NATURAL LANGUAGE PROCESSING FOR COMMUNICATION

Sections 23.1 – 23.3 (not covering 23.2.1-2)

Please set your mobile devices to silent.

CS 3243 - NLP for Communication

Last Time

Introduction to Learning

- Supervised Learning Induction from observations
- Trading model fit for simplicity
- Algorithms
 - KNN
 - Naïve Bayes
 - Decision Trees / Information Gain

Outline

- Formal Grammar
- Parsing: Syntactic Analysis
- Augmented Grammars
- The larger context
 - Communication as Action
 - Semantic Interpretation
 - Ambiguity and Disambiguation
 - Discourse Understanding

Language

- Formal language: A (possibly infinite) set of strings
- Grammar: A finite set of rules that specifies a language
- Rewrite rules
 - Non-terminal symbols [not observed] (S, NP, etc.)
 - Terminal symbols [observed] ("he")
 - $S \rightarrow NP VP$
 - NP \rightarrow Pronoun
 - Pronoun → "he"

Convention:

for non-

terminals.

terminals

Uppercase are

lowercase for

Generative Capacity

Noam Chomsky described four grammatical formalisms:

- Recursively enumerable grammars
 - Unrestricted rules: both sides of the rewrite rules can have any number of terminal and non-terminal symbols; full Turing machines
 ABd → CaE
- Context-sensitive grammars
 - The RHS must contain at least as many symbols as the LHS ASB → AXB
- Context-free grammars (CFG)
 - LHS is a single non-terminal symbol

S → XYa

- Regular grammars
 - LHS is single non-terminal; RHS a terminal plus optional non-terminal
 - $X \rightarrow a$ $X \rightarrow aY$

Formal Grammar

• The lexicon for ε_o :

```
Noun \rightarrow stench | breeze | glitter | wumpus | pit | pits | gold | ...

Verb \rightarrow is | see | smell | shoot | stinks | go | grab | turn | ...

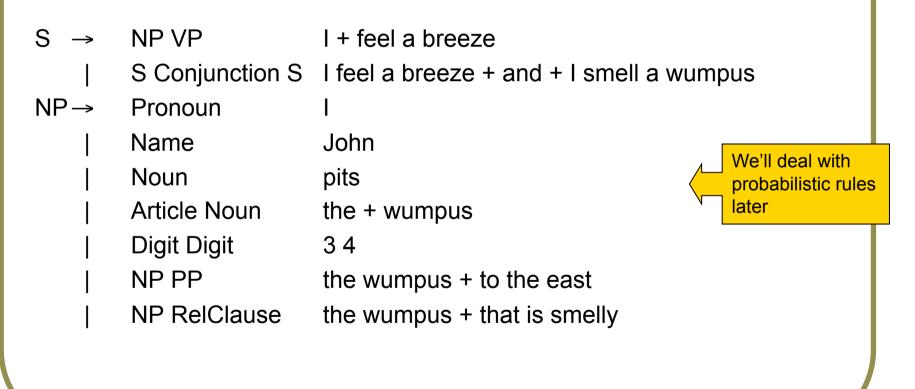
Adjective \rightarrow right | left | east | dead | back | smelly | ...

Adverb \rightarrow here | there | nearby | ahead | right | left | east | ...

Pronoun \rightarrow me | you | I | it | ...

Name \rightarrow John | Mary | Boston | Aristotle | ...

Article \rightarrow the | a | an | ...

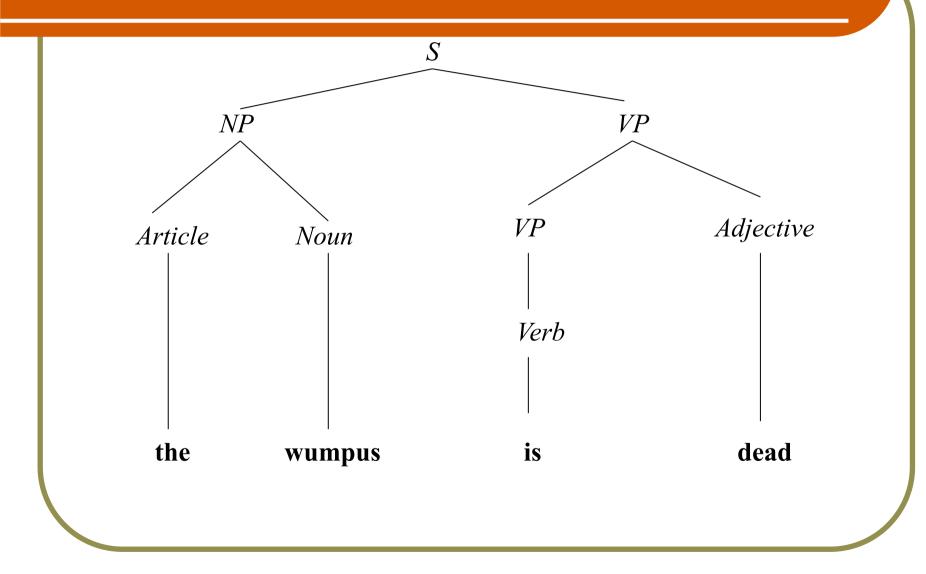

Preposition \rightarrow to | in | on | near | ...

Conjunction \rightarrow and | or | but | ...

Digit \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

Formal Grammar

• The grammar for ε_0 :



Formal Grammar

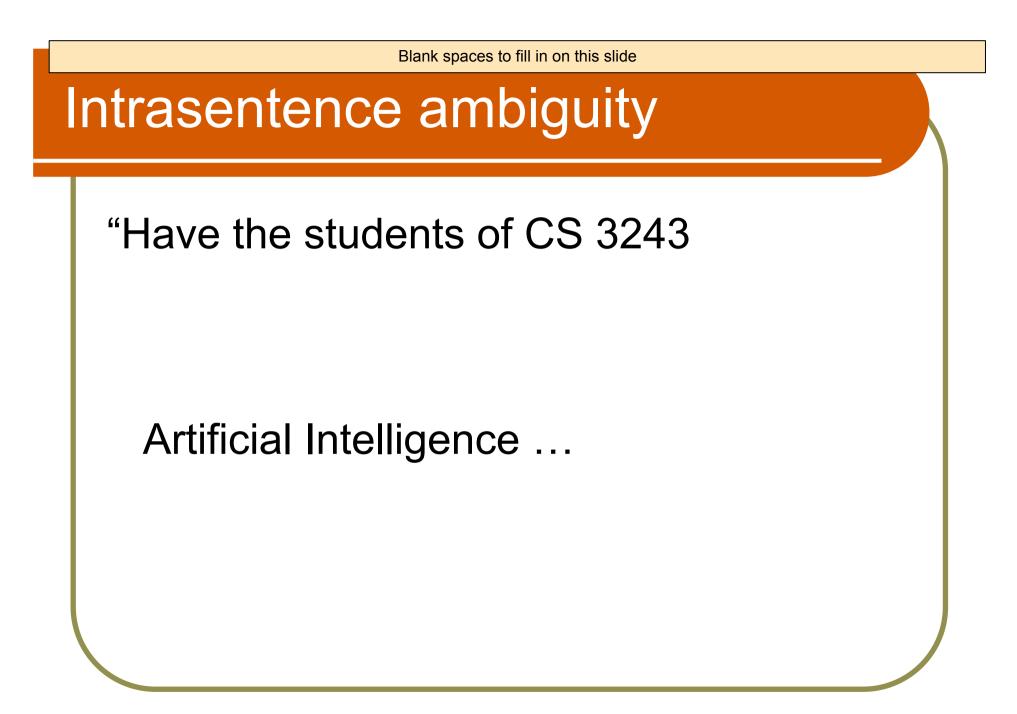
Parts of speech

- Open class: noun, verb, adjective, adverb
- Closed class: pronoun, article, preposition, conjunction, …
- Shortcomings of our grammar
 - Overgenerate: "Me go Boston"
 - Undergenerate: "I think the wumpus is smelly"

Parse Tree

Syntactic Analysis (Parsing)

- Parsing: The process of finding a parse tree for a given input string
- Top-down parsing
 - Start with the S symbol and search for a tree that has the words as its leaves
- Bottom-up parsing
 - Start with the words and search for a tree with root S


Trace of Bottom-up Parsing

List of nodes
the wumpus is dead
Article wumpus is dead
Article Noun is dead
NP is dead
NP Verb dead
NP Verb Adjective
NP VP Adjective
NP VP
S

Subsequence the wumpus Article Noun is dead Verb NP VP

Rule Article \rightarrow the Noun → **wumpus** $NP \rightarrow Article Noun$ Verb \rightarrow is Adjective → dead $VP \rightarrow Verb$ VP Adjective $VP \rightarrow VP Adjective$ $S \rightarrow NP VP$

Left to Right processing per token

Probabilistic Grammars

Probabilistic lexicon

