

Chapter 4

CS 3243 - Informed Search

Material

- Sections 3.5, 4.1
- Excludes memory-bounded heuristic search (3.5)

Outline

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Online search problems

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure $node \leftarrow \text{REMOVE-FRONT}(fringe)$ if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node) fringe $\leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe)$

A search strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function f(n) for each node

- estimate of "desirability"
- > Expand most desirable unexpanded node
- Implementation:

Order the nodes in fringe in decreasing order of desirability

- Special cases:
 - greedy best-first search
 - A^{*} search

Romania with step costs in km

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
- = estimate of cost from n to goal
- e.g., h_{SLD}(n) = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Greedy Best-First demo?

CS 3243 - Informed Search

Properties of greedy best-first search

- Complete?
- Time?
- Space?
- Optimal?

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- g(n) = cost so far to reach n
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal

A^{*} search example

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: h_{SLD}(n) (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Optimality of A^{*} (proof)

Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let *n* be an unexpanded node in the fringe such that *n* is on a shortest path to an optimal goal *G*.

- $f(G_2) = g(G_2)$
- $g(G_2) > g(G)$
- f(G) = g(G)
- $f(G_2) > f(G)$

since $h(G_2) = 0$ since G_2 is suboptimal since h(G) = 0

from above

Optimality of A^{*} (proof)

Suppose some suboptimal goal G₂ has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

CS 3243 - Informed Search

Consistent heuristics

 A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

 $h(n) \leq c(n,a,n') + h(n')$

• If *h* is consistent, we have f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') $\ge g(n) + h(n) = f(n)$

- i.e., *f*(*n*) is non-decreasing along any path.
- Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A*

- A* expands nodes in order of increasing *f* value
- Gradually adds "*f*-contours" of nodes
- Contour *i* has all nodes with $f=f_{i}$, where $f_i < f_{i+1}$

- Complete?
- Time?
- Space?
- Optimal?

Admissible heuristics

E.g., for the 8-puzzle:

Average solution depth?

Average branching factor?

Start State

 1
 2

 3
 4
 5

 6
 7
 8

Goal State

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Dominance

 If h₂(n) ≥ h₁(n) for all n (both admissible) then h₂ dominates h₁ h₂ is better for search

Typical search costs (average number of nodes expanded):

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution

Beyond Classical Search

- Local Search
- Searching with non-determinism
- Searching with partial observations
- Online and exploratory search

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., nqueens
- In such cases, we can use local search algorithms keep a single "current" state, try to improve it

Example: *n*-queens

Put n queens on an n × n board with no two queens on the same row, column, or diagonal

Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

```
function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node
current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
neighbor ← a highest-valued successor of current
if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
current ← neighbor
```

Hill-climbing search Problem: depending on initial state, can get stuck in local maxima

Hill-climbing search: 8-queens problem

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	¥لا	13	16	13	16
⊻	14	17	15	⊻	14	16	16
17	Щ,	16	18	15	⊻	15	⊻
18	14	€	15	15	14	⊻	16
14	14	13	17	12	14	12	18

- *h* = number of pairs of queens that are attacking each other, either directly or indirectly
- h = 17 for the above state

Hill-climbing search: 8-queens problem

• A local minimum with h = 1

Simulated annealing search

 Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

Properties of simulated annealing search

- One can prove: If *T* decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
- Widely used in VLSI layout, airline scheduling, etc

Local Beam Search

Why keep just one best state?

Can be used with randomization too

CS 3243 - Informed Search

Genetic algorithms

- A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states
- Produce the next generation of states by selection, crossover, and mutation

Genetic algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc.

Genetic algorithms

Search w/ non-determinism

- Fully observable, deterministic environments
 Sensors, precepts no use
- Consider erratic actuators
 - Action leads to a set of possible states
 - Plan will not be a set sequence, may have loops contingencies (if-then-else)

And-Or Search Tree

Q: what does the "LOOP" label mean here?

CS 3243 - Informed Search

Search w/ partial observations

- Conformant problem no observations
 - Useful! Solutions are independent of initial state
 - Coerce the state space into a subset of possible

Initial State:

After observing NSW:

Q: What about a really big set of initial positions?

Online search and exploration

- Many problems are offline
 - Do search for action and then perform action

Online search interleave search & execution

- Necessary for exploration problems
- New observations only possible after acting

Exploratory Search

- In an unknown state space, how to pick an action?
 - Any random action will do ... but

- Favor those that allow more exploration of the search space
 - → Graph-search to track of states previously seen

Assessing Online Agents: Competitive Ratio

CS 3243 - Informed Search

Exploration problems

- Exploration problems: agent physically in some part of the state space.
 - e.g. solving a maze using an agent with local wall sensors
 - Sensible to expand states easily accessible to agent (i.e. local states)
 - Local search algorithms apply (e.g., hill-climbing)

Assignment

- Build a game player
- Restricted by time per move (5 real-time secs)
- Interact with the game driver through the command line
 - Each turn, we will run your program, providing the board state as input.
 - Your output will be the pair of coordinates indicating the piece to move and its destination.

Homework #1 - Ataxx

- Note: we haven't yet covered all of the methods to solve this problem
- This week: start thinking about it, discuss among yourselves (remember the Facebook Rule!)
 - Play the game, review past games by others.
 - What heuristics are good to use?
 - What type of search makes sense to use?