# Uncertainty and Bayesian Networks 

## Chapters 13 and 14

## Last Time

## Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule
- Bayesian Networks
- Syntax and Semantics


## Uncertainty

Let action $A_{t}=$ leave for airport ${ }_{\mathrm{t}}$ minutes before flight
Will $A_{t}$ get me there on time?
Problems:
partial observability (road state, other drivers' plans, etc.) noisy sensors (traffic reports)
uncertainty in action outcomes (flat tire, etc.)
4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either
risks falsehood: " $A_{25}$ will get me there on time", or
leads to conclusions that are too weak for decision making:
" $A_{25}$ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."
( $A_{1440}$ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

## Methods for handling uncertainty

- Default or nonmonotonic logic:
- Assume my car does not have a flat tire
- Assume $A_{25}$ works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with fudge factors:
- $A_{25} / \rightarrow_{0.3}$ get there on time
- Sprinkler $\mid \rightarrow 0.99$ WetGrass
- WetGrass $\mid \rightarrow{ }_{0.7}$ Rain
- Issues: Problems with combination, e.g., Sprinkler causes Rain??
- Probability
- Model agent's degree of belief
- Given the available evidence,
- $A_{25}$ will get me there on time with probability 0.04


## Probability

Probabilistic assertions summarize effects of

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack necessary knowledge, initial conditions, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

- Probabilities relate propositions to agent's own state of knowledge
e.g., $\mathrm{P}\left(\mathrm{A}_{25} \mid\right.$ no reported accidents $)=0.06$

These are not assertions about the world
Probabilities of propositions change with new evidence: e.g., $\mathrm{P}\left(\mathrm{A}_{25} \mid\right.$ no reported accidents, 5 a.m. $)=0.15$

## Making decisions under uncertainty

Suppose I believe the following:

$$
\begin{array}{ll}
\mathrm{P}\left(\mathrm{~A}_{25} \text { gets me there on time } \mid \ldots\right) & =0.04 \\
\mathrm{P}\left(\mathrm{~A}_{90} \text { gets me there on time } \mid \ldots\right) & =0.70 \\
\mathrm{P}\left(\mathrm{~A}_{120} \text { gets me there on time } \mid \ldots\right) & =0.95 \\
\mathrm{P}\left(\mathrm{~A}_{1440} \text { gets me there on time } \mid \ldots\right) & =0.9999
\end{array}
$$

- Which action should the agent choose?

Depends on its preferences for missing flight vs. time spent waiting, etc.

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory


## Syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
e.g., Cavity (do I have a cavity?)
- Discrete random variables
e.g., Weather is one of <sunny,rainy,cloudy,snow>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable: e.g., Weather = sunny, Cavity = false (abbreviated as $\neg$ cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather $=$ sunny $\vee$ Cavity $=$ false


## Syntax

- Atomic event: A complete specification of the state of the world about which the agent is uncertain E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events:

$$
\begin{aligned}
& \text { Cavity }=\text { false } \wedge \text { Toothache }=\text { false } \\
& \text { Cavity }=\text { false } \wedge \text { Toothache }=\text { true } \\
& \text { Cavity }=\text { true } \wedge \text { Toothache }=\text { false } \\
& \text { Cavity }=\text { true } \wedge \text { Toothache }=\text { true }
\end{aligned}
$$

- Atomic events are mutually exclusive and exhaustive


## Axioms of probability

- For any propositions $A, B$
- $0 \leq P(A) \leq 1$
- $\mathrm{P}($ true $)=1$ and $\mathrm{P}($ false $)=0$
- $\mathrm{P}(A \vee B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \wedge B)$

True


## Prior probability

- Prior or unconditional probabilities of propositions
e.g., $\mathrm{P}($ Cavity $=$ true $)=0.1$ and $\mathrm{P}($ Weather $=$ sunny $)=0.72$ correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments:

$$
\mathbf{P}(\text { Weather })=<0.72,0.1,0.08,0.1\rangle \text { (normalized, i.e., sums to } 1 \text { ) }
$$

- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables $\mathbf{P}($ Weather,Cavity $)=$ a $4 \times 2$ matrix of values:

| Weather $=$ | sunny | rainy | cloudy | snow |
| :--- | :--- | :--- | :--- | :--- |
| Cavity $=$ true | 0.144 | 0.02 | 0.016 | 0.02 |
| Cavity $=$ false | 0.576 | 0.08 | 0.064 | 0.08 |

