Informed search algorithms

Chapter 4

Material

- Sections 3.5, 4.1
- Excludes memory-bounded heuristic search (3.5)

Outline

- Best-first search
- Greedy best-first search
- A^{*} search
- Heuristics
- Local search algorithms
- Online search problems

Review: Tree search

```
function Tree-SEARCH(problem, fringe) returns a solution, or failure
    fringe }\leftarrow\operatorname{InSert(Make-Node(Initial-State[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node}\leftarrow\mathrm{ Remove-Front(fringe)
        if Goal-Test[problem](State[node]) then return Solution(node)
        fringe}\leftarrow\mp@code{InSertAlL(Expand(node, problem), fringe)
```

- A search strategy is defined by picking the order of node expansion

Best-first search

- Idea: use an evaluation function $f(n)$ for each node
- estimate of "desirability"
\rightarrow Expand most desirable unexpanded node
- Implementation:

Order the nodes in fringe in decreasing order of desirability

- Special cases:
- greedy best-first search
- A^{*} search

Romania with step costs in km

Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 176
Giurgiu 77

Hirsowa 151
Iasi 226
Luy며 244
Mehadia 241
Neamt 234
Oradea 390
Pitesti 10
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Uraiceni 80
Vaslui
199
Zerind $\quad 374$

CS 3243 - Informed Search

Greedy best-first search

- Evaluation function $f(n)=h(n)$ (heuristic)
- = estimate of cost from n to goal
- e.g., $h_{\text {SLD }}(n)=$ straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Greedy best-first search example

$>\frac{\text { Arad }}{366}$

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy Best-First demo?

Properties of greedy best-first search

- Complete?
- Time?
- Space?
- Optimal?

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function $f(n)=g(n)+h(n)$
- $g(n)=$ cost so far to reach n
- $h(n)=$ estimated cost from n to goal
- $f(n)=$ estimated total cost of path through n to goal

A* search example

$D \underset{366=0+366}{\text { Arad }}$

A* search example


```
A* demo?
```


Admissible heuristics

- A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^{*}(n)$, where $h^{*}(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{S L D}(n)$ (never overestimates the actual road distance)
- Theorem: If $h(n)$ is admissible, A^{*} using TREESEARCH is optimal

Optimality of A^{*} (proof)

Suppose some suboptimal goal G_{2} has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f\left(G_{2}\right)=g\left(G_{2}\right)$
- $g\left(G_{2}\right)>g(G)$
- $f(G)=g(G)$
- $f\left(G_{2}\right)>f(G)$
since $h\left(\mathrm{G}_{2}\right)=0$
since G_{2} is suboptimal
since $h(G)=0$
from above

Optimality of A^{*} (proof)

- Suppose some suboptimal goal G_{2} has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

$-f\left(G_{2}\right)$	$>f(G)$
$-h(n)$	$\leq h^{*}(n)$
$-g(n)+h(n)$	$\leq g(n)+h^{*}(n)$
$-f(n)$	$\leq f(G)$

from previous
since h is admissible

Hence $f\left(G_{2}\right)>f(n)$, and A^{*} will never select G_{2} for expansion

Consistent heuristics

- A heuristic is consistent if for every node n, every successor n^{\prime} of n generated by any action $a_{\text {, }}$

$$
h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

- If h is consistent, we have
$\mathrm{f}\left(\mathrm{n}^{\prime}\right) \quad=\mathrm{g}\left(\mathrm{n}^{\prime}\right)+\mathrm{h}\left(\mathrm{n}^{\prime}\right)$

$$
\begin{aligned}
& =g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \\
& \geq g(n)+h(n)=f(n)
\end{aligned}
$$

- i.e., $f(n)$ is non-decreasing along any path.
- Theorem: If $h(n)$ is consistent, A * using GRAPH-SEARCH is optimal

Optimality of A^{*}

- A^{*} expands nodes in order of increasing f value
- Gradually adds " f contours" of nodes
- Contour i has all nodes with $f=f_{i j}$ where $f_{i}<f_{i+1}$

Properties of A^{*}

- Complete?

- Time?
- Space?
- Optimal?

Admissible heuristics

E.g., for the 8-puzzle:

Average solution depth?

Average branching factor?

Start State

Admissible heuristics

E.g., for the 8-puzzle:

- $h_{1}(n)=$ number of misplaced tiles
- $h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

Start State

Goal State

- $\underline{h}_{2}(S)=? 3+1+2+2+2+3+3+2=18$

Dominance

- If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible) then h_{2} dominates h_{1} h_{2} is better for search

Typical search costs (average number of nodes expanded):

- $d=12 \quad$ IDS $=3,644,035$ nodes
$A^{*}\left(h_{1}\right)=227$ nodes
$A^{*}\left(h_{2}\right)=73$ nodes
- $d=24 \quad$ IDS $=$ too many nodes
$A^{*}\left(h_{1}\right)=39,135$ nodes
$\mathrm{A}^{*}\left(\mathrm{~h}_{2}\right)=1,641$ nodes

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution

Beyond Classical Search

- Local Search
- Searching with non-determinism
- Searching with partial observations
- Online and exploratory search

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., nqueens
- In such cases, we can use local search algorithms keep a single "current" state, try to improve it

Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing(problem) returns a state that is a local maximum
    inputs: problem, a problem
    local variables: current, a node
            neighbor, a node
    current }\leftarrow\mathrm{ Make-Node(Initial-State[problem])
    loop do
        neighbor }\leftarrow\mathrm{ a highest-valued successor of current
        if Value[neighbor] \leq Value[current] then return State[current]
        current }\leftarrow\mathrm{ neighbor
```


Hill-climbing search

- Problem: depending on initial state, can get stuck in local maxima

Hill-climbing search: 8-queens problem

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	N//	13	16	13	16
V!	14	17	15	崖	14	16	16
17	W/4	16	18	15	W/4	15	W/
18	14	N/4	15	15	14	N//	16
14	14	13	17	12	14	12	18

- $h=$ number of pairs of queens that are attacking each other, either directly or indirectly
- $h=17$ for the above state

Hill-climbing search: 8-queens problem

- A local minimum with $h=1$

Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```
function Simulated-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
            schedule, a mapping from time to "temperature"
    local variables: current, a node
            next, a node
            T, a "temperature" controlling prob. of downward steps
    current }\leftarrow\mathrm{ Make-Node(Initial-State[problem])
    for }t\leftarrow\mathbf{1}\mathrm{ to }\infty\mathrm{ do
        T\leftarrowschedule[t]
        if T=0 then return current
        next \leftarrowa randomly selected successor of current
        \DeltaE\leftarrow Value[next] - ValuE[current]
        if }\DeltaE>0\mathrm{ then current }\leftarrow\mathrm{ next
        else current }\leftarrow\mathrm{ next only with probability }\mp@subsup{e}{}{\DeltaE/T
```


Properties of simulated annealing search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
- Widely used in VLSI layout, airline scheduling, etc

Local Beam Search

- Why keep just one best state?

- Can be used with randomization too

Genetic algorithms

- A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0 s and 1 s)
- Evaluation function (fitness function). Higher values for better states
- Produce the next generation of states by selection, crossover, and mutation

Genetic algorithms

- Fitness function: number of non-attacking pairs of queens $(\min =0, \max =8 \times 7 / 2=28)$
- $24 /(24+23+20+11)=31 \%$
- $23 /(24+23+20+11)=29 \%$ etc.

Genetic algorithms

Search w/ non-determinism

- Fully observable, deterministic environments
- Sensors, precepts no use
- Consider erratic actuators
- Action leads to a set of possible states
- Plan will not be a set sequence, may have loops contingencies (if-then-else)

And-Or Search Tree

- Q: what does the "LOOP" label mean here?

Search w/ partial observations

- Conformant problem - no observations
- Useful! Solutions are independent of initial state
- Coerce the state space into a subset of possible

Localization

Initial State:

After observing NSW:

Q: What about a really big set of initial positions?

Online search and exploration

- Many problems are offline
- Do search for action and then perform action
- Online search interleave search \& execution
- Necessary for exploration problems
- New observations only possible after acting

Exploratory Search

- In an unknown state space, how to pick an action?
- Any random action will do ... but

- Favor those that allow more exploration of the search space
\rightarrow Graph-search to track of states previously seen

Assessing Online Agents: Competitive Ratio

Actual cost of path
Best possible cost (if agent knew space in advance)
$30 / 20=1.5$
For cost, lower is better

Exploration problems

- Exploration problems: agent physically in some part of the state space.
- e.g. solving a maze using an agent with local wall sensors
- Sensible to expand states easily accessible to agent (i.e. local states)
- Local search algorithms apply (e.g., hill-climbing)

Assignment

- Build a game player
- Restricted by time per move (5 real-time secs)
- Interact with the game driver through the command line
- Each turn, we will run your program, providing the board state as input.
- Your output will be the pair of coordinates indicating the piece to move and its destination.

Homework \#1 - Ataxx

- Note: we haven't yet covered all of the methods to solve this problem

This week: start thinking about it, discuss among yourselves (remember the Facebook Rule!)

- Play the game, review past games by others.
- What heuristics are good to use?
- What type of search makes sense to use?

