Inference in PL and FOL

Chapters 7, 8 and 9

+ Prolog Redux

Long lecture ahead

Outline: PL Inference

- Enumerative methods
- Resolution in CNF
- Sound and Complete
- Forward and Backward Chaining using Modus Ponens in Horn Form
- Sound and Complete

Proof methods

- Proof methods divide into (roughly) two kinds:
- Application of inference rules
- Legitimate (sound) generation of new sentences from old
- Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search algorithm

- Typically require transformation of sentences into a normal form

Model checking

truth table enumeration (always exponential in n) improved backtracking, e.g., Davis-Putnam-Logemann-Loveland (DPLL)
heuristic search in model space (sound but incomplete)
e.g., min-conflicts like hill-climbing algorithms

Efficient propositional inference

Two families of efficient algorithms for propositional inference:

Complete backtracking search algorithms

- DPLL algorithm (Davis, Putnam, Logemann, Loveland)
- Incomplete local search algorithms
- WalkSAT algorithm

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.
Improvements over truth table enumeration:

1. Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.
2. Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses $(A \vee \neg B),(\neg B \vee \neg C),(C \vee A), A$ and B are pure, C is impure.
Make a pure symbol literal true.
Least constraining value
3. Unit clause heuristic

Unit clause: only one literal in the clause
Most constrained value
The only literal in a unit clause must be true.

What are correspondences between DPLL and in general CSPs?

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of s
symbols \leftarrow a list of the proposition symbols in s
return DPLL(clauses, symbols, [])
function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value \leftarrow Find-PURE-Symbol (symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols $-P,[P=$ value \mid model $]$)
P, value \leftarrow Find-Unit-Clause (clauses, model)
if P is non-null then return DPLL(clauses, symbols $-P,[P=$ value \mid model $]$)
$P \leftarrow \operatorname{FIRST}($ symbols); rest $\leftarrow \operatorname{REST}($ symbols $)$
return DPLL(clauses, rest, $[P=$ true \mid model $]$) or
DPLL(clauses, rest, $[P=$ false \mid model $])$

The WalkSAT algorithm

- Incomplete, local search algorithm
- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Balance between greediness and randomness

The WalkSAT algorithm

> function WALKSAT(clauses, p, max-flips) returns a satisfying model or failure inputs: clauses, a set of clauses in propositional logic
> \quad p, the probability of choosing to do a "random walk" move max-flips, number of flips allowed before giving up
> model \leftarrow a random assignment of true/false to the symbols in clauses
> for $i=1$ to max-flips do
> if model satisfies clauses then return model
> clause \leftarrow a randomly selected clause from clauses that is false in model
> with probability p flip the value in model of a randomly selected symbol from clause
> else flip whichever symbol in clause maximizes the number of satisfied clauses return failure

Let's ask ourselves: Why is it incomplete?

Hard satisfiability problems

- Consider random 3-CNF sentences. e.g.,
$(\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \neg B$
$\vee E) \wedge(E \vee \neg D \vee B) \wedge(B \vee E \vee \neg C)$
$m=$ number of clauses
$n=$ number of symbols
- Hard problems seem to cluster near $m / n=4.3$ (critical point)

Hard satisfiability problems

Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, $n=50$

Proof methods

- Proof methods divide into (roughly) two kinds:

Application of inference rules

Legitimate (sound) generation of new sentences from old
Proof $=$ a sequence of inference rule applications
Can use inference rules as operators in a standard search algorithm
Typically require transformation of sentences into a normal form

- Model checking
- truth table enumeration (always exponential in n)
- improved backtracking, e.g., Davis-Putnam-Logemann-Loveland (DPLL)
- heuristic search in model space (sound but incomplete)
e.g., min-conflicts like hill-climbing algorithms

Resolution

Conjunctive Normal Form (CNF)
conjunction of disjunctions of literals
clauses
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

- Resolution inference rule (for CNF):
where $\left\{_{i}\right.$ and m_{j} are complementary literals.
E.g., $\frac{P_{1,3} \vee P_{2,2} \quad \neg P_{2,2}}{P_{1,3}}$
- Resolution is sound and complete for propositional logic

Resolution example

- $K B=\left(\mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge \neg \mathrm{B}_{1,1}$
- $\mathrm{a}=\neg \mathrm{P}_{1,2}$ (negate the premise for proof by refutation)

The power of false

- Given: $(P) \wedge(\neg P)$
- Prove: Z

$\neg \mathrm{P}$	Given
P	Given
$\neg \mathrm{Z}$	Given
\square	Unsatisfiable

- Can we prove \neg Z using the givens above?