```
Noun \rightarrow stench [.05] | breeze [.1] | wumpus [.15] | pits [.05] | ...
Verb \rightarrow is [.1] | feel [.1] | stinks [.05] | ...
```

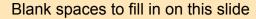
```
Digit \rightarrow 0 [.1] | 1 [.1] | 2 [.1] | ...
```

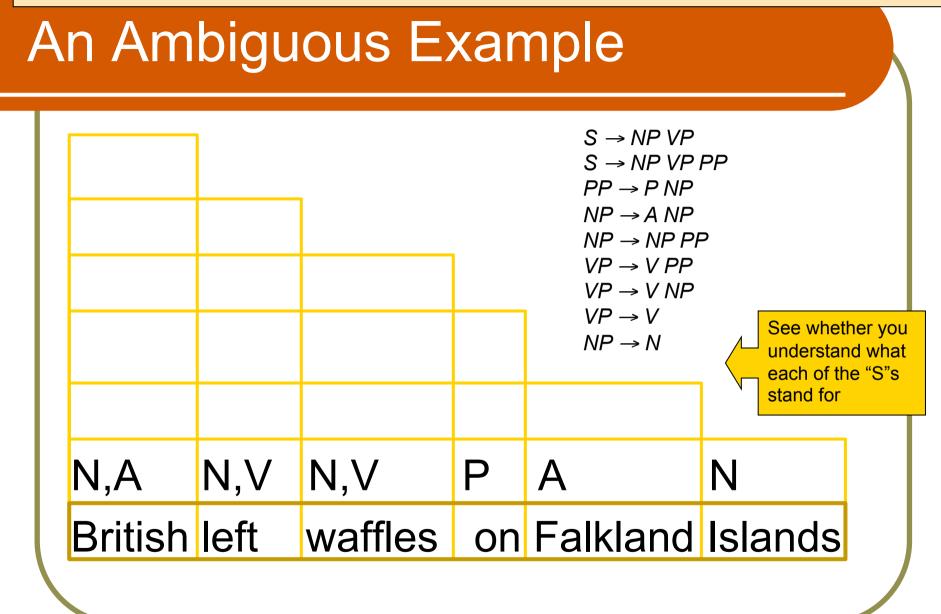
Probabilistic Grammar

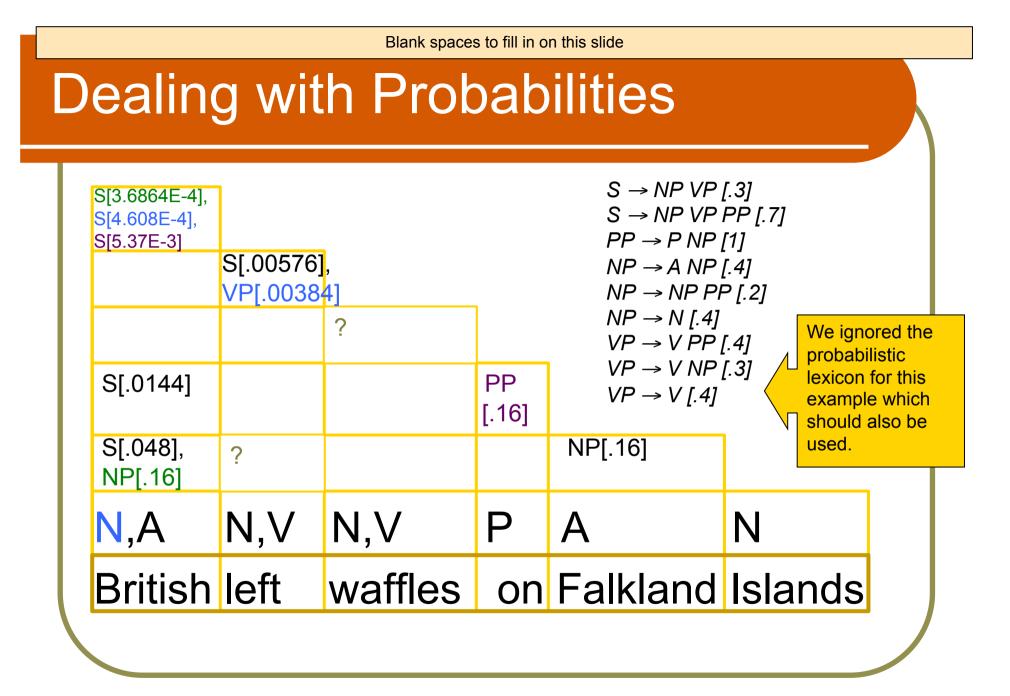
Where each category (e.g., VP) rule has probabilities that sum to one.

CYK Chart Parsing

- Uses dynamic programming to memoize intermediate results, saving to a chart.
- Bottom Up Iterative Processing
- Converts context free grammar into a special form: Chomsky Normal Form
 - X → "a"


• X → YZ


- Uses space O(n²m) ≅ O(n³), despite O(2ⁿ) possible parses.
- Suitable for probabilistic CFGs (PCFGs).


CYK Parsing

function CYK-PARSE(words, grammar) returns P, a table of probabilities

 $N \leftarrow \text{LENGTH}(words)$ $M \leftarrow$ the number of nonterminal symbols in grammar $P \leftarrow$ an array of size [M, N, N], initially all 0 /* Insert lexical rules for each word */ for i = 1 to N do **for each** rule of form $(X \rightarrow words_i [p])$ **do** $P[X, i, 1] \leftarrow p$ /* Combine first and second parts of right-hand sides of rules, from short to long */ for length = 2 to N do for start = 1 to N - length + 1 do for len1 = 1 to N - 1 do $len2 \leftarrow length - len1$ for each rule of the form $(X \rightarrow Y Z [p])$ do $P[X, start, length] \leftarrow MAX(P[X, start, length]),$ $P[Y, start, len1] \times P[Z, start + len1, len2] \times p)$ return P

Subjective & Objective Cases

Overgeneration:

- S \rightarrow NP VP \rightarrow NP VP NP \rightarrow NP Verb NP
- Pronoun Verb NP → Pronoun Verb Pronoun

She loves him

*her loves he

She ran towards him

*She ran towards he

Handling Subjective & Objective Cases

S	\rightarrow	NPs VP
NP_{s}	\rightarrow	Pronoun _s Name Noun …
NP_{o}	\rightarrow	Pronoun _o Name Noun …
VP	\rightarrow	VP NPo
PP	\rightarrow	Preposition NP _o
Pronoun _s →		l you he she it …
$Pronoun_{o} \rightarrow$		me you him her it …

Disadvantage: Grammar size grows exponentially

Augmented Grammars

- Handling case, agreement, etc
- Augment grammar rules to allow parameters on nonterminal categories
 - NP(Subjective)
 - NP(Objective)
 - NP(case)

Definite Clause Grammar (DCG)

• The grammar for $\varepsilon 1$:

S	\rightarrow	NP(Subjective) VP	
NP(case)	\rightarrow	Pronoun(case) Name Noun	
VP	\rightarrow	VP NP(Objective)	
PP	\rightarrow	Preposition NP(Objective)	
Pronoun(Subje	ective) →	I you he she it Definite Clauses, where did we	
Pronoun(Objee	ctive) →	me you him her it hear that before?	

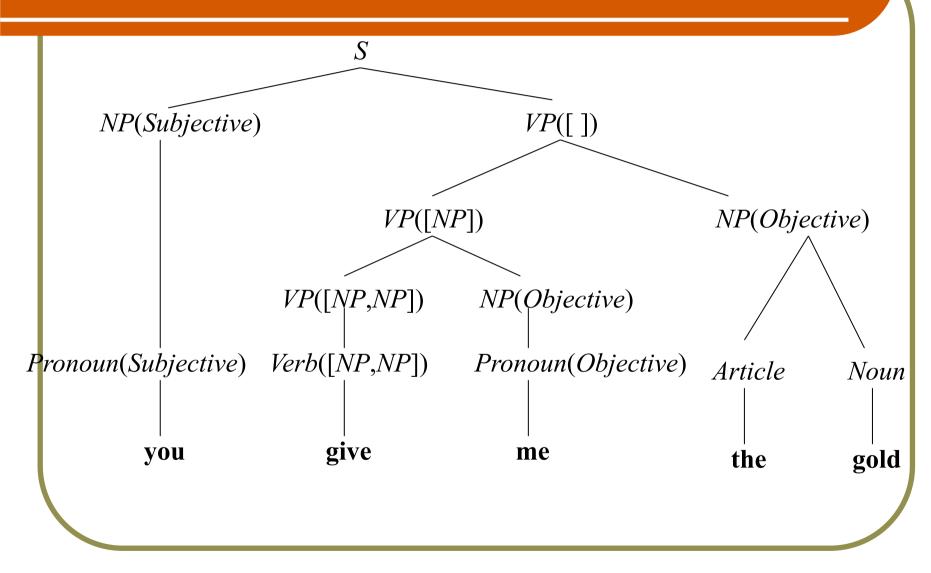
Definite Clause Grammar (DCG)

• Each grammar rule is a definite clause in logic:

- $S \rightarrow NP VP$
- NP(s1) \land VP(s2) \Rightarrow S(s1 + s2)
- NP(case) \rightarrow Pronoun(case)
- Pronoun(case, s1) \Rightarrow NP(case, s1)

Prolog as a suitable language for
 deterministic NLP

- DCG enables parsing as logical inference:
 - Top-down parsing is backward chaining
 - Bottom-up parsing is forward chaining


Verb Subcategorization

Verb	Subcats	Example Verb Phrase
give	[<i>NP</i> , <i>PP</i>]	give the gold to me
	[<i>NP</i> , <i>NP</i>]	give me the gold
smell	[<i>NP</i>]	smell a wumpus
	[Adjective]	smell awful
	[<i>PP</i>]	smell like a wumpus
is	[Adjective]	is smelly
	[<i>PP</i>]	is in 2 2
	[<i>NP</i>]	is a pit
died	[]	died
believe	[S]	believe the wumpus is dead

Verb Subcategorization

S	\rightarrow	NP(Subjective) VP([])
VP(subcat)	\rightarrow	Verb(subcat)
	I	VP(subcat + [NP]) NP(Objective)
	I	VP(subcat + [Adjective]) Adjective
	I	VP(subcat + [PP]) PP
VP(subcat)	\rightarrow	VP(subcat) PP
	I	VP(subcat) Adverb
Verb([NP,NP])	\rightarrow	give hand …

Parsing Using Verb Subcategorization

The larger context – communication

Communication

- Intentional exchange of information brought about by the production and perception of signs drawn from a shared system of conventional signs
- Humans use language to communicate most of what is known about the world
- The Turing test is based on language

Communication as Action

• Speech act

- Language production viewed as an action
- Speaker, hearer, utterance

• Examples:

- Query: "Have you smelled the wumpus anywhere?"
- Inform: "There's a breeze here in 3 4."
- Request: "Please help me carry the gold." "I could use some help carrying this."
- Acknowledge: "OK"
- Promise: "I'll shoot the wumpus."

Component Steps of Communication

SPEAKER:

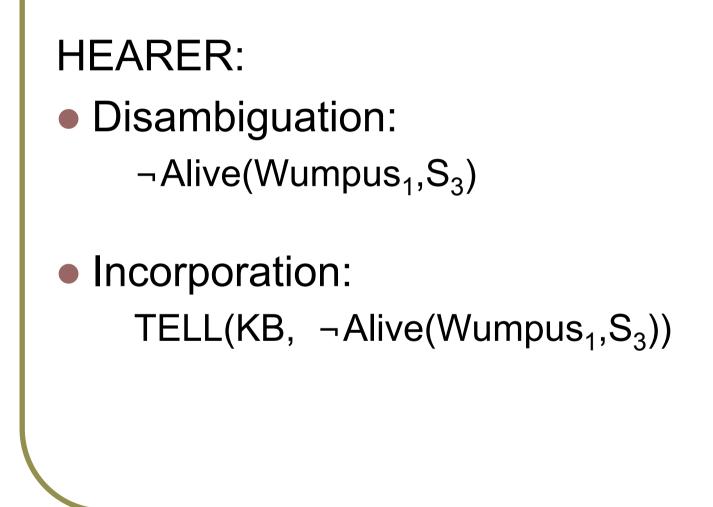
Intention

Know(H,¬Alive(Wumpus,S₃))

Generation

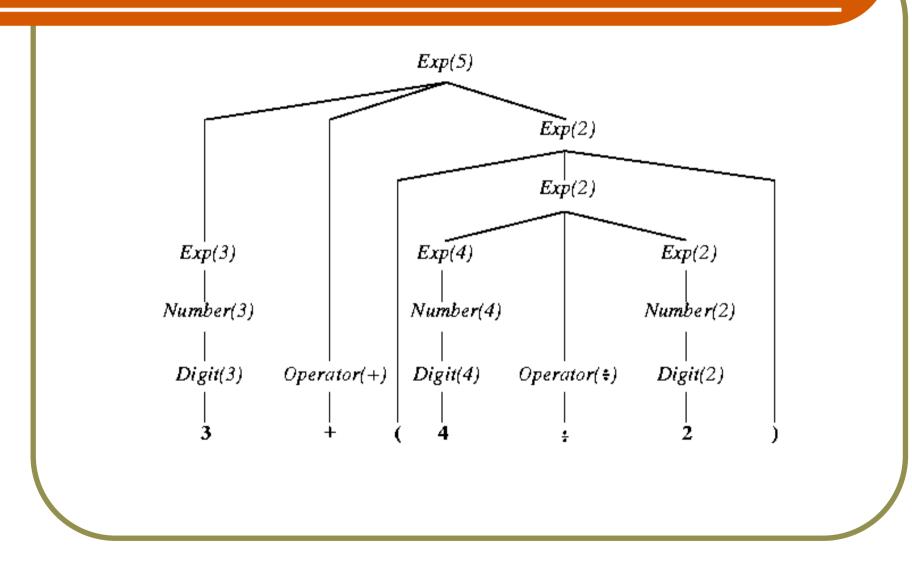
"The wumpus is dead"

Synthesis


[thaxwahmpaxsihzdehd]

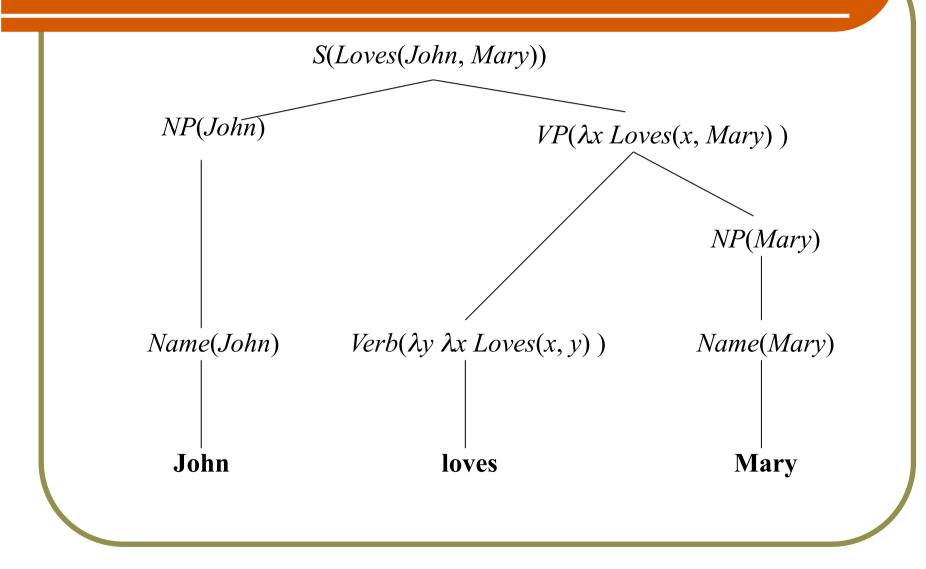
Component Steps of Communication

HEARER:


Perception: "The wumpus is dead" S Analysis NP VP (Parsing): Article Adjective Noun Verb The is dead wumpus (Semantic Interpretation): -Alive(Wumpus, Now) Tired(Wumpus, Now) (Pragmatic Interpretation): \neg Alive(Wumpus₁, S₃) Tired(Wumpus₁, S_3)

Component Steps of Communication

- Semantics: meaning of utterances
- First-order logic as the representation language
- Compositional semantics: meaning of a phrase is composed of meaning of the constituent parts of the phrase


Exp(x)	\rightarrow Exp(x ₁) Operator(op) Exp(x ₂)		
	{ x = Apply(op, x ₁ , x ₂) }		
Exp(x)	\rightarrow (Exp(x))		
Exp(x)	→ Number(x)		
Number(x)	→ Digit(x)		
Number(x)	$\rightarrow \text{Number}(x_1) \text{ Digit}(x_2) \{ x = 10 \times x_1 + x_2 \}$		
Digit(x)	$\rightarrow x \{ 0 \le x \le 9 \}$		
Operator(x)	$\rightarrow X \{ x \in \{ +, -, \times, \div \} \}$		