- Every question about a domain can be answered by the joint distribution


## Conditional probability

- Conditional or posterior probabilities
e.g., $\mathrm{P}($ cavity $\mid$ toothache $)=0.8$
i.e., given that toothache is all I know
- Notation for conditional distributions:
$\mathbf{P}$ (cavity | toothache) $=$ 2-element vector of 2-element vectors
- If we know more, e.g., cavity is also given, then we have P(cavity | toothache, cavity) $=1$
- New evidence may be irrelevant, allowing simplification, e.g.,
$\mathrm{P}($ cavity $\mid$ toothache. sunny $)=\mathrm{P}($ cavity $\mid$ toothache $)=0.8$
- This kind of inference, sanctioned by domain knowledge, is crucial


## Conditional probability

- Definition of conditional probability:

$$
P(a \mid b)=P(a \wedge b) / P(b) \text { if } P(b)>0
$$

- Product rule gives an alternative formulation:

$$
P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

- A general version holds for whole distributions, e.g., $\mathbf{P}($ Weather, Cavity $)=\mathbf{P}($ Weather $\mid$ Cavity $) \mathbf{P}($ Cavity $)$
- (View as a set of $4 \times 2$ equations, not matrix mult.)
- Chain rule is derived by successive application of product rule:

$$
\begin{aligned}
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right) & =\mathbf{P}\left(X_{1}, \ldots, X_{n-1}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\mathbf{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\ldots{ }_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \\
& =n_{i}
\end{aligned}
$$

## Inference by enumeration

- Start with the joint probability distribution:

|  | toothache |  | $\neg$ toothache |  |
| ---: | ---: | :--- | :--- | :--- |
|  | catch | $\neg$ catch | catch | $\neg$ catch |
| cavity | .108 | .012 | .072 | .008 |
| $\neg$ cavity | .016 | .064 | .144 | .576 |

- For any proposition $\varphi$, sum the atomic events where it is true: $P(\varphi)=\Sigma_{\omega: \omega k \varphi} P(\omega)$
- $\mathrm{P}($ toothache $)=$ ?


## Inference by enumeration

- Start with the joint probability distribution:

|  | toothache |  | $\neg$ toothache |  |
| ---: | ---: | :--- | :--- | :--- |
|  | catch | $\neg$ catch | catch | $\neg$ catch |
| cavity | .108 | .012 | .072 | .008 |
| $\neg$ cavity | .016 | .064 | .144 | .576 |

- For any proposition $\varphi$, sum the atomic events where it is true: $P(\varphi)=\Sigma_{\omega: \omega \mid=\varphi} P(\omega)$
- $\mathrm{P}($ toothache $)=0.108+0.012+0.016+0.064=0.2$
- $\mathrm{P}($ toothache $\vee$ cavity $)=$ ?


## Inference by enumeration

- Start with the joint probability distribution:

|  | toothache |  | $\neg$ toothache |  |
| ---: | :---: | :--- | :--- | :--- |
|  | catch | $\neg$ catch | catch | $\neg$ catch |
| cavity | $\mathbf{. 1 0 8}$ | .012 | $\mathbf{. 0 7 2}$ | . $\mathbf{0 0 8}$ |
| $\neg$ cavity | $\mathbf{. 0 1 6}$ | $\mathbf{. 0 6 4}$ | $\mathbf{. 1 4 4}$ | $\mathbf{. 5 7 6}$ |

- For any proposition $\varphi$, sum the atomic events where it is true: $P(\varphi)=\Sigma_{\omega: \omega \mid=\varphi} P(\omega)$
- $\mathrm{P}($ toothache $)=0.108+0.012+0.016+0.064=0.2$
- $\mathrm{P}($ toothache $v$ cavity $)=0.108+0.012+0.016+0.064+$ $0.072+0.008=0.28$
- $\mathrm{P}(\neg$ cavity $\mid$ toothache $)=$ ?


## Inference by enumeration

- Start with the joint probability distribution:

|  | toothache |  | $\neg$ toothache |  |
| ---: | :--- | :--- | :--- | :--- |
|  | catch | $\neg$ catch | catch | $\neg$ catch |
| cavity | .108 | .012 | .072 | .008 |
| $\neg$ cavity | .016 | .064 | .144 | .576 |

- Can also compute conditional probabilities:

$$
\begin{aligned}
\mathrm{P}(\neg \text { cavity } \mid \text { toothache }) & =\frac{\mathrm{P}(\neg \text { cavity } \wedge \text { toothache })}{\mathrm{P}(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064} \\
& =0.4
\end{aligned}
$$

## Normalization

|  | toothache |  | $\neg$ toothache |  |
| ---: | :--- | :--- | :--- | :--- |
|  | catch | $\neg$ catch | catch | $\neg$ catch |
| cavity | .108 | .012 | .072 | .008 |
| $\neg$ cavity | .016 | .064 |  | .144 |

- Denominator can be viewed as a normalization constant $\alpha$
$\mathbf{P}($ Cavity $\mid$ toothache $)=\alpha \cdot \mathbf{P}($ Cavity, toothache $)$
$=\alpha \cdot[\mathbf{P}($ Cavity, toothache, catch $)+\mathbf{P}($ Cavity, toothache, $\neg$ catch $)]$
$=\alpha \cdot[<0.108,0.016\rangle+<0.012,0.064\rangle]$
$=\alpha \cdot<0.12,0.08\rangle=<0.6,0.4>$
General idea: compute distribution on query variable by fixing evidence
variables and summing over hidden variables


## Inference by enumeration, contd.

Typically, we are interested in
the posterior joint distribution of the query variables $\mathbf{Y}$ given specific values $\mathbf{e}$ for the evidence variables $\mathbf{E}$

Let the hidden variables be $\mathbf{H}=\mathbf{X}-\mathbf{Y}-\mathbf{E}$
Then the required summation of joint entries is done by summing out the hidden variables:

$$
\mathbf{P}(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\alpha \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\alpha \Sigma_{\mathrm{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})
$$

- The terms in the summation are joint entries because $\mathbf{Y}, \mathbf{E}$ and $\mathbf{H}$ together exhaust the set of random variables
- Obvious problems:

1. Worst-case time complexity $O\left(d^{n}\right)$ where $d$ is the largest arity
2. Space complexity $O\left(d^{n}\right)$ to store the joint distribution
3. How to find the numbers for $O\left(d^{n}\right)$ entries?

## Independence

- $A$ and $B$ are independent iff

$$
\mathbf{P}(A / B)=\mathbf{P}(A) \quad \text { or } \mathbf{P}(B / A)=\mathbf{P}(B) \quad \text { or } \mathbf{P}(\mathrm{A}, \mathrm{~B})=\mathbf{P}(A) \mathbf{P}(B)
$$


$\mathbf{P}$ (Toothache, Catch, Cavity, Weather)
$=\mathbf{P}($ Toothache, Catch, Cavity $) \mathbf{P}($ Weather $)$

- 32 entries reduced to 12 (8+4); for $n$ independent biased coins, $O\left(2^{n}\right) \rightarrow O(n)$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?


## Conditional independence

- $\mathbf{P}$ (Toothache, Cavity, Catch) has $2^{3}-1=7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $\mathbf{P}($ catch $\mid$ toothache, cavity $)=\mathbf{P}($ catch $\mid$ cavity $)$
- The same independence holds if I haven't got a cavity:
(2) $\mathbf{P}$ (catch $\mid$ toothache, $\neg$ cavity $)=\mathbf{P}$ (catch $\mid \neg$ cavity $)$
- Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}($ Catch $\mid$ Toothache, Cavity $)=\mathbf{P}($ Catch $\mid$ Cavity $)$
- Equivalent statements:

```
\(\mathbf{P}(\) Toothache \(\mid\) Catch, Cavity \()=\mathbf{P}(\) Toothache \(\mid\) Cavity \()\)
\(\mathbf{P}(\) Toothache, Catch \(\mid\) Cavity \()=\mathbf{P}(\) Toothache \(\mid\) Cavity \() \mathbf{P}(\) Catch \(\mid\) Cavity \()\)
```


## Conditional independence contd.

- Write out full joint distribution using chain rule:
$\mathbf{P ( T o o t h a c h e , ~ C a t c h , ~ C a v i t y ) ~}$
$=\mathbf{P}($ Toothache | Catch, Cavity) $\mathbf{P}$ (Catch, Cavity)
$=\mathbf{P}($ Toothache $\mid$ Catch, Cavity) $\mathbf{P}($ Catch $\mid$ Cavity $) \mathbf{P}($ Cavity $)$
$=\mathbf{P}$ (Toothache $\mid$ Cavity) $\mathbf{P}($ Catch $\mid$ Cavity) $\mathbf{P}$ (Cavity)
I.e., $2+2+1=5$ independent numbers
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in $n$ to linear in $n$.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.


## Bayes' Rule

- Product rule $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$ $\Rightarrow$ Bayes' rule: $P(a \mid b)=P(b \mid a) P(a) / P(b)$
- or in distribution form

$$
\mathbf{P}(\mathrm{Y} \mid \mathrm{X})=\mathbf{P}(\mathrm{X} \mid \mathrm{Y}) \mathbf{P}(\mathrm{Y}) / \mathbf{P}(\mathrm{X})=\alpha \mathbf{P}(\mathrm{X} \mid \mathrm{Y}) \mathbf{P}(\mathrm{Y})
$$

- Useful for assessing diagnostic probability from causal probability:
- $P$ (Cause|Effect) $=P($ Effect $\mid$ Cause) $P($ Cause $) / P($ Effect $)$
- E.g., let $M$ be meningitis, $S$ be stiff neck:

$$
P(\mathrm{~m} \mid \mathrm{s})=P(\mathrm{~s} \mid \mathrm{m}) P(\mathrm{~m}) / P(\mathrm{~s})=0.5 \times 0.0002 / 0.05=0.0002
$$

- Note: posterior probability of meningitis still very small!


