and everyone is smart”
Existential quantification

- $\exists \langle \text{variables} \rangle \langle \text{sentence} \rangle$

- Someone at NUS is smart:
 - $\exists x \text{At}(x, \text{NUS}) \land \text{Smart}(x)$

- $\exists x P$ is true in a model m iff P is true with x being some possible object in the model

- Roughly speaking, equivalent to the disjunction of instantiations of P
 - $\text{At}(\text{KingJohn}, \text{NUS}) \land \text{Smart}(\text{KingJohn})$
 - $\lor \text{At}(\text{Richard}, \text{NUS}) \land \text{Smart}(\text{Richard})$
 - $\lor \text{At}(\text{NUS}, \text{NUS}) \land \text{Smart}(\text{NUS})$
 - $\lor \ldots$
A common mistake to avoid (2)

- Typically, \land is the main connective with \exists

- Common mistake: using \Rightarrow as the main connective with \exists:

 $\exists x \text{ At}(x,\text{NUS}) \Rightarrow \text{Smart}(x)$

 is true if there is anyone who is not at NUS!
Properties of quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$

- $\exists x \forall y$ is not the same as $\forall y \exists x$
- $\exists x \forall y \text{ Loves}(x,y)$
 - “There is a person who loves everyone in the world”
- $\forall y \exists x \text{ Loves}(x,y)$
 - “Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other
- $\forall x \text{ Likes}(x,\text{IceCream}) \rightarrow \neg \exists x \neg \text{Likes}(x,\text{IceCream})$
- $\exists x \text{ Likes}(x,\text{Broccoli}) \rightarrow \neg \forall x \neg \text{Likes}(x,\text{Broccoli})$
Equality

- \(\text{term}_1 = \text{term}_2 \) is true under a given interpretation if and only if \(\text{term}_1 \) and \(\text{term}_2 \) refer to the same object.

- E.g., definition of *Sibling* in terms of *Parent*:

\[
\forall x,y \ Sibling(x,y) \iff \neg(x = y) \land \exists m,f \neg(m = f) \land \\
\text{Parent}(m,x) \land \text{Parent}(f,x) \land \text{Parent}(m,y) \land \\
\text{Parent}(f,y)
\]
The kinship domain:

- Brothers are siblings
 \[\forall x, y \, \text{Brother}(x, y) \implies \text{Sibling}(x, y) \]

- One's mother is one's female parent
 \[\forall m, c \, \text{Mother}(c) = m \iff (\text{Female}(m) \land \text{Parent}(m, c)) \]

- “Sibling” is symmetric
 \[\forall x, y \, \text{Sibling}(x, y) \iff \text{Sibling}(y, x) \]
Using FOL

The set domain:

- \(\forall s \, \text{Set}(s) \iff (s = \{\}) \lor (\exists x, s_2 \, \text{Set}(s_2) \land s = \{x|s_2\}) \)
- \(\neg \exists x, s \, \{x|s\} = \{\} \)
- \(\forall x, s \, x \in s \iff s = \{x|s\} \)
- \(\forall x, s \, x \in s \iff [\exists y, s_2 \, (s = \{y|s_2\} \land (x = y \lor x \in s_2))] \)
- \(\forall s_1, s_2 \, s_1 \subseteq s_2 \iff (\forall x \, x \in s_1 \Rightarrow x \in s_2) \)
- \(\forall s_1, s_2 \, (s_1 = s_2) \iff (s_1 \subseteq s_2 \land s_2 \subseteq s_1) \)
- \(\forall x, s_1, s_2 \, x \in (s_1 \cap s_2) \iff (x \in s_1 \land x \in s_2) \)
- \(\forall x, s_1, s_2 \, x \in (s_1 \cup s_2) \iff (x \in s_1 \lor x \in s_2) \)
Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:

$$\text{Tell}(KB, \text{Percept}([\text{Smell}, \text{Breeze}, \text{None}], 5))$$
$$\text{Ask}(KB, \exists a \text{ BestAction}(a, 5))$$

I.e., does the KB entail some best action at $t=5$?