```
John loves Mary
Loves(John, Mary)
```

 $(\lambda y \ \lambda x \ Loves(x, y)) \ (Mary) \equiv \lambda x \ Loves(x, Mary)$ $(\lambda x \ Loves(x, Mary)) \ (John) \equiv Loves(John, Mary)$

S(rel(obj))	\rightarrow	NP(obj) VP(rel)
VP(rel(obj))	\rightarrow	Verb(rel) NP(obj)
NP(obj)	\rightarrow	Name(obj)
Name(John)	\rightarrow	John
Name(Mary)	\rightarrow	Mary
Verb($\lambda y \lambda x Loves(x,y)$)	\rightarrow	loves

- Adding context-dependent information about the current situation to each candidate semantic interpretation
- Indexicals: phrases that refer directly to the current situation
 - "I am in Boston today"
 - ("I" refers to speaker and "today" refers to now)

Language Generation

The same DCG can be used for parsing and generation

• Parsing:

• Given: S(sem, [John, loves, Mary])

Return: sem = Loves(John, Mary)

• Generation:

- Given: S(Loves(John, Mary), words)
- Return: words = [John, loves, Mary]

Ambiguity

Lexical ambiguity

- "the back of the room" vs. "back up your files"
- "In the interest of stimulating the economy, the government lowered the interest rate."
- Syntactic ambiguity (structural ambiguity)
 - "I smelled a wumpus in 2,2"
- Semantic ambiguity
 - "the IBM lecture"
- Pragmatic ambiguity
 - "I'll meet you next Friday"

Metonymy

Denotes a concept by naming some other concept closely *related* to it

- Examples:
 - Company for company's spokesperson ("IBM announced a new model")
 - Author for author's works ("I read Shakespeare")
 - Producer for producer's product ("I drive a Honda")

Metonymy

Representation of "IBM announced"

 $\exists m, x, e \ x = IBM \land e \in Announce(m) \land Af \ tet(Now, e) \land Metonymy(m, x)$ $\forall m, x \ (m = x) \Rightarrow Metonymy(m, x)$ $\forall m, x \ x \in Organizations \land Spokesperson(m, x) \Rightarrow Metonymy(m, x)$

Metaphor

Refer to concepts using words whose meanings are appropriate to other completely different kinds of concepts

- Example: corporation-as-person metaphor:
 - Speak of a corporation as if it is a person and can experience emotions, has a mind, etc.
 - "That doesn't scare Digital, which has grown to be the world's second-largest computer maker."
 - "But if the company changed its **mind**, however, it would do so for investment reasons, the filing said."

Disambiguation

arg max Likelihood(intent | words, situation)

- Disambiguation is like diagnosis
- The speaker's intent to communicate is an unobserved cause of the words in the utterance
- The hearer's job is to work backwards from the words and from knowledge of the situation to recover the most likely intent of the speaker

Discourse Understanding

- Discourse: multiple sentences
- Reference resolution: The interpretation of a pronoun or a definite noun phrase that refers to an object in the world
- "John flagged down the waiter. He ordered a ham sandwich."
 - "He" refers to "John"
- "After John proposed to Mary, they found a preacher and got married. For the honeymoon, they went to Hawaii."
 - "they"? "the honeymoon"?

Discourse Understanding

- Structure of coherent discourse: Sentences are joined by coherence relations
- Examples of coherence relations between S1 and S2:
 - Enable or cause: S1 brings about a change of state that causes or enables S2
 - "I went outside. I drove to school."
 - Explanation: the reverse of enablement, S2 causes or enables S1 and is an explanation for S1
 - "I was late for school. I overslept."
 - Exemplification: S2 is an example of the general principle in S1
 - "This algorithm reverses a list. The input [A,B,C] is mapped to [C,B,A]."
 - Etc.

Summary

• NLP is full of ambiguity

- Natural languages a testament to human intelligence, creativity
- NLP largely processes one utterance at a time
- Deterministic methods can follow context free grammars, (DCGs, hence Prolog)
- PCFGs add probabilistic interpretation
- Both parsable using DP (CYK algorithm)