## Bayes' Rule and conditional independence

$\mathbf{P ( C a v i t y ~ | ~ t o o t h a c h e ~} \wedge$ catch)
$=\alpha \cdot \mathbf{P}($ toothache $\wedge$ catch $\mid$ Cavity $) \mathbf{P}($ Cavity $)$
$=\alpha \cdot \mathbf{P}($ toothache $\mid$ Cavity $) \mathbf{P}($ catch $\mid$ Cavity $) \mathbf{P}($ Cavity $)$

- This is an example of a naïve Bayes model:
$\mathbf{P}\left(\right.$ Cause, Effect ${ }_{1}, \ldots$, Effect $\left._{n}\right)=\mathbf{P}($ Cause $) п_{i} \mathbf{P}$ (Effect ${ }_{i} \mid$ Cause $)$

- Total number of parameters is linear in $n$


## Bayesian networks

## Chapter 14 <br> Sections 1 - 2

## Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
- a set of nodes, one per variable
- a directed, acyclic graph (link $\approx$ "directly influences")
- a conditional distribution for each node given its parents:
$\mathbf{P}\left(\mathrm{X}_{\mathrm{i}} \mid\right.$ Parents $\left.\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over $X_{i}$ for each combination of parent values


## Example

- Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity


## Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call


## Example contd.



## Compactness

- A CPT for Boolean $X_{i}$ with $k$ Boolean parents has $2^{k}$ rows for the combinations of parent values
- Each row requires one number $p$ for $X_{i}=$ true (the number for $X_{i}=$ false is just 1- $p$ )

- If each variable has no more than $k$ parents, the complete network requires $O\left(n \cdot 2^{\mathrm{k}}\right)$ numbers
- I.e., grows linearly with $n$, vs. $O\left(2^{n}\right)$ for the full joint distribution
- For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$ )


## Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$
\boldsymbol{P}\left(X_{1,}, \ldots, X_{n}\right)=n_{i=1} \boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$



$$
\begin{aligned}
& \text { e.g., } \boldsymbol{P}(j \wedge m \wedge a \wedge \neg b \wedge \neg e) \\
& =\boldsymbol{P}(j \mid a) \boldsymbol{P}(m \mid a) \boldsymbol{P}(a \mid \neg b, \neg e) \boldsymbol{P}(\neg b) \boldsymbol{P}(\neg e)
\end{aligned}
$$

## Constructing Bayesian networks

- 1. Choose an ordering of variables $X_{1}, \ldots, X_{n}$
- 2. For $i=1$ to $n$
- add $X_{i}$ to the network
- select parents from $X_{1}, \ldots, X_{i-1}$ such that

$$
\boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots X_{i-1}\right)
$$

This choice of parents guarantees
P $\left(X_{1}, \ldots, X_{n}\right)$

$$
\begin{aligned}
& =n_{i}{ }_{1}^{n} \boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \\
& =n_{i} \underline{n}_{1} \boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
\end{aligned}
$$

(chain rule)
(by construction)

## Example

- Suppose we choose the ordering $M, J, A, B, E$

$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J)$ ?


## Example

- Suppose we choose the ordering $M, J, A, B, E$


Alarm

```
P}(J|M)=\boldsymbol{P}(J)? N
P}(A/J,M)=\boldsymbol{P}(A|J)?\boldsymbol{P}(A/J,M)=\boldsymbol{P}(A)
```


## Example

- Suppose we choose the ordering $M, J, A, B, E$


```
\(\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J) ?\) No
\(\boldsymbol{P}(A / J, M)=\boldsymbol{P}(A \mid J) ? \boldsymbol{P}(A / J, M)=\boldsymbol{P}(A)\) ? No
\(\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A)\) ?
\(\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B)\) ?
```


## Example

- Suppose we choose the ordering $M, J, A, B, E$

$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J) ? \quad N o$
$\boldsymbol{P}(A / J, M)=\boldsymbol{P}(A / J) ? \boldsymbol{P}(A / J, M)=\boldsymbol{P}(A)$ ? No
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A)$ ? Yes
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B)$ ? No
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A)$ ?
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A, B)$ ?


## Example

- Suppose we choose the ordering $M, J, A, B, E$
$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J) ? \quad N o$

$\boldsymbol{P}(A / J, M)=\boldsymbol{P}(A / J) ? \boldsymbol{P}(A / J, M)=\boldsymbol{P}(A)$ ? No
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A)$ ? Yes
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B)$ ? No
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A)$ ? No
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A, B)$ ? Yes


## Example contd.



- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: $1+2+4+2+4=13$ numbers needed


## Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools


## Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution

