# Uncertainty and Bayesian Networks

Chapters 13 and 14

# Last Time

# Outline

- Uncertainty
  - Probability
  - Syntax and Semantics
  - Inference
  - Independence and Bayes' Rule
- Bayesian Networks
  - Syntax and Semantics

## Uncertainty

Let action  $A_t$  = leave for airport  $_t$  minutes before flight Will  $A_t$  get me there on time?

#### **Problems:**

- partial observability (road state, other drivers' plans, etc.)
- 2. noisy sensors (traffic reports)
- uncertainty in action outcomes (flat tire, etc.)
- immense complexity of modeling and predicting traffic

#### Hence a purely logical approach either

- risks falsehood: " $A_{25}$  will get me there on time", or
- leads to conclusions that are too weak for decision making:

"A<sub>25</sub> will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

( $A_{1440}$  might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

#### Methods for handling uncertainty

- Default or nonmonotonic logic:
  - Assume my car does not have a flat tire
  - Assume  $A_{25}$  works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with fudge factors:
  - $A_{25} / \rightarrow_{0.3}$  get there on time
  - Sprinkler  $\rightarrow 0.99$  WetGrass
  - WetGrass  $\rightarrow 0.7$  Rain
- Issues: Problems with combination, e.g., Sprinkler causes Rain??
- Probability
  - Model agent's degree of belief
  - Given the available evidence,
  - $A_{25}$  will get me there on time with probability 0.04

# Probability

#### Probabilistic assertions summarize effects of

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack necessary knowledge, initial conditions, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

#### Subjective probability:

 Probabilities relate propositions to agent's own state of knowledge

e.g.,  $P(A_{25} \mid \text{no reported accidents}) = 0.06$ 

These are not assertions about the world

Probabilities of propositions change with new evidence: e.g.,  $P(A_{25} \mid \text{no reported accidents}, 5 \text{ a.m.}) = 0.15$ 

#### Making decisions under uncertainty

#### Suppose I believe the following:

```
P(A<sub>25</sub> gets me there on time | ...) = 0.04
P(A<sub>90</sub> gets me there on time | ...) = 0.70
P(A<sub>120</sub> gets me there on time | ...) = 0.95
P(A<sub>1440</sub> gets me there on time | ...) = 0.9999
```

- Which action should the agent choose?
   Depends on its preferences for missing flight vs. time spent waiting, etc.
  - Utility theory is used to represent and infer preferences
  - Decision theory = probability theory + utility theory

## Syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables e.g., Cavity (do I have a cavity?)
- Discrete random variables
   e.g., Weather is one of < sunny, rainy, cloudy, snow>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable: e.g., Weather = sunny, Cavity = false (abbreviated as ¬cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny v Cavity = false

# Syntax

Atomic event: A complete specification of the state of the world about which the agent is uncertain E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events:

```
Cavity = false ∧ Toothache = false
Cavity = false ∧ Toothache = true
Cavity = true ∧ Toothache = false
Cavity = true ∧ Toothache = true
```

Atomic events are mutually exclusive and exhaustive

#### Axioms of probability

- For any propositions A, B
  - $0 \le P(A) \le 1$
  - P(true) = 1 and P(false) = 0
  - $P(A \lor B) = P(A) + P(B) P(A \land B)$

True



### Prior probability

- Prior or unconditional probabilities of propositions
   e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments: P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)
- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables
   P(Weather, Cavity) = a 4 × 2 matrix of values:

| Weather =      | sunny | rainy | cloudy | snow |
|----------------|-------|-------|--------|------|
| Cavity = true  | 0.144 | 0.02  | 0.016  | 0.02 |
| Cavity = false | 0.576 | 80.0  | 0.064  | 0.08 |

Every question about a domain can be answered by the joint distribution

### Conditional probability

- Conditional or posterior probabilities
   e.g., P(cavity | toothache) = 0.8
   i.e., given that toothache is all I know
- Notation for conditional distributions:
  P(cavity | toothache) = 2-element vector of 2-element vectors
- If we know more, e.g., cavity is also given, then we have P(cavity | toothache, cavity) = 1
- New evidence may be irrelevant, allowing simplification, e.g.,
  - $P(cavity \mid toothache. sunny) = P(cavity \mid toothache) = 0.8$
  - This kind of inference, sanctioned by domain knowledge, is crucial

#### Conditional probability

- Definition of conditional probability:  $P(a \mid b) = P(a \land b) / P(b)$  if P(b) > 0
- Product rule gives an alternative formulation:  $P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$
- A general version holds for whole distributions, e.g.,
   P(Weather, Cavity) = P(Weather | Cavity) P(Cavity)
   (View as a set of 4 × 2 equations, not matrix mult.)
- Chain rule is derived by successive application of product rule:

$$\begin{aligned} \mathbf{P}(X_{1}, ..., X_{n}) &= \mathbf{P}(X_{1}, ..., X_{n-1}) \ \mathbf{P}(X_{n} \mid X_{1}, ..., X_{n-1}) \\ &= \mathbf{P}(X_{1}, ..., X_{n-2}) \ \mathbf{P}(X_{n-1} \mid X_{1}, ..., X_{n-2}) \ \mathbf{P}(X_{n} \mid X_{1}, ..., X_{n-1}) \\ &= ... \\ &= \Pi_{i=1}^{n} \ \mathbf{P}(X_{i} \mid X_{1}, ..., X_{i-1}) \end{aligned}$$

Start with the joint probability distribution:

|          | toothache     |      | ¬ toothache |         |
|----------|---------------|------|-------------|---------|
|          | catch ¬ catch |      | catch       | ¬ catch |
| cavity   | .108          | .012 | .072        | .008    |
| ¬ cavity | .016          | .064 | .144        | .576    |

- For any proposition φ, sum the atomic events where it is true:  $P(φ) = Σ_{ω:ω \models φ} P(ω)$
- P(toothache) = ?

Start with the joint probability distribution:

|          | toothache     |      | ¬ toothache |         |
|----------|---------------|------|-------------|---------|
|          | catch ¬ catch |      | catch       | ¬ catch |
| cavity   | .108          | .012 | .072        | .008    |
| ¬ cavity | .016          | .064 | .144        | .576    |

- For any proposition  $\varphi$ , sum the atomic events where it is true:  $P(\varphi) = \Sigma_{\omega:\omega} \models_{\varphi} P(\omega)$
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
- P(toothache v cavity) = ?

Start with the joint probability distribution:

|          | toothache |      | ¬ toothache |         |
|----------|-----------|------|-------------|---------|
|          | catch     |      | catch       | ¬ catch |
| cavity   | .108      | .012 | .072        | .008    |
| ¬ cavity | .016      | .064 | .144        | .576    |

- For any proposition φ, sum the atomic events where it is true:  $P(φ) = Σ_{ω:ω \models φ} P(ω)$
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
- $P(toothache \lor cavity) = 0.108 + 0.012 + 0.016 + 0.064 + 0.072 + 0.008 = 0.28$
- $P(\neg cavity \mid toothache) = ?$

Start with the joint probability distribution:

|          | toothache |         | ¬ toothache |         |
|----------|-----------|---------|-------------|---------|
|          | catch     | ¬ catch | catch       | ¬ catch |
| cavity   | .108      | .012    | .072        | .008    |
| ¬ cavity | .016      | .064    | .144        | .576    |

Can also compute conditional probabilities:

$$P(\neg cavity \mid toothache) = P(\neg cavity \land toothache)$$

$$= \underbrace{0.016+0.064}_{0.108 + 0.012 + 0.016 + 0.064}$$

$$= 0.4$$

### Normalization

|          | toothache |         | ¬ toothache |         |
|----------|-----------|---------|-------------|---------|
|          | catch     | ¬ catch | catch       | ¬ catch |
| cavity   | .108      | .012    | .072        | .008    |
| ¬ cavity | .016      | .064    | .144        | .576    |

• Denominator can be viewed as a normalization constant  $\alpha$ 

 $P(Cavity \mid toothache) = \alpha \cdot P(Cavity, toothache)$ 

=  $\alpha$  · [**P**(Cavity, toothache, catch) + **P**(Cavity, toothache,  $\neg$  catch)]

 $= \alpha \cdot [<0.108, 0.016> + <0.012, 0.064>]$ 

 $= \alpha \cdot <0.12, 0.08> = <0.6, 0.4>$ 

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

#### Inference by enumeration, contd.

Typically, we are interested in the posterior joint distribution of the query variables **Y** given specific values **e** for the evidence variables **E** 

Let the hidden variables be  $\mathbf{H} = \mathbf{X} - \mathbf{Y} - \mathbf{E}$ 

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y \mid E = e) = \alpha P(Y,E = e) = \alpha \Sigma_h P(Y,E = e, H = h)$$

- The terms in the summation are joint entries because Y, E and H together exhaust the set of random variables
- Obvious problems:
  - Worst-case time complexity  $O(d^n)$  where d is the largest arity
  - Space complexity  $O(d^n)$  to store the joint distribution
  - How to find the numbers for  $O(d^n)$  entries?