Applying inference rules

Equivalent to a search problem

- KB state = node
- Inference rule application = edge

Inference

> Do the operators make conclusions that aren't always true?

- Define: $K B \vdash_{i} a=$ sentence a can be derived from $K B$ by procedure i
- Soundness: j is sound if whenever $K B \vdash_{i} a$, it is also true that $K B=\mathbf{a d}$
- Completeness: i is complete if whenever $K B=a$, it is also true that $K B \vdash_{i}$ a
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That ic the noocodure will ancuur any aunction whoce
ans • Is a set of inference operators and sound?

Completeness

Completeness: i is

 complete if whenever $K B=\mathrm{a}$, it is also true that $K B \vdash_{\mathrm{i}} \mathrm{a}$- An incomplete inference algorithm cannot reach all possible conclusions
- Equivalent to completeness in search (chapter 3)

Resolution

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals
clauses
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

- Resolution inference rule (for CNF):

where F_{i} and m_{j} are complementary literals.

- Resolution is sound and complete for propositional logic

Resolution

Soundness of resolution inference rule:

$$
\begin{aligned}
& \neg\left(f_{i} \vee \ldots \vee f_{i-1} \vee f_{i+1} \vee \ldots \vee f_{k}\right) \Rightarrow f_{i} \text { Same truth value } \\
& \neg m_{j}^{*} \Rightarrow\left(m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \\
& \neg\left(f_{i} \vee \ldots \vee f_{i-1} \vee f_{i+1} \vee \ldots \vee f_{k}\right) \Rightarrow\left(m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right)
\end{aligned}
$$

where ε_{i} and m_{j} are complementary literals.

- What if \mathcal{F}_{i} and $\neg m_{j}$ are false?
- What if \mathscr{F}_{i} and $\neg m_{\mathrm{j}}$ are true?

Completeness of Resolution

- That is, that resolution can decide the truth value of S
- $\mathrm{S}=$ set of clauses
- $R C(S)=$ Resolution closure of $S=$ Set of all clauses that can be derived from S by the resolution inference rule.
- RC(S) has finite cardinality (finite number of symbols $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \mathrm{P}_{\mathrm{k}}$), thus resolution refutation must terminate.

Completeness of Resolution (cont)

- Ground resolution theorem = if S unsatisfiable, RC(S) contains empty clause.
- Prove by proving contrapositive:
- i.e., if RC(S) doesn't contain empty clause, S is satisfiable
- Do this by constructing a model:
- For each P_{i}, if there is a clause in $R C(S)$ containing $\neg P_{i}$ and all other literals in the clause are false, assign $P_{i}=$ false
- Otherwise $\mathrm{P}_{\mathrm{i}}=$ true
- This assignment of P_{i} is a model for S.

Other Reasoning Patterns

- Resolution works by refutation
- What about proving propositions directly?

Given(s)
Conclusion

Rules that allow us to introduce new propositions while preserving truth values: logically equivalent

Two Examples:

- Modus Ponens
- And Elimination

Forward and backward chaining

- Horn Form (restricted)
$K B=$ conjunction of Horn clauses
- Horn clause =
- proposition symbol; or
- (conjunction of symbols) \Rightarrow symbol
- E.g., $C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B)$
- Modus Ponens (for Horn Form): complete for Horn KBs

- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

Forward chaining

- Idea: fire any rule whose premises are satisfied in the $K B$,
- add its conclusion to the $K B$, until query is found

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Forward chaining algorithm

function PL-FC-Entails? $(K B, q)$ returns true or false

local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known to be true
while agenda is not empty do

$$
p \leftarrow \operatorname{PoP}(\text { agenda })
$$

unless inferred $[p]$ do

$$
\operatorname{inferred}[p] \leftarrow \text { true }
$$

for each Horn clause c in whose premise p appears do
decrement count $[c]$
if count $[c]=0$ then do if $\operatorname{HEAD}[c]=q$ then return true Push($\mathrm{HEAD}[c]$, agenda)
return false

- Forward chaining is sound and complete for Horn KB

Forward chaining example

Proof of completeness

FC derives every atomic sentence that is entailed by $K B$ (only for clauses in Horn form)

1. FC reaches a fixed point (the deductive closure) where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original $K B$ is true in m

$$
a_{1} \wedge \ldots \wedge a_{k \Rightarrow} b
$$

4. Hence m is a model of $K B$
5. If $K B=q, q$ is true in every model of $K B$, including m

Backward chaining example

Backward chaining example

Backward chaining example

Inference in first-order logic

Chapter 9

Outline

- Reducing first-order inference to propositional inference
- Unification
- Generalized Modus Ponens
- Forward chaining
- Backward chaining
- Resolution

Universal instantiation (UI)

- Every instantiation of a universally quantified sentence is entailed by it:
$\frac{\forall v \alpha}{\text { Subst(\{v/g\}, } \alpha)}$
for any variable v and ground term g
- E.g., $\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$ yields:

King(John) ^ Greedy(John) \Rightarrow Evil(John)
King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)
King(Father(John)) ^ Greedy(Father(John)) \Rightarrow Evil(Father(John))

Existential instantiation (EI)

- For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$
\frac{\exists v \alpha}{\text { Subst(\{v/k\}, } \alpha)}
$$

- E.g., $\exists x \operatorname{Crown}(x) \wedge$ OnHead(x,John) yields:
$\operatorname{Crown}\left(C_{1}\right) \wedge \operatorname{OnHead}\left(C_{1}\right.$, John $)$
provided C_{1} is a new constant symbol, called a Skolem constant

Reduction to propositional inference

Suppose the KB contains just the following:
$\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
King(John)
Greedy(John)
Brother(Richard,John)

- Instantiating the universal sentence in all possible ways, we have:

King(John) ^ Greedy(John) \Rightarrow Evil(John)
King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

- The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction contd.

- Every FOL KB can be propositionalized so as to preserve entailment
- (A ground sentence is entailed by new KB iff entailed by original KB)
- Idea: propositionalize KB and query, apply resolution, return result
- Problem: with function symbols, there are infinitely many ground terms,
○ e.g., Father(Father(Father(John)))

Reduction con'td.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB

Idea: For $n=0$ to ∞ do
create a propositional KB by instantiating with depth-n terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed
Theorem: Turing (1936), Church (1936) Entailment for FOL is semi-decidable (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.)

Problems with propositionalization

- Propositionalization seems to generate lots of irrelevant sentences.
- E.g., from:
$\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
King(John)
$\forall y$ Greedy(y)
Brother(Richard,John)
- it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant
- With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations.

Unification

- We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greed}(x)$ match King(John) and Greedy(y)
$\theta=\{x / J o h n, y / J o h n\}$ works
- $\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows(John,x)	Knows(John,Jane)	
Knows(John,x)	Knows(y,OJ)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

- Standardizing apart eliminates overlap of variables, e.g., Knows($\mathrm{z}_{17}, \mathrm{OJ}$)

Unification

- To unify Knows(John,x) and Knows(y,z), $\theta=\{y / J o h n, x / z\}$ or $\theta=\{y / J o h n, x / J o h n, z / J o h n\}$
- The first unifier is more general than the second.
- There is a single most general unifier (MGU) that is unique up to renaming of variables.
MGU $=\{y / J o h n, x / z\}$

