
10 Mar 2005 CS 3243 - FOL and Prolog 1

FOL and Prolog

First Order Logic
Chapter 8

10 Mar 2005 CS 3243 - FOL and Prolog 2

Outline
Why FOL?
Syntax and semantics of FOL
Using FOL
Wumpus world in FOL
Knowledge engineering in FOL

10 Mar 2005 CS 3243 - FOL and Prolog 3

Pros and cons of propositional logic
☺ Propositional logic is declarative
☺ Propositional logic allows partial/disjunctive/negated information

 (unlike most data structures and databases)
☺ Propositional logic is compositional :

meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of
P1,2

☺ Meaning in propositional logic is context- independent
 (unlike natural language, where meaning depends on context)

 Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say "pits cause breezes in adjacent squares“

 except by writing one sentence for each square

10 Mar 2005 CS 3243 - FOL and Prolog 4

First-order logic
Whereas propositional logic assumes
the world contains facts,
first-order logic (like natural language)

 assumes the world contains
Objects: people, houses, numbers,

 colors, baseball games, wars, …
Relations: red, round, prime, brother of,
bigger than, part of, comes between, …
Functions: father of, best friend, one

 more than, plus, …

One to
one

mapping

10 Mar 2005 CS 3243 - FOL and Prolog 5

Syntax of FOL: Basic elements
Constants KingJohn, 2, NUS,...
Predicates Brother, >,...
Functions Sqrt, LeftLegOf,...
Variables x, y, a, b,...
Connectives¬, ⇒, ∧, ∨, ⇔
Equality =
Quantifiers ∀, ∃

10 Mar 2005 CS 3243 - FOL and Prolog 6

Atomic sentences
Atomic sentence = predicate (term1,...,termn)

or term1 = term2

Term = function (term1,...,termn)
or constant or variable

E.g.,
Brother(KingJohn,RichardTheLionheart)
Length(LeftLegOf(Richard)) =
Length(LeftLegOf(KingJohn))

Functions
can be

viewed as
complex

names for
constants

10 Mar 2005 CS 3243 - FOL and Prolog 7

Complex sentences
Complex sentences are made from

 atomic sentences using connectives
¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔S2,

E.g. Sibling(KingJohn,Richard) ⇒
Sibling(Richard,KingJohn)
>(1,2) ∨ ≤ (1,2)
>(1,2) ∧ ¬ >(1,2)

10 Mar 2005 CS 3243 - FOL and Prolog 8

Truth in first-order logic
Sentences are true with respect to a model and an
interpretation

Model contains objects (domain elements) and relations
 among them

Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn
are in the relation referred to by predicate

10 Mar 2005 CS 3243 - FOL and Prolog 9

Models for FOL: Example

10 Mar 2005 CS 3243 - FOL and Prolog 10

Universal quantification
∀<variables> <sentence >

Everyone at NUS is smart:
∀x At(x,NUS) ⇒ Smart(x)

∀x P is true in a model m iff P is true with x being
 each possible object in the model

Roughly speaking, equivalent to the conjunction of
instantiations of P

At(KingJohn,NUS) ⇒ Smart(KingJohn)
∧ At(Richard,NUS) ⇒ Smart(Richard)
∧ At(NUS,NUS) ⇒ Smart(NUS)
∧ ...

10 Mar 2005 CS 3243 - FOL and Prolog 11

A common mistake to avoid
Typically, ⇒ is the main connective with ∀
Common mistake: using ∧ as the main
connective with ∀:
∀x At(x,NUS) ∧ Smart(x)
means “Everyone is at NUS and everyone is

 smart”

10 Mar 2005 CS 3243 - FOL and Prolog 12

Existential quantification
∃<variables> <sentence>

Someone at NUS is smart:
∃x At(x,NUS) ∧ Smart(x)

∃x P is true in a model m iff P is true with x being
 some possible object in the model

Roughly speaking, equivalent to the disjunction of
instantiations of P

At(KingJohn,NUS) ∧ Smart(KingJohn)
∨ At(Richard,NUS) ∧ Smart(Richard)
∨ At(NUS,NUS) ∧ Smart(NUS)
∨ ...

10 Mar 2005 CS 3243 - FOL and Prolog 13

A common mistake to avoid (2)
Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main
connective with ∃ :

∃x At(x,NUS) ⇒ Smart(x)
is true if there is anyone who is not at

 NUS!

10 Mar 2005 CS 3243 - FOL and Prolog 14

Properties of quantifiers
∀x ∀y is the same as ∀y ∀x
∃x ∃y is the same as ∃y ∃x

∃x ∀y is not the same as ∀y ∃x
∃x ∀y Loves(x,y)

 “There is a person who loves everyone in the world”
∀y ∃x Loves(x,y)

 “Everyone in the world is loved by at least one person”

Quantifier duality : each can be expressed using the other
∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)
∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

10 Mar 2005 CS 3243 - FOL and Prolog 15

Equality
term1 = term2 is true under a given
interpretation if and only if term1 and term2

 refer to the same object

E.g., definition of Sibling in terms of
Parent :
∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧

Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧
Parent(f,y)]

10 Mar 2005 CS 3243 - FOL and Prolog 16

Using FOL
 The kinship domain:
 Brothers are siblings

∀x,y Brother(x,y) ⇒ Sibling(x,y)
 One's mother is one's female parent

∀m,c Mother(c) = m ⇔ (Female(m) ∧
Parent(m,c))

 “Sibling” is symmetric
∀x,y Sibling(x,y) ⇔ Sibling(y,x)

10 Mar 2005 CS 3243 - FOL and Prolog 17

Using FOL
 The set domain:

∀s Set(s) ⇔ (s = {}) ∨ (∃x,s2 Set(s2) ∧ s = {x|s2 })
¬∃x,s {x|s } = {}
∀x,s x ∈ s ⇔ s = {x|s }
∀x,s x ∈ s ⇔ [∃y,s2} (s = {y|s2} ∧ (x = y ∨ x ∈ s2))]
∀s1,s2 s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2)
∀s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1)
∀x,s1,s2 x ∈ (s1 ∩ s2) ⇔ (x ∈ s1 ∧ x ∈ s2)
∀x,s1,s2 x ∈ (s1 ∪ s2) ⇔ (x ∈ s1 ∨ x ∈ s2)

10 Mar 2005 CS 3243 - FOL and Prolog 18

Interacting with FOL KBs
Suppose a wumpus-world agent is using an FOL KB and perceives a
smell and a breeze (but no glitter) at t=5:

Tell(KB,Percept([Smell,Breeze,None],5))
Ask(KB,∃a BestAction(a,5))

I.e., does the KB entail some best action at t=5 ?

Answer: Yes, {a/Shoot} ← substitution (binding list)

Given a sentence S and a substitution σ,
Sσ denotes the result of plugging σ into S; e.g.,
S = Smarter(x,y)
σ = {x/Hillary,y/Bill}
Sσ = Smarter(Hillary,Bill)

Ask(KB,S) returns some/all σ such that KB╞ σ

10 Mar 2005 CS 3243 - FOL and Prolog 19

KB for the wumpus world
Perception

∀t,s,b Percept([s,b,Glitter],t) ⇒ Glitter(t)

Reflex
∀t Glitter(t) ⇒ BestAction(Grab,t)

10 Mar 2005 CS 3243 - FOL and Prolog 20

Deducing hidden properties
∀x,y,a,b Adjacent([x,y],[a,b]) ⇔
[a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y- 1]}

Properties of squares:
∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s)

 Squares are breezy near a pit:
Diagnostic rule - infer cause from effect
∀s Breezy(s) ⇒ ∃r Adjacent(r,s) ∧ Pit(r)
Causal rule - infer effect from cause
∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)]

10 Mar 2005 CS 3243 - FOL and Prolog 21

Knowledge engineering in FOL
1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions,

 and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem

 instance
6. Pose queries to the inference procedure and get

 answers
7. Debug the knowledge base

10 Mar 2005 CS 3243 - FOL and Prolog 22

The electronic circuits domain
One- bit full adder

10 Mar 2005 CS 3243 - FOL and Prolog 23

The electronic circuits domain
1. Identify the task

Does the circuit actually add properly? (circuit
 verification)

2. Assemble the relevant knowledge
Composed of wires and gates; Types of gates (AND, OR,

 XOR, NOT)
Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
 Alternatives:

Type(X1) = XOR
Type(X1, XOR)
XOR(X1)

10 Mar 2005 CS 3243 - FOL and Prolog 24

The electronic circuits domain
4. Encode general knowledge of the domain

∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)
∀t Signal(t) = 1 ∨ Signal(t) = 0
1 ≠ 0
∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1)
∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n
Signal(In(n,g)) = 1
∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n
Signal(In(n,g)) = 0
∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔
Signal(In(1,g)) ≠ Signal(In(2,g))
∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g))

10 Mar 2005 CS 3243 - FOL and Prolog 25

The electronic circuits domain
5. Encode the specific problem instance

Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))

10 Mar 2005 CS 3243 - FOL and Prolog 26

The electronic circuits domain
6. Pose queries to the inference procedure

What are the possible sets of values of all the
 terminals for the adder circuit?

∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧
Signal(In(3,C1)) = i3 ∧ Signal(Out(1,C1)) = o1 ∧
Signal(Out(2,C1)) = o2

7. Debug the knowledge base
May have omitted assertions like 1 ≠ 0

10 Mar 2005 CS 3243 - FOL and Prolog 27

Summary
First- order logic:

objects and relations are semantic
primitives
syntax: constants, functions, predicates,

 equality, quantifiers

Increased expressive power: sufficient
to define wumpus world

10 Mar 2005 CS 3243 - FOL and Prolog28

PROgramming in LOGic

A crash course in Prolog

Slides edited from William Clocksin’s
versions at Cambridge Univ.

10 Mar 2005 CS 3243 - FOL and Prolog29

What is Logic Programming?

A type of programming consisting of facts and relationships
from which the programming language can draw a conclusion.

– In imperative programming languages, we tell the computer what
to do by programming the procedure by which program states and
variables are modified.

– In contrast, in logical programming, we don’t tell the computer
exactly what it should do (i.e., how to derive a conclusion). User-
provided facts and relationships allow it to derive answers via
logical inference.

Prolog is the most widely used logic programming
language.

10 Mar 2005 CS 3243 - FOL and Prolog30

Prolog Features

Prolog uses logical variables. These are not the
same as variables in other languages. Programmers
can use them as ‘holes’ in data structures that are
gradually filled in as computation proceeds.
Unification is a built-in term-manipulation method
that passes parameters, returns results, selects and
constructs data structures.
Basic control flow model is backtracking.
Program clauses and data have the same form.

– A Prolog program can also be seen as a relational database
containing rules as well as facts.

10 Mar 2005 CS 3243 - FOL and Prolog31

Example: Concatenate lists a and b
list procedure cat(list a, list b)
{

list t = list u = copylist(a);
while (t.tail != nil) t = t.tail;
t.tail = b;
return u;

}

In an imperative language

In a functional language cat(a,b) ≡
if b = nil then a

else cons(head(a),
cat(tail(a),b))

cat([], Z, Z).
cat([H|T], L, [H|Z]) :- cat(T, L, Z).

In a declarative language

10 Mar 2005 CS 3243 - FOL and Prolog32

Outline

General Syntax
Terms
Operators
Rules
Queries

10 Mar 2005 CS 3243 - FOL and Prolog33

Syntax

.pl files contain lists of clauses
Clauses can be either facts or rules

male(bob).
male(harry).
child(bob,harry).
son(X,Y):-

male(X),child(X,Y).

Predicate, arity 1 (male/1)
Terminates a clause

Indicates a rule

“and”

Argument to predicate

No space between functor and argument list

10 Mar 2005 CS 3243 - FOL and Prolog34

Complete Syntax of Terms
Term

Constant VariableCompound Term

Atom Number
alpha17
gross_pay
john_smith
dyspepsia
+
=/=
’12Q&A’

0
1
57
1.618
2.04e-27
-13.6

likes(john, mary)
book(dickens, Z, cricket)
f(x)
[1, 3, g(a), 7, 9]
-(+(15, 17), t)
15 + 17 - t

X
Gross_pay
Diagnosis
_257
_

Names an individual Stands for an individual
unable to be named when
program is written

Names an individual
that has parts

N.B. : case of Variables and
terms and constants
switched from FOL

A list is made of a terms,
separated by commas and

enclosed by brackets.

10 Mar 2005 CS 3243 - FOL and Prolog35

Compound Terms

parents(spot, fido, rover)
The parents of Spot are Fido and Rover.

components (any terms)Functor (an atom) of arity 3.

It is possible to depict the term as a tree:

parents

spot fido rover

10 Mar 2005 CS 3243 - FOL and Prolog36

Examples of operator properties
Prolog has shortcuts in notation for certain operators (especially
arithmetic ones)

Position Operator Syntax Normal Syntax
Prefix: -2 -(2)
Infix: 5+17 +(17,5)

Associativity: left, right, none.
X+Y+Z is parsed as (X+Y)+Z

because addition is left-associative.

Precedence: an integer.
X+Y*Z is parsed as X+(Y*Z)
because multiplication has higher precedence.

These are all the
same as the
normal rules of
arithmetic.

10 Mar 2005 CS 3243 - FOL and Prolog37

Rules

Rules combine facts to increase knowledge
of the system

son(X,Y):-
male(X),child(X,Y).

X is a son of Y if X is male and
X is a child of Y

10 Mar 2005 CS 3243 - FOL and Prolog38

Interpretation of Rules

Rules can be given a declarative reading or a
procedural reading.

H :- G1, G2, …, Gn.Form of rule:
“That H is provable follows
from goals G1, G2, …, Gn being
provable.”
“To execute procedure H, the
procedures called by goals G1,
G2, …, Gn are executed first.”

Declarative reading:

Procedural reading:

10 Mar 2005 CS 3243 - FOL and Prolog39

Queries

Prolog is interactive; you load a KB and then ask
queries
Composed at the ?- prompt
Returns values of bound variables and yes or no

?- son(bob, harry).
yes
?- king(bob, france).
no

10 Mar 2005 CS 3243 - FOL and Prolog40

Another example

likes(george,kate).
likes(george,susie).
likes(george,wine).

?- likes(george,X)
X = kate
;
X = susie
;
X = wine
;
no

Answer: kate or susie or wine or false

10 Mar 2005 CS 3243 - FOL and Prolog41

Quantifiers
When a variable appears in the specification of a

database,
the variable is . Example:

likes(susie,Y)

For the quantifier one may do two
things:

a. Enter the value directly into the database
likes(george,Z) becomes likes(george,wine)

b. Query the interpreter
?- likes(george,Z) returns a value for Z if one

exists

existential

One interpretation:
‘Susie likes everyone’

universally quantified

10 Mar 2005 CS 3243 - FOL and Prolog42

Points to consider
Variables are bound by Prolog, not by the programmer

– You can’t assign a value to a variable.

Successive user prompts ; cause the interpreter to return all
terms that can be substituted for X.

– They are returned in the order found.
– Order is important

PROLOG adopts the closed-world assumption:
– All knowledge of the world is present in the database.
– If a term is not in the database assume is false.
– Prolog’s ‘yes’ = I can prove it, ‘no’ = I can’t prove it.

‘;’ means Or
‘,’ means And

Two things to think about:
When would the closed-world assumption lead to false inferences?
When would the different ordering of solutions cause problems?

10 Mar 2005 CS 3243 - FOL and Prolog43

Queries

Can bind answers to questions to variables
Who is bob the son of? (X=harry)

?- son(bob, X).

Who is male? (X=bob, harry)
?- male(X).

Is bob the son of someone? (yes)
?- son(bob, _).

– No variables bound in this case!

_ = Anonymous
variable, don’t care
what it’s bound to.

10 Mar 2005 CS 3243 - FOL and Prolog44

Lists
The first element of a list can be separated from the tail

using operator |

Example:

Match the list [tom,dick,harry,fred] to

[X|Y] then X = tom and Y = [dick,harry,fred]
[X,Y|Z] then X = tom, Y = dick, and Z = [harry,fred]
[V,W,X,Y,Z|U] will not match
[tom,X|[harry,fred]] gives X = dick

10 Mar 2005 CS 3243 - FOL and Prolog45

Example: List Membership
We want to write a function member that works as follows:

?- member(a,[a,b,c,d,e])
yes
?- member(a,[1,2,3,4])
no
?- member(X,[a,b,c])
X = a
;
X = b
;
X = c
;
no

Can you do it?

10 Mar 2005 CS 3243 - FOL and Prolog46

Function Membership Solution

Define two predicates:

member(X,[X|T]).
member(X,[Y|T]) :- member(X,T).

A more elegant definition uses anonymous variables:

member(X,[X,_]).
member(X,[_|T]) :- member(X,T).

Again, the symbol _ indicates that the contents of that
variable is unimportant.

10 Mar 2005 CS 3243 - FOL and Prolog47

Notes on running Prolog

You will often want to load a KB on invocation of Prolog
Use “consult(‘mykb.pl’).” at the “?-” prompt.
Or add it on the command line as a standard input
“pl < mykb.pl”

If you want to modify facts once Prolog is invoked:
Use “assert(p).”
Or “retract(p).” to remove a fact

10 Mar 2005 CS 3243 - FOL and Prolog48

Prolog Summary

A Prolog program is a set of specifications in FOL.
The specification is known as the database of the
system.
Prolog is an interactive language (the user enters
queries in response to a prompt).
PROLOG adopts the closed-world assumption

How does Prolog find the answer(s)? We return to
this next week in Inference in FOL

	FOL and Prolog
	Outline
	Pros and cons of propositional logic
	First-order logic
	Syntax of FOL: Basic elements
	Atomic sentences
	Complex sentences
	Truth in first-order logic
	Models for FOL: Example
	Universal quantification
	A common mistake to avoid
	Existential quantification
	A common mistake to avoid (2)
	Properties of quantifiers
	Equality
	Using FOL
	Using FOL
	Interacting with FOL KBs
	KB for the wumpus world
	Deducing hidden properties
	Knowledge engineering in FOL
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	Summary
	PROgramming in LOGic
	What is Logic Programming?
	Prolog Features
	Example: Concatenate lists a and b
	Outline
	Syntax
	Complete Syntax of Terms
	Compound Terms
	Examples of operator properties
	Rules
	Interpretation of Rules
	Queries
	Another example
	Quantifiers
	Points to consider
	Queries
	Lists
	Example: List Membership
	Function Membership Solution
	Notes on running Prolog
	Prolog Summary

