CS 3243 – Recap from lecture 1

- Introduction
- Agents
- PEAS
- Environment

- Rational Agents – F: mapping P* to A
- Agent architectures: reflex, model, learning
Solving problems by searching

Chapter 3
Outline

- Problem-solving agents
- Problem types
- Problem formulation
- Example problems
- Basic search algorithms
Problem-solving agents

\begin{verbatim}
function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
 static: seq, an action sequence, initially empty
 state, some description of the current world state
 goal, a goal, initially null
 problem, a problem formulation
 state ← UPDATE-STATE(state, percept)
 if seq is empty then do
 goal ← FORMULATE-GOAL(state)
 problem ← FORMULATE-PROBLEM(state, goal)
 seq ← SEARCH(problem)
 action ← FIRST(seq)
 seq ← REST(seq)
 return action
\end{verbatim}
Example: Romania

- On holiday in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest

Formulate goal:
 - be in Bucharest

Formulate problem:
 - states: various cities
 - actions: drive between cities

Find solution:
 - sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Example: Romania
Problem types

- Deterministic, fully observable \rightarrow single-state problem
 - Agent knows exactly which state it will be in; solution is a sequence

- Non-observable \rightarrow sensorless problem (conformant problem)
 - Agent may have no idea where it is; solution is a sequence

- Nondeterministic and/or partially observable \rightarrow contingency problem
 - Percepts provide new information about current state
 - Often interleave search, execution

- Unknown state space \rightarrow exploration problem
Example: vacuum world

- Single-state, start in #5.
 Solution?
Example: vacuum world

- **Single-state**, start in #5.
 Solution? [Right, Suck]

- **Sensorless**, start in
 \(\{1,2,3,4,5,6,7,8\}\) e.g.,
 Right goes to \(\{2,4,6,8\}\)
 Solution?
Example: vacuum world

- **Sensorless**, start in \{1,2,3,4,5,6,7,8\} e.g., Right goes to \{2,4,6,8\}

 Solution?

 \([\text{Right}, \text{Suck}, \text{Left}, \text{Suck}]\)

- **Contingency**

 - Nondeterministic: \textit{Suck} may dirty a clean carpet

 - Partially observable: location, dirt at current location.

 - Percept: \([L, \text{Clean}]\), i.e., start in \#5 or \#7

 Solution?
Example: vacuum world

- **Sensorless**, start in \{1,2,3,4,5,6,7,8\} e.g., *Right* goes to \{2,4,6,8\}

 Solution?
 \[\text{[Right, Suck, Left, Suck]} \]

- **Contingency**
 - Nondeterministic: *Suck* may dirty a clean carpet
 - Partially observable: location, dirt at current location.
 - Percept: \[\text{[L, Clean]}, \text{ i.e., start in \#5 or \#7} \]

 Solution?
 \[\text{[Right, if dirt then Suck]} \]
Single-state problem formulation

A problem is defined by four items:

1. **initial state** e.g., "at Arad"
2. **actions or successor function** $S(x) = \text{set of action–state pairs}$
 - e.g., $S(Arad) = \{ <Arad \rightarrow Zerind, Zerind>, \ldots \}$
3. **goal test**, can be
 - explicit, e.g., $x = \text{"at Bucharest"}$
 - implicit, e.g., $\text{Checkmate}(x)$
4. **path cost** (additive)
 - e.g., sum of distances, number of actions executed, etc.
 - $c(x,a,y)$ is the **step cost**, assumed to be ≥ 0

- A **solution** is a sequence of actions leading from the initial state to a goal state
Selecting a state space

- Real world is absurdly complex
 - state space must be abstracted for problem solving

- (Abstract) state = set of real states
- (Abstract) action = complex combination of real actions
 - e.g., "Arad \rightarrow Zerind" represents a complex set of possible routes, detours, rest stops, etc.

- For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"

- (Abstract) solution =
 - set of real paths that are solutions in the real world

- Each abstract action should be "easier" than the original problem
Vacuum world state space graph

- states?
- actions?
- goal test?
- path cost?
Vacuum world state space graph

- **states?** integer dirt and robot location
- **actions?** *Left, Right, Suck*
- **goal test?** no dirt at all locations
- **path cost?** 1 per action
Example: The 8-puzzle

- states?
- actions?
- goal test?
- path cost?
Example: The 8-puzzle

- **states?** locations of tiles
- **actions?** move blank left, right, up, down
- **goal test?** = goal state (given)
- **path cost?** 1 per move

[Note: optimal solution of *n*-Puzzle family is NP-hard]
Example: robotic assembly

- **states?**
- **actions?**
- **goal test?**
- **path cost?**
Tree search algorithms

- Basic idea:
 - offline, simulated exploration of state space by generating successors of already-explored states (a.k.a. expanding states)

```latex
\begin{function}
  \text{TREE-SEARCH}(\text{problem, strategy}) \text{ returns a solution, or failure}
  \text{initialize the search tree using the initial state of } \text{problem}
  \text{loop do}
  \text{if there are no candidates for expansion then return failure}
  \text{choose a leaf node for expansion according to } \text{strategy}
  \text{if the node contains a goal state then return the corresponding solution}
  \text{else expand the node and add the resulting nodes to the search tree}
\end{function}
```
Tree search example
Tree search example
Tree search example
Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
 if fringe is empty then return failure
 node ← REMOVE FRONT(fringe)
 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
 fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors ← the empty set
for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
 s ← a new NODE
 PARENT-NODE[s] ← node; ACTION[s] ← action; STATE[s] ← result
 PATH-COST[s] ← PATH-COST[node] + STEP-COST(node, action, s)
 DEPTH[s] ← DEPTH[node] + 1
 add s to successors
return successors
Implementation: states vs. nodes

- A state is a (representation of) a physical configuration.
- A node is a data structure constituting part of a search tree includes state, parent node, action, path cost \(g(x) \), depth.