The unification algorithm

function $\operatorname{UNIFy}(x, y, \theta)$ returns a substitution to make x and y identical inputs: x, a variable, constant, list, or compound
y, a variable, constant, list, or compound
θ, the substitution built up so far
if $\theta=$ failure then return failure
else if $x=y$ then return θ
else if $\operatorname{Variable} ?(x)$ then return $\operatorname{Unify}-\operatorname{Var}(x, y, \theta)$
else if $\operatorname{Variable}$? (y) then return $\operatorname{Unify}-\operatorname{Var}(y, x, \theta)$
else if Compound? (x) and Compound? (y) then
return $\operatorname{Unify}(\operatorname{Args}[x], \operatorname{Args}[y], \operatorname{Unify}(\operatorname{Op}[x], \operatorname{Op}[y], \theta))$
else if List? (x) and List? (y) then
return $\operatorname{Unify}(\operatorname{Rest}[x], \operatorname{Rest}[y], \operatorname{Unify}(\operatorname{First}[x], \operatorname{First}[y], \theta))$
else return failure

The unification algorithm

function UnIFY-VAR $(v a r, x, \theta)$ returns a substitution
inputs: var, a variable
x, any expression
θ, the substitution built up so far
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{Unify}($ val, $x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return $\operatorname{Unify}($ var, val, $\theta)$ else if OCCUR-CHECK? (var, x) then return failure else return add $\{v a r / x\}$ to θ

Generalized Modus Ponens (GMP)

$\frac{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{q \theta}$ where $p_{i}^{\prime} \theta=p_{i} \theta$ for all i
$\mathrm{p}_{1}{ }^{\prime}$ is $\operatorname{King}(J o h n) \quad \mathrm{p}_{1}$ is $\operatorname{King}(x)$
$\mathrm{p}_{2}{ }^{\prime}$ is $\operatorname{Greed} y(y) \quad \mathrm{p}_{2}$ is $\operatorname{Greed} y(x)$
θ is $\{x / J o h n, y / J o h n\} \quad q$ is $\operatorname{Evil}(x)$
q θ is Evil(John)

- GMP used with KB of definite clauses (exactly one positive literal)
- All variables assumed universally quantified

Soundness of GMP

Need to show that

$$
p_{1}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \neq q \theta
$$

provided that $p_{i}^{\prime} \theta=p_{i} \theta$ for all $/$
Lemma: For any sentence p, we have $p \neq p \theta$ by UI

1. $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \vDash\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \theta=\left(p_{1} \theta \wedge \ldots \wedge p_{n} \theta \Rightarrow q \theta\right)$
2. $p_{1}{ }^{\prime}, \ldots, p_{n}{ }^{\prime} \vDash p_{1}{ }^{\prime} \wedge \ldots \wedge p_{n}^{\prime} \vDash p_{1}{ }^{\prime} \theta \wedge \ldots \wedge p_{n}{ }^{\prime} \theta$
3. From 1 and $2, q \theta$ follows by ordinary Modus Ponens

Example knowledge base

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Prove that Col. West is a criminal

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge$ Hostile $(z) \Rightarrow \operatorname{Criminal}(x)$
Nono ... has some missiles, i.e., $\exists x$ Owns(Nono, x) \wedge Missile(x):
Owns(Nono, M_{1}) and Missile $\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West
Missile (x) ^ Owns(Nono, x) \Rightarrow Sells(West, x, Nono)
Missiles are weapons:
Missile (x) \Rightarrow Weapon (x)
An enemy of America counts as "hostile":
Enemy (x, America) $\Rightarrow \operatorname{Hostile}(x)$
West, who is American ...
American(West)
The country Nono, an enemy of America ...
Enemy(Nono,America)

Forward chaining algorithm

function FOL-FC-Ask $(K B, \alpha)$ returns a substitution or false
repeat until new is empty
new $\leftarrow\}$
for each sentence r in $K B$ do

$$
\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow \operatorname{STANDARDIZE}-\operatorname{APART}(r)
$$

$$
\text { for each } \theta \text { such that }\left(p_{1} \wedge \ldots \wedge p_{n}\right) \theta=\left(p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right) \theta
$$

$$
\text { for some } p_{1}^{\prime}, \ldots, p_{n}^{\prime} \text { in } K B
$$

$q^{\prime} \leftarrow \operatorname{Subst}(\theta, q)$
if q^{\prime} is not a renaming of a sentence already in $K B$ or new then do
add q^{\prime} to new
$\phi \leftarrow \operatorname{Unify}\left(q^{\prime}, \alpha\right)$
if ϕ is not fail then return ϕ
add new to $K B$
return false