#### Independence

A and B are independent iff

$$P(A/B) = P(A)$$
 or  $P(B/A) = P(B)$  or  $P(A, B) = P(A) P(B)$ 



**P**(*Toothache, Catch, Cavity, Weather*) = **P**(*Toothache, Catch, Cavity*) **P**(*Weather*)

- 32 entries reduced to 12 (8+4); for n independent biased coins,  $O(2^n) \rightarrow O(n)$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

#### Conditional independence

- **P**(*Toothache, Cavity, Catch*) has  $2^3 1 = 7$  independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
  - (1)  $P(catch \mid toothache, cavity) = P(catch \mid cavity)$
- The same independence holds if I haven't got a cavity:
  - (2)  $P(catch \mid toothache, \neg cavity) = P(catch \mid \neg cavity)$
- Catch is conditionally independent of Toothache given Cavity:
   P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:

```
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
```

#### Conditional independence contd.

Write out full joint distribution using chain rule:

- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

### Bayes' Rule

- Product rule  $P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$ ⇒ Bayes' rule:  $P(a \mid b) = P(b \mid a) P(a) / P(b)$
- or in distribution form  $P(Y|X) = P(X|Y) P(Y) / P(X) = \alpha P(X|Y) P(Y)$
- Useful for assessing diagnostic probability from causal probability:
  - P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)
  - E.g., let M be meningitis, S be stiff neck:  $P(m|s) = P(s|m) P(m) / P(s) = 0.5 \times 0.0002 / 0.05 = 0.0002$
  - Note: posterior probability of meningitis still very small!



#### Bayes' Rule and conditional independence

**P**(Cavity | toothache ∧ catch)

=  $\alpha$  • **P**(toothache  $\wedge$  catch | Cavity) **P**(Cavity)

=  $\alpha$  · **P**(toothache | Cavity) **P**(catch | Cavity) **P**(Cavity)

This is an example of a naïve Bayes model:
P(Cause, Effect<sub>1</sub>, ..., Effect<sub>n</sub>) = P(Cause) π<sub>i</sub>P(Effect<sub>i</sub>|Cause)



Total number of parameters is linear in n

#### Bayesian networks



Chapter 14
Sections 1 – 2

#### Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
  - a set of nodes, one per variable
  - a directed, acyclic graph (link ≈ "directly influences")
  - a conditional distribution for each node given its parents:

 $\mathbf{P}(X_i \mid \text{Parents}(X_i))$ 

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over  $X_i$  for each combination of parent values

Topology of network encodes conditional independence

assertions:



- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
  - A burglar can set the alarm off
  - An earthquake can set the alarm off
  - The alarm can cause Mary to call
  - The alarm can cause John to call

#### Example contd.



### Compactness

- A CPT for Boolean  $X_i$  with k Boolean parents has  $2^k$  rows for the combinations of parent values
- Each row requires one number p for  $X_i = true$  (the number for  $X_i = false$  is just 1-p)
- If each variable has no more than k parents, the complete network requires  $O(n \cdot 2^k)$  numbers
- I.e., grows linearly with n, vs.  $O(2^n)$  for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs.  $2^{5}-1 = 31$ )

## Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$\mathbf{P}(X_1, \dots, X_n) = \pi_{i=1} \mathbf{P}(X_i | Parents(X_i))$$



e.g., 
$$P(j \land m \land a \land \neg b \land \neg e)$$
  
=  $P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$ 

## 1

#### Constructing Bayesian networks

- 1. Choose an ordering of variables  $X_1, \dots, X_n$
- 2. For i = 1 to n
  - add X<sub>i</sub> to the network
  - select parents from  $X_1, ..., X_{i-1}$  such that

$$P(X_i | Parents(X_i)) = P(X_i | X_1, ... X_{i-1})$$

This choice of parents guarantees

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i \mid X_1, ..., X_{i-1})$$
 (chain rule)  
=  $\prod_{i=1}^n P(X_i \mid Parents(X_i))$  (by construction)



$$P(J | M) = P(J)$$
?



$$P(J \mid M) = P(J)$$
? No  $P(A \mid J, M) = P(A \mid J)$ ?  $P(A \mid J, M) = P(A)$ ?





$$P(J \mid M) = P(J)$$
? No  
 $P(A \mid J, M) = P(A \mid J)$ ?  $P(A \mid J, M) = P(A)$ ? No  
 $P(B \mid A, J, M) = P(B \mid A)$ ?  
 $P(B \mid A, J, M) = P(B)$ ?



$$P(J \mid M) = P(J)$$
? No
 $P(A \mid J, M) = P(A \mid J)$ ?  $P(A \mid J, M) = P(A)$ ? No
 $P(B \mid A, J, M) = P(B \mid A)$ ? Yes
 $P(B \mid A, J, M) = P(B)$ ? No
 $P(E \mid B, A, J, M) = P(E \mid A)$ ?
 $P(E \mid B, A, J, M) = P(E \mid A, B)$ ?



$$P(J \mid M) = P(J)$$
? No
 $P(A \mid J, M) = P(A \mid J)$ ?  $P(A \mid J, M) = P(A)$ ? No
 $P(B \mid A, J, M) = P(B \mid A)$ ? Yes
 $P(B \mid A, J, M) = P(B)$ ? No
 $P(E \mid B, A, J, M) = P(E \mid A)$ ? No
 $P(E \mid B, A, J, M) = P(E \mid A, B)$ ? Yes

### Example contd.



- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

# Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
  - Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
  - Independence and conditional independence provide the tools

# Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution