CS3243 Foundations of Artificial Intelligence (2005/2006 Semester 2) Tutorial 8

1. Given the following grammar:

S	\rightarrow	NP VP	
NP	\rightarrow	Noun \| Article Noun	NP PP
VP	\rightarrow	Verb \| VP NP	VP PP
PP	\rightarrow	Preposition NP	
Article	\rightarrow	the	
Noun	\rightarrow	agent \| wumpus	$[1,2]$
Verb	\rightarrow	detects	
Preposition	\rightarrow	at	

Consider the sentence "the agent detects the wumpus at $[1,2]$ ". Show two different parse trees of this sentence based on the above grammar, and give the interpretation (in English) of each parse tree.
2. (Modified from Question 22.9 of the textbook) Consider the sentence "someone walked slowly to the supermarket" and the following lexicon:

Pronoun \rightarrow someone
$\mathrm{V} \rightarrow$ walked
Adv \rightarrow slowly
Prep \rightarrow to
Article \rightarrow the
Noun \rightarrow supermarket
Which of the following three grammars, combined with the lexicon, generates the given sentence? Show the corresponding parse tree(s).

Grammar A:
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
NP \rightarrow Pronoun
$\mathrm{NP} \rightarrow$ Article Noun
$\mathrm{VP} \rightarrow \mathrm{VP}$ PP
$\mathrm{VP} \rightarrow$ VP Adv Adv
VP \rightarrow Verb
PP \rightarrow Prep NP
NP \rightarrow Noun
Grammar B:
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
NP \rightarrow Pronoun
NP \rightarrow Noun
$\mathrm{NP} \rightarrow$ Article NP
VP \rightarrow Verb Vmod

```
Vmod \(\rightarrow\) Adv Vmod
Vmod \(\rightarrow\) Adv
Adv \(\rightarrow\) PP
PP \(\rightarrow\) Prep NP
Grammar C:
\(\mathrm{S} \rightarrow \mathrm{NP}\) VP
NP \(\rightarrow\) Pronoun
NP \(\rightarrow\) Article NP
VP \(\rightarrow\) Verb Adv
Adv \(\rightarrow\) Adv Adv
Adv \(\rightarrow\) PP
PP \(\rightarrow\) Prep NP
NP \(\rightarrow\) Noun
```

3. Consider the following context-free grammar that generates sequences of letters:
$S \rightarrow \mathrm{aXc}$
$\mathrm{S} \rightarrow \mathrm{bXc}$
$\mathrm{S} \rightarrow \mathrm{bXe}$
$S \rightarrow \mathrm{cXe}$
$\mathrm{X} \rightarrow \mathrm{fX}$
$\mathrm{X} \rightarrow \mathrm{g}$
(a) Give a trace of the top-down parse on the input bfge
(b) Give a trace of the bottom-up parse on the same input bfge
(c) Which approach is better in this case?
4. Give context-free grammars for
(a) The set of all strings of the form $a^{n} b^{*} c^{*} d^{n}$ (i.e., n occurrences of a 's followed by any number of b 's, followed by any number of c 's, followed by n occurrences of d)
(b) The set of palindromes (strings that read the same forward as backward) over alphabet \{a, b \}