Forward chaining proof

Forward chaining proof

Forward chaining proof

Properties of forward chaining

- Sound and complete for first-order definite clauses
- Datalog = first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations
- May not terminate in general if α is not entailed
- This is unavoidable: entailment with definite clauses is semidecidable

Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on iteration k if a premise wasn't added on iteration $k-1$
\Rightarrow match each rule whose premise contains a newly added positive literal

Matching itself can be expensive:
Database indexing allows $\mathrm{O}(1)$ retrieval of known facts
e.g., query $\operatorname{Missile}(x)$ retrieves $\operatorname{Missile}\left(M_{1}\right)$

Forward chaining is widely used in deductive databases

Backward chaining algorithm

function FOL-BC-Ask $(K B$, goals, θ) returns a set of substitutions
inputs: $K B$, a knowledge base
goals, a list of conjuncts forming a query
θ, the current substitution, initially the empty substitution $\}$
local variables: ans, a set of substitutions, initially empty
if goals is empty then return $\{\theta\}$
$q^{\prime} \leftarrow \operatorname{Subst}(\theta, \operatorname{First}($ goals $)$)
for each r in $K B$ where $\operatorname{Standardize-~} \operatorname{Apart}(r)=\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$
and $\theta^{\prime} \leftarrow \operatorname{Unify}\left(q, q^{\prime}\right)$ succeeds
ans $\leftarrow \operatorname{FOL}-\operatorname{BC}-\operatorname{Ask}\left(K B,\left[p_{1}, \ldots, p_{n} \mid \operatorname{Rest}(\right.\right.$ goals $\left.\left.)\right], \operatorname{Compose}\left(\theta, \theta^{\prime}\right)\right) \cup$ ans
return ans
$\operatorname{SUBST}\left(\operatorname{COMPOSE}\left(\theta_{1}, \theta_{2}\right), \mathrm{p}\right)=\operatorname{SUBST}\left(\theta_{2}\right.$, $\operatorname{SUBST}\left(\theta_{1}, \mathrm{p}\right)$)

Backward chaining example

Criminal(West)

Backward chaining example

Prolog Inference

Q: which model do you think Prolog uses for inference?

Properties of backward chaining

- Depth-first recursive proof search: space is linear w.r.t. size of proof
- Incomplete due to infinite loops
\Rightarrow fix by checking current goal against every goal on stack
- Inefficient due to repeated subgoals (both success and failure)
\Rightarrow fix using caching of previous results (extra space)

Prolog Execution

Prolog needs to choose which goal to pursue first, although logically it doesn't matter. Why?

- Treats goals in order, leftmost first.

O B is tried first, then C , then D .
O E and F are pushed onto the stack, before C and D . Why?

Prolog Execution

Prolog also needs to choose which clause to pursue first.

- Treats clauses in order, top-most first.
G.

A :- B,C,D.

B :- E,F.
B :- G.

O To satisfy goal B, prolog tries E,F before G.

Procedural Prolog Programming

Order of Prolog clauses and goals crucial, can affect running times immensely
OOrder of goals tell which get executed first
OOrder of clauses tell which control branches are tried first.

A Singaporean example

likes(hari,X) :- makan(X), consumes(hari,X).
likes(min,X) :- likes(hari,X). makan(meeSiam).
makan(rojak).
minum(rootBeerFloat).
consumes(hari,meeSiam).
likes(min, X)

$$
\mathrm{X}=\mathrm{X} 1
$$

likes(hari,X1)

$$
\mathrm{X} 1=\mathrm{X} 2
$$

makan(X2), consumes(hari,X2)

Summary

Whew! That was a loooooooong lecture. What did we learn?

OEnumeration: DPLL rules are similar to CSP heuristics.
OResolution is proof by refutation, used in PL.
O Other forms of reasoning: Modus Ponens which requires Horn form.
OFOL uses unification to find solutions, requires Skolem constants and functions.
OForward (undirected) and Backward (directed) chaining patterns to apply an inference mechanism.