- The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.
Search strategies

- A search strategy is defined by picking the order of node expansion.

- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?

- Time and space complexity are measured in terms of
 - b: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - m: maximum depth of the state space (may be ∞)
Uninformed search strategies

- **Uninformed** search strategies use only the information available in the problem definition
- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search
Breadth-first search

- Expand shallowest unexpanded node

Implementation:

- fringe is a FIFO queue, i.e., new successors go at end

![Breadth-first search diagram]

CS 3243 - Uninformed Search
Breadth-first search

- Expand shallowest unexpanded node

Implementation:

- *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node

Implementation:

- *fringe* is a FIFO queue, i.e., new successors go at end

Animation time!
Breadth-first search

- Expand shallowest unexpanded node

Implementation:

- *fringe* is a FIFO queue, i.e., new successors go at end

![Tree diagram](image)
Properties of breadth-first search

- Complete? Yes (if b is finite)
- Time? $O(b^{d+1})$ (where k keeps every node in memory)
- Space? $O(b^d + 1)$
- Optimal? Yes (if cost = 1 per step)
- Space is the bigger problem (more than time)
Uniform-cost search

- Expand least-cost unexpanded node

Implementation:
 - $fringe = \text{queue ordered by path cost}$

- Equivalent to breadth-first if step costs all equal

Complete?
Time?

Space?

Optimal?
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front

![Diagram of a tree search with nodes A, B, C, D, E, F, G, H, I, J, K, L, M, N, O.]
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - `fringe` = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front

Animation time!
Properties of depth-first search

- **Complete?**

- **Time?**
 - \(O(b^m) \): terrible if \(m \) is much larger than \(d \)
 - But if solutions are dense, may be much faster than breadth-first

- **Space?**
 - \(O(bm) \), i.e., linear space!

- **Optimal?**
 - No
Depth-limited search

= depth-first search with depth limit /,
i.e., nodes at depth / have no successors

function `DEPTH-LIMITED-SEARCH(problem, limit)` returns solution/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function `RECURSIVE-DLS(node, problem, limit)` returns solution/fail/cutoff
cutoff-occurred? ← false
if GOAL-Test[problem][State[node]] then return SOLUTION(node)
else if DEPTH[node] = limit then return cutoff
else for each successor in Expand(node, problem) do
 result ← Recursive-DLS(successor, problem, limit)
 if result = cutoff then cutoff-occurred? ← true
 else if result ≠ failure then return result
if cutoff occurred? then return cutoff else return failure
Iterative deepening search

function Iterative-Deepening-Search(problem) returns a solution, or failure

inputs: problem, a problem

for depth ← 0 to ∞ do
 result ← Depth-Limited-Search(problem, depth)
 if result ≠ cutoff then return result
Iterative deepening search / = 0

Limit = 0
Iterative deepening search / $\neq 1$
Iterative deepening search $l = 2$
Iterative deepening search \(\neq 3 \)
Iterative deepening search

- Number of nodes generated in a depth-limited search to depth d with branching factor b:
 \[N_{DLS} = b^0 + b^1 + b^2 + \ldots + b^{d-2} + b^{d-1} + b^d \]

- Number of nodes generated in an iterative deepening search to depth d with branching factor b:
 \[N_{IDS} = (d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + 3b^{d-2} + 2b^{d-1} + 1b^d \]

- For $b = 10$, $d = 5$,
 - $N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$
 - $N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456$

- Overhead = $(123,456 - 111,111)/111,111 = 11\%$
Properties of iterative deepening search

- **Complete?**
- **Time?**
 \[\sum_{i=0}^{d} b^i = O(b^d) \]
- **Space?**
 \[O(bd) \]
- **Optimal?**
 Yes, if step cost = 1
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{[C^*/\epsilon]})$</td>
<td>$O(b^n)$</td>
<td>$O(b^l)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{[C^*/\epsilon]})$</td>
<td>$O(bm)$</td>
<td>$O(bl)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Repeated states

- Failure to detect repeated states can turn a linear problem into an exponential one!
Graph search

function Graph-Search(problem, fringe) returns a solution, or failure

 closed ← an empty set
 fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← Remove-Front(fringe)
 if Goal-Test(problem)(State[node]) then return Solution(node)
 if State[node] is not in closed then
 add State[node] to closed
 fringe ← InsertAll(Expand(node, problem), fringe)
Bidirectional Search

- Simultaneously search both forward (from the initial state) and backward (from the goal state).
- Stop when the two searches meet.
- Intuition = $2 \times O(b^{d/2})$ is smaller than $O(b^d)$
Bidirectional Search Discussion

- Numerical Example (b=10, l = 5)
 - Bi-directional search finds solution at d=3 for both forward and backward search. Assuming BFS in each half 2222 nodes are expanded.

- Implementation issues:
 - Operators are reversible, e.g., Pred(Succ(n)) = Pred(Succ(n))
 - There may be many possible goal states.
 - Construct a goal state containing the superset of all goal states.
 - Check if a node appears in the “other” search tree.
 - Using different search strategies for each half.
Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored.

- Variety of uninformed search strategies.

- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms.