Informed search algorithms

Chapter 4
Material

- Sections 3.5, 4.1
- Excludes memory-bounded heuristic search (3.5)
Outline

- Best-first search
- Greedy best-first search
- A* search

- Heuristics

- Local search algorithms

- Online search problems
Review: Tree search

A search strategy is defined by picking the order of node expansion

function Tree-Search(problem, fringe) returns a solution, or failure

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

 if fringe is empty then return failure

 node ← REMOVE-FRONT(fringe)

 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)

 fringe ← INSERTALL(EXPAND(node, problem), fringe)
Best-first search

- **Idea:** use an **evaluation function** $f(n)$ for each node
 - estimate of "desirability"
 - Expand most desirable unexpanded node

- **Implementation:**
 Order the nodes in fringe in decreasing order of desirability

- **Special cases:**
 - greedy best-first search
 - A* search
Romania with step costs in km
Greedy best-first search

- Evaluation function $f(n) = h(n)$ (heuristic)
- $= \text{estimate of cost from } n \text{ to goal}$

 - e.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

- Greedy best-first search expands the node that \textbf{appears} to be closest to goal
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example

Greedy Best-First demo?
Properties of greedy best-first search

- Complete? No – can get stuck in loops, e.g., Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow ...

- Time? $O(b^m)$ but a good heuristic can give dramatic improvement

- Space? $O(b^m)$: keeps all nodes in memory

- Optimal? No
A* search

- Idea: avoid expanding paths that are already expensive

- Evaluation function \(f(n) = g(n) + h(n) \)
 - \(g(n) \) = cost so far to reach \(n \)
 - \(h(n) \) = estimated cost from \(n \) to goal
 - \(f(n) \) = estimated total cost of path through \(n \) to goal
A* search example
A* search example
A* search example

CS 3243 - Informed Search
A* search example
A* search example
A* search example

A* demo?
Admissible heuristics

- A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.

- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.

- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)

- **Theorem:** If $h(n)$ is admissible, A^* using TREE-SEARCH is optimal.
Optimality of A* (proof)

Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $g(G_2) > g(G)$ since G_2 is suboptimal
- $f(G) = g(G)$ since $h(G) = 0$
- $f(G_2) > f(G)$ from above
Optimality of A* (proof)

- Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) > f(G)$ from previous
- $h(n) \leq h^*(n)$ since h is admissible
- $g(n) + h(n) \leq g(n) + h^*(n)$
- $f(n) \leq f(G)$

Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion
A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

\[h(n) \leq c(n,a,n') + h(n') \]

If h is consistent, we have

\[
\begin{align*}
 f(n') &= g(n') + h(n') \\
 &= g(n) + c(n,a,n') + h(n') \\
 &\geq g(n) + h(n) = f(n)
\end{align*}
\]

i.e., $f(n)$ is non-decreasing along any path.

Theorem: If $h(n)$ is consistent, A* using `GRAPH-SEARCH` is optimal
Optimality of A*

- A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with $f = f_i$ where $f_i < f_{i+1}$
Properties of A*

- **Complete?**
- **Time?**
- **Space?**
- **Optimal?**

- **Complete?** Yes (unless there are infinitely many nodes with $f \leq f(G)$)
- **Time?** Exponential
- **Space?** Keeps all nodes in memory
- **Optimal?** Yes
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) = \text{number of misplaced tiles}$
- $h_2(n) = \text{total Manhattan distance}$ (i.e., no. of squares from desired location of each tile)

Average solution depth?

Average branching factor?

![Start State](image1)

![Goal State](image2)
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) = \text{number of misplaced tiles}$
- $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

$h_1(S) = ? \quad 8$

$h_2(S) = ? \quad 3+1+2+2+2+3+3+2 = 18$
Dominance

- If $h_2(n) \geq h_1(n)$ for all n (both admissible) then h_2 dominates h_1
 h_2 is better for search

Typical search costs (average number of nodes expanded):

- $d=12$
 IDS = 3,644,035 nodes
 $A^*(h_1) = 227$ nodes
 $A^*(h_2) = 73$ nodes

- $d=24$
 IDS = too many nodes
 $A^*(h_1) = 39,135$ nodes
 $A^*(h_2) = 1,641$ nodes
Relaxed problems

- A problem with fewer restrictions on the actions is called a **relaxed problem**
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution
Beyond Classical Search

- Local Search
- Searching with non-determinism
- Searching with partial observations
- Online and exploratory search
Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution

- State space = set of "complete" configurations

- Find configuration satisfying constraints, e.g., n-queens

- In such cases, we can use local search algorithms keep a single "current" state, try to improve it
Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

```plaintext
function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
               neighbor, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
    neighbor ← a highest-valued successor of current
    if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
    current ← neighbor
```
Hill-climbing search

- Problem: depending on initial state, can get stuck in local maxima
Hill-climbing search: 8-queens problem

- $h = \text{number of pairs of queens that are attacking each other, either directly or indirectly}$
- $h = 17$ for the above state
Hill-climbing search: 8-queens problem

- A local minimum with $h = 1$
Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but **gradually decrease** their frequency

```plaintext
function Simulated-Annealing(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to "temperature"
local variables: current, a node
                next, a node
                T, a "temperature" controlling prob. of downward steps

current ← Make-Node(Initial-State[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← Value[next] - Value[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^ΔE/T
```

CS 3243 - Informed Search 37
Properties of simulated annealing search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1.

- Widely used in VLSI layout, airline scheduling, etc.
Local Beam Search

- Why keep just one best state?

- Can be used with randomization too

Best States (n=4)
Genetic algorithms

- A successor state is generated by combining two parent states

- Start with k randomly generated states (population)

- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)

- Evaluation function (fitness function). Higher values for better states

- Produce the next generation of states by selection, crossover, and mutation
Genetic algorithms

- Fitness function: number of non-attacking pairs of queens
 \((\text{min} = 0, \text{max} = 8 \times 7/2 = 28)\)
- \(24/(24+23+20+11) = 31\%\)
- \(23/(24+23+20+11) = 29\% \text{ etc.} \)
Genetic algorithms
Search w/ non-determinism

- Fully observable, deterministic environments
 - Sensors, precepts no use

- Consider erratic actuators
 - Action leads to a set of possible states
 - Plan will not be a set sequence, may have loops contingencies (if-then-else)
Q: what does the “LOOP” label mean here?
Search w/ partial observations

- Conformant problem – no observations
 - Useful! Solutions are independent of initial state
 - **Coerce** the state space into a subset of possible
Q: What about a really big set of initial positions?
Online search and exploration

- Many problems are **offline**
 - Do search for action and then perform action

- **Online** search interleave search & execution
 - Necessary for exploration problems
 - New observations only possible after acting
Exploratory Search

- In an unknown state space, how to pick an action?
 - Any random action will do ... but
 - Favor those that allow more exploration of the search space
 ➔ Graph-search to track of states previously seen
Assessing Online Agents: Competitive Ratio

Actual cost of path

\[
\frac{\text{Best possible cost}}{\text{Actual cost of path}} \quad (\text{if agent knew space in advance})
\]

\[
\frac{30}{20} = 1.5
\]

For cost, lower is better
Exploration problems

- Exploration problems: agent physically in some part of the state space.
 - e.g. solving a maze using an agent with local wall sensors
 - Sensible to expand states easily accessible to agent (i.e. local states)
 - Local search algorithms apply (e.g., hill-climbing)
Assignment

- Build a game player
- Restricted by time per move (5 real-time secs)

- Interact with the game driver through the command line
 - Each turn, we will run your program, providing the board state as input.
 - Your output will be the pair of coordinates indicating the piece to move and its destination.
Homework #1 - Ataxx

- Note: we haven’t yet covered all of the methods to solve this problem

- This week: start thinking about it, discuss among yourselves (remember the Facebook Rule!)
 - Play the game, review past games by others.
 - What heuristics are good to use?
 - What type of search makes sense to use?