Answer: Yes, $\{a/\text{Shoot}\}$ ← substitution (binding list)

Given a sentence S and a substitution σ,
$S\sigma$ denotes the result of plugging σ into S; e.g.,
$S = \text{Smarter}(x, y)$
$\sigma = \{x/\text{Hillary}, y/\text{Bill}\}$
$S\sigma = \text{Smarter}(\text{Hillary}, \text{Bill})$

$\text{Ask}(KB, S)$ returns some/all σ such that $KB \models \sigma$
KB for the wumpus world

- Perception
 - $\forall t,s,b \text{ Percept}([s,b,\text{Glitter}],t) \Rightarrow \text{Glitter}(t)$

- Reflex
 - $\forall t \text{ Glitter}(t) \Rightarrow \text{BestAction}(\text{Grab},t)$
Deducing hidden properties

\[\forall x, y, a, b \ Adjacent([x, y], [a, b]) \iff [a, b] \in \{[x+1, y], [x-1, y], [x, y+1], [x, y-1]\} \]

Properties of squares:

\[\forall s, t \ At(Agent, s, t) \land Breeze(t) \implies Breezy(s) \]

Squares are breezy near a pit:

- **Diagnostic** rule - infer cause from effect
 \[\forall s \ Breezy(s) \implies \exists r \ Adjacent(r, s) \land Pit(r) \]
- **Causal** rule - infer effect from cause
 \[\forall r \ Pit(r) \implies [\forall s \ Adjacent(r, s) \implies Breezy(s)] \]
Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base
The electronic circuits domain

One-bit full adder
The electronic circuits domain

1. Identify the task
 - Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge
 - Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 - Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
 - Alternatives:
 Type(X₁) = XOR
 Type(X₁, XOR)
 XOR(X₁)
The electronic circuits domain

4. Encode general knowledge of the domain
 - $\forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Signal}(t_1) = \text{Signal}(t_2)$
 - $\forall t \text{ Signal}(t) = 1 \lor \text{Signal}(t) = 0$
 - $1 \neq 0$
 - $\forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Connected}(t_2, t_1)$
 - $\forall g \text{ Type}(g) = \text{OR} \Rightarrow \text{Signal}(\text{Out}(1,g)) = 1 \iff \exists n \text{ Signal}(\text{In}(n,g)) = 1$
 - $\forall g \text{ Type}(g) = \text{AND} \Rightarrow \text{Signal}(\text{Out}(1,g)) = 0 \iff \exists n \text{ Signal}(\text{In}(n,g)) = 0$
 - $\forall g \text{ Type}(g) = \text{XOR} \Rightarrow \text{Signal}(\text{Out}(1,g)) = 1 \iff \text{Signal}(\text{In}(1,g)) \neq \text{Signal}(\text{In}(2,g))$
 - $\forall g \text{ Type}(g) = \text{NOT} \Rightarrow \text{Signal}(\text{Out}(1,g)) \neq \text{Signal}(\text{In}(1,g))$
The electronic circuits domain

5. Encode the specific problem instance

\begin{align*}
 \text{Type}(X_1) &= \text{XOR} & \text{Type}(X_2) &= \text{XOR} \\
 \text{Type}(A_1) &= \text{AND} & \text{Type}(A_2) &= \text{AND} \\
 \text{Type}(O_1) &= \text{OR} \\
 \text{Connected}(\text{Out}(1,X_1),\text{In}(1,X_2)) & \quad \text{Connected}(\text{In}(1,C_1),\text{In}(1,X_1)) \\
 \text{Connected}(\text{Out}(1,X_1),\text{In}(2,A_2)) & \quad \text{Connected}(\text{In}(1,C_1),\text{In}(1,A_1)) \\
 \text{Connected}(\text{Out}(1,A_2),\text{In}(1,O_1)) & \quad \text{Connected}(\text{In}(2,C_1),\text{In}(2,X_1)) \\
 \text{Connected}(\text{Out}(1,A_1),\text{In}(2,O_1)) & \quad \text{Connected}(\text{In}(2,C_1),\text{In}(2,A_1)) \\
 \text{Connected}(\text{Out}(1,X_2),\text{Out}(1,C_1)) & \quad \text{Connected}(\text{In}(3,C_1),\text{In}(2,X_2)) \\
 \text{Connected}(\text{Out}(1,O_1),\text{Out}(2,C_1)) & \quad \text{Connected}(\text{In}(3,C_1),\text{In}(1,A_2))
\end{align*}
6. Pose queries to the inference procedure

What are the possible sets of values of all the terminals for the adder circuit?

\[\exists i_1, i_2, i_3, o_1, o_2 \ Signal(\text{In}(1, C_1)) = i_1 \land Signal(\text{In}(2, C_1)) = i_2 \land \]
\[\ Signal(\text{In}(3, C_1)) = i_3 \land Signal(\text{Out}(1, C_1)) = o_1 \land \]
\[\ Signal(\text{Out}(2, C_1)) = o_2 \]

7. Debug the knowledge base

May have omitted assertions like \(1 \neq 0\).
Summary

- First-order logic:
 - objects and relations are semantic primitives
 - syntax: constants, functions, predicates, equality, quantifiers

- Increased expressive power: sufficient to define wumpus world
PROgramming in LOGic

A crash course in Prolog

Slides edited from William Clocksin’s versions at Cambridge Univ.
What is Logic Programming?

- A type of programming consisting of facts and relationships from which the programming language can draw a conclusion.
 - In *imperative programming* languages, we tell the computer what to do by programming the procedure by which program states and variables are modified.
 - In contrast, in *logical programming*, we don’t tell the computer exactly what it should do (i.e., how to derive a conclusion). User-provided facts and relationships allow it to derive answers via logical inference.

- Prolog is the most widely used logic programming language.
Prolog Features

- Prolog uses **logical variables**. These are not the same as variables in other languages. Programmers can use them as ‘holes’ in data structures that are gradually filled in as computation proceeds.

- **Unification** is a built-in term-manipulation method that passes parameters, returns results, selects and constructs data structures.

- Basic control flow model is **backtracking**.

- **Program clauses and data** have the same form.
 - A Prolog program can also be seen as a relational database containing rules as well as facts.
Example: Concatenate lists a and b

In an imperative language

list procedure cat(list a, list b)
{
 list t = list u = copylist(a);
 while (t.tail != nil) t = t.tail;
 t.tail = b;
 return u;
}

In a functional language

cat(a,b) ≡
 if b = nil then a
 else cons(head(a),
 cat(tail(a),b))

In a declarative language

cat([], Z, Z).
cat([H|T], L, [H|Z]) :- cat(T, L, Z).
Outline

- General Syntax
- Terms
- Operators
- Rules
- Queries
Syntax

- .pl files contain lists of clauses
- Clauses can be either facts or rules

```
male(bob).
male(harry).
child(bob,harry).
son(X,Y):-
  male(X), child(X,Y).
```

- Predicate, arity 1 (male/1)
- Terminates a clause
- Argument to predicate
- Indicates a rule
- "and"
- No space between functor and argument list
Complete Syntax of Terms

Term

Constant

Names an individual

Atom

John Smith

Dyspepsia

+

=/=

'12Q&A'

Number

alpha17

gross_pay

john_smith

dyspepsia

+

=/=

'12Q&A'

0

1

57

1.618

2.04e-27

-13.6

Compound Term

Names an individual that has parts

Likes(john, mary)

Book(dickens, Z, cricket)

f(x)

[1, 3, g(a), 7, 9]

-(+15, 17), t

15 + 17 - t

Variable

Stands for an individual

unable to be named when

program is written

X

Gross_pay

Diagnosis

_257

N.B.: case of Variables and
terms and constants
switched from FOL

A list is made of terms, separated by commas and enclosed by brackets.
Compound Terms

The parents of Spot are Fido and Rover.
parents(spot, fido, rover)

Functor (an atom) of arity 3. components (any terms)

It is possible to depict the term as a tree:

parents
 /
spot fido rover
Examples of operator properties

Prolog has shortcuts in notation for certain operators (especially arithmetic ones)

<table>
<thead>
<tr>
<th>Position</th>
<th>Operator Syntax</th>
<th>Normal Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix:</td>
<td>-2</td>
<td>-(2)</td>
</tr>
<tr>
<td>Infix:</td>
<td>5+17</td>
<td>+(17,5)</td>
</tr>
</tbody>
</table>

Associativity: left, right, none.

X+Y+Z is parsed as (X+Y)+Z

because addition is left-associative.

Precedence: an integer.

X+Y*Z is parsed as X+(Y*Z)

because multiplication has higher precedence.

These are all the same as the normal rules of arithmetic.
Rules

- Rules combine facts to increase knowledge of the system

\[
\text{son}(X, Y) : - \\
\text{male}(X), \text{child}(X, Y).
\]

- X is a son of Y if X is male and X is a child of Y
Interpretation of Rules

Rules can be given a declarative reading or a procedural reading.

Form of rule:

\[H \leftarrow G_1, G_2, \ldots, G_n. \]

Declarative reading:

“That H is provable follows from goals \(G_1, G_2, \ldots, G_n \) being provable.”

Procedural reading:

“To execute procedure H, the procedures called by goals \(G_1, G_2, \ldots, G_n \) are executed first.”
Queries

- Prolog is interactive; you load a KB and then ask queries
- Composed at the ?- prompt
- Returns values of bound variables and yes or no

?- son(bob, harry).
yes
?- king(bob, france).
nom
Another example

likes(george,kate).
likes(george,susie).
likes(george,wine).

?- likes(george,X)
 X = kate
 ;
 X = susie
 ;
 X = wine
 ;
 no

Answer: kate or susie or wine or false
Quantifiers

When a variable appears in the specification of a database, the variable is \textit{universally quantified}. Example:

\texttt{likes(susie,Y)}

One interpretation: ‘Susie likes everyone’

For the \textit{existential} quantifier one may do two things:

a. Enter the value directly into the database
\texttt{likes(george,Z) becomes \texttt{likes(george,wine)}}

b. Query the interpreter
\texttt{?- likes(george,Z)} returns a value for Z if one exists
Points to consider

- Variables are bound by Prolog, not by the programmer
 - You can’t assign a value to a variable.

- Successive user prompts ; cause the interpreter to return all terms that can be substituted for X.
 - They are returned in the order found.
 - Order is important

- PROLOG adopts the **closed-world assumption**:
 - All knowledge of the world is present in the database.
 - If a term is not in the database assume is false.
 - Prolog’s ‘yes’ = I can prove it, ‘no’ = I can’t prove it.

Two things to think about:
When would the closed-world assumption lead to false inferences?
When would the different ordering of solutions cause problems?
Queries

- Can bind answers to questions to variables
- Who is bob the son of? (X=harry)
 \(-\) `son(bob, X).`
- Who is male? (X=bob, harry)
 \(-\) `male(X).`
- Is bob the son of someone? (yes)
 \(-\) `son(bob, _).`
 - No variables bound in this case!

_ = Anonymous variable, don’t care what it’s bound to.
Lists

- The first element of a list can be separated from the tail using operator |

Example:

Match the list [tom,dick,harry,fred] to

[X|Y] then X = tom and Y = [dick,harry,fred]
[X,Y|Z] then X = tom, Y = dick, and Z = [harry,fred]
[V,W,X,Y,Z|U] will not match
[tom,X|[harry,fred]] gives X = dick
Example: List Membership

- We want to write a function member that works as follows:

```prolog
?- member(a,[a,b,c,d,e])
yes
?- member(a,[1,2,3,4])
no
?- member(X,[a,b,c])
    X = a ; X = b ; X = c ; no
```

Can you do it?
Function Membership Solution

Define two predicates:

- member(X,[X|T]).
- member(X,[Y|T]) :- member(X,T).

A more elegant definition uses anonymous variables:

- member(X,[X,_]).
- member(X,_|T]) :- member(X,T).

Again, the symbol _ indicates that the contents of that variable is unimportant.
Notes on running Prolog

You will often want to load a KB on invocation of Prolog

- Use “consult(‘mykb.pl’).” at the “?-” prompt.
- Or add it on the command line as a standard input “pl < mykb.pl”

If you want to modify facts once Prolog is invoked:

- Use “assert(p).”
- Or “retract(p).” to remove a fact
Prolog Summary

- A Prolog program is a set of specifications in FOL. The specification is known as the database of the system.
- Prolog is an interactive language (the user enters queries in response to a prompt).
- PROLOG adopts the closed-world assumption.
- How does Prolog find the answer(s)? We return to this next week in Inference in FOL.