Constraint Satisfaction Problems

Chapter 6
Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs
- Local consistency in constraint propagation
- Other topics
 - Local search for CSPs
 - The structure of problems
Constraint satisfaction problems (CSPs)

- Standard search problem:
 - state is a “black box” – any data structure that supports successor function, heuristic function, and goal test

- CSP:
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D_i = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors

- e.g., $WA \neq NT$, or (WA, NT) in $\{(\text{red, green}), (\text{red, blue}), (\text{green, red}), (\text{green, blue}), (\text{blue, red}), (\text{blue, green})\}$
Example: Map-Coloring

- Solutions are complete and consistent assignments, e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green
Constraint graph

- **Binary CSP:** each constraint relates two variables

- **Constraint graph:** nodes are variables, arcs are constraints
Cryptarithmetic

- TWO + TWO = FOUR
- SEND + MORE = MONEY
- GO * FLY = KITES
- HAPPY + HAPPY + HAPPY + DAYS = AHEAD
- ALL + COWS + EAT = GRASS
Job shop scheduling

- Assembling a car, by breaking it down into 15 tasks:
 - E.g., Axles, Wheels, Nuts, Caps, Inspect

- Precedence Constraints
 - $Axle_F + 10 \leq Wheel_{RF}$

- Disjunctive Constraints
 - $(Axle_F + 10 \leq Axle_B)$ or $(Axle_B + 10 \leq Axle_F)$
Varieties on the CSP formalism

- **Discrete variables**
 - finite domains:
 - n variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
 - infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $\text{StartJob}_1 + 5 \leq \text{StartJob}_3$

- **Continuous variables**
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by linear programming
Varieties of constraints

- **Unary** constraints involve a single variable,
 - e.g., $SA \neq \text{green}$

- **Binary** constraints involve pairs of variables,
 - e.g., $SA \neq WA$

- **Higher-order** constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints
Example: Cryptarithmetic

- **Variables**: \(F, T, U, W, R, O \) \(X_1, X_2, X_3 \)
- **Domains**: \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
- **Constraints**: \(\text{Alldiff } (F, T, U, W, R, O) \)

\[
\begin{align*}
\text{TWO} + \text{TWO} &= \text{FOUR} \\
O + O &= R + 10 \cdot X_1 \\
X_1 + W + W &= U + 10 \cdot X_2 \\
X_2 + T + T &= O + 10 \cdot X_3 \\
X_3 &= F, T \neq 0, F \neq 0
\end{align*}
\]
Example: Sudoku

- Variables: up to 81 variables
- Domains: \{0,1,2,3,4,5,6,7,8,9\}
- Constraints: \textit{Alldiff (...) \times 27 (columns, rows, boxes)}

\begin{array}{|c|c|c|}
\hline
3 & 2 & 6 \\
\hline
9 & 3 & 5 & 1 \\
\hline
1 & 8 & 6 & 4 \\
\hline
8 & 1 & 2 & 9 \\
\hline
6 & 7 & 8 & 2 \\
\hline
2 & 6 & 9 & 5 \\
\hline
8 & 2 & 3 & 9 \\
\hline
5 & 1 & 3 \\
\hline
\end{array}
Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling

- Many real-world problems involve real-valued variables
- Many problems also feature preferences (I don’t want to on Monday morning)
Let's start with the straightforward approach, then fix it.

States are defined by the values assigned so far:

- **Initial state**: the empty assignment \{\}.
- **Successor function**: assign a value to an unassigned variable that does not conflict with current assignment.
 - fail if no legal assignments.
- **Goal test**: the current assignment is complete.

1. This is the same for all CSPs.
2. Every solution appears at depth \(n\) with \(n\) variables.
 - use depth-first search.
3. Path is irrelevant, so can also use complete-state formulation.
CSP Search tree size

\[b = (n - \ell)d \text{ at depth } \ell, \text{ hence } n! \cdot d^n \text{ leaves} \]

Variables: A,B,C,D
Domains: 1,2,3

Depth 1: 4 variables x 3 domains
= 12 states

Depth 2: 3 variables x 3 domains
= 9 states

Depth 3: 2 variables x 3 domains
= 6 states

Depth 4: 1 variable x 3 domains
= 3 states (leaf level)
Backtracking search

- Variable assignments are commutative, i.e.,
 \[\text{WA = red then NT = green} \] same as \[\text{NT = green then WA = red} \]

- Only need to consider assignments to a \textit{single} variable at each node
 - Fix an order in which we’ll examine the variables
 \[\rightarrow b = d \text{ and there are } d^n \text{ leaves} \]

- Depth-first search for CSPs with single-variable assignments is called \textit{backtracking} search
 - Is the basic uninformed algorithm for CSPs
 - Can solve \(n \)-queens for \(n \approx 25 \)
Backtracking search

```plaintext
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
    return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure
    if assignment is complete then return assignment
    var ← SELECT-UNASSIGNED-VARIABLE(Variables[csp], assignment, csp)
    for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
        if value is consistent with assignment according to Constraints[csp] then
            add { var = value } to assignment
            result ← RECURSIVE-BACKTRACKING(assignment, csp)
            if result ≠ failure then return result
            remove { var = value } from assignment
        return failure
```
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Exercise - paint the town!

- Districts across corners can be colored using the same color.
How would you color this map?

Consider its constraints?
Can you do better than blind search?
Improving backtracking efficiency

- **General-purpose** methods can yield significant gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
Most constrained variable:
choose the variable with the fewest legal values

- a.k.a. minimum remaining values (MRV) heuristic
Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables
Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

- Combining these heuristics makes 10000 queens feasible
Forward checking

Idea:
- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Forward checking

Idea:
- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Forward checking

Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Constraint propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!

- **Constraint propagation** repeatedly enforces constraints locally
Inference in CSPs

- Besides searching, in CSPs we can try to infer illegal values for variables by performing constraint propagation
 - Node consistency for unary constraints
 - Arc consistency for binary constraints
 - ...

- Can interleave with searching or do as preprocessing
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

 for every value x of X there is some allowed y
More on arc consistency

- Arc consistency is based on a very simple concept
 - if we can look at just one constraint and see that \(x=v \) is impossible ...
 - obviously we can remove the value \(x=v \) from consideration
- How do we know a value is impossible?
- If the constraint provides *no support* for the value
- e.g. if \(D_x = \{1,4,5\} \) and \(D_y = \{1,2,3\} \)
 - then the constraint \(x > y \) provides no support for \(x=1 \)
 - we can remove \(x=1 \) from \(D_x \)
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

- Arcs are directed, a binary constraint becomes two arcs
- NSW \Rightarrow SA arc originally not consistent, is consistent after deleting blue
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff
 - for every value x of X there is some allowed y

- If X loses a value, neighbors of X need to be (re)checked
Arc consistency propagation

- When we remove a value from D_x, we may get new removals because of it
- E.g. $D_x = \{1, 4, 5\}$, $D_y = \{1, 2, 3\}$, $D_z = \{2, 3, 4, 5\}$
 - $x > y$, $z > x$
 - As before we can remove 1 from D_x, so $D_x = \{4, 5\}$
 - But now there is no support for $D_z = 2, 3, 4$
 - So we can remove those values, $D_z = \{5\}$, so $z=5$
 - Before AC applied to $y-x$, we could not change D_z
- This can cause a chain reaction
Alldiff from box makes domain of red square \{3,4,5,6,9\}
Column constraints reduces domain to \{4\}
Then consider purple square. Original column and box constraints yield domain of \{1,4\}. Red square forces \{1\}
Then final blue box must by \{7\} as column already has eight values.
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff
 - for every value x of X there is some allowed y
- If X loses a value, neighbors of X need to be (re)checked
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
Arc consistency algorithm AC-3

function AC-3(\textit{csp}) \textbf{return}s the CSP, possibly with reduced domains
\textbf{inputs:} \textit{csp}, a binary CSP with variables \{\(X_1, X_2, \ldots, X_n\)\}
\textbf{local variables:} \textit{queue}, a queue of arcs, initially all the arcs in \textit{csp}

\textbf{while} \textit{queue} is not empty \textbf{do}
\hspace{1em} (\(X_i, X_j\)) \leftarrow \textsc{Remove-First}(\textit{queue})
\hspace{1em} \textbf{if} \textsc{RM-Inconsistent-Values}(\(X_i, X_j\)) \textbf{then}
\hspace{2em} \textbf{for} each \(X_k\) in \textsc{Neighbors}[\(X_i\)] \textbf{do}
\hspace{3em} add (\(X_k, X_i\)) to \textit{queue}

\textbf{function} \textsc{RM-Inconsistent-Values}(\(X_i, X_j\)) \textbf{returns} true iff remove a value
\hspace{1em} removed \leftarrow false
\hspace{1em} \textbf{for} each \(x\) in \textsc{Domain}[\(X_i\)] \textbf{do}
\hspace{2em} \textbf{if} no value \(y\) in \textsc{Domain}[\(X_j\)] allows (\(x, y\)) to satisfy constraint(\(X_i, X_j\))
\hspace{3em} then delete \(x\) from \textsc{Domain}[\(X_i\)]; removed \leftarrow true
\hspace{1em} \textbf{return} removed

\textbf{Time complexity:} \(O(n^2d^3)\)
CSP has n^2 directed arcs

Each arc X_i, X_j has d possible values. For each value we can reinsert the neighboring arc X_k, X_i at most d times because X_i has d values

Checking an arc requires at most d^2 time

$O(n^2 \times d \times d^2) = O(n^2d^3)$
Maintaining AC (MAC)

- We can use AC in search
- i.e. search proceeds as follows:
 - establish AC at the root
 - when AC3 terminates, choose a new variable/value
 - re-establish AC given the new variable choice (i.e. maintain AC)
 - repeat;
 - backtrack if AC gives domain wipe out
- The hard part of implementation is undoing effects of AC
Special kinds of Consistency

- Some kinds of constraint lend themselves to special kinds of arc-consistency
- Consider the all-different constraint
 - the named variables must all take different values
 - not a binary constraint
 - can be expressed as $\frac{n(n-1)}{2}$ not-equals constraints
- We can apply (e.g.) AC3 as usual
- But there is a much better option
All Different

- Suppose $D_x = \{2,3\} = D_y$, $D_z = \{1,2,3\}$
- All the constraints $x \neq y$, $y \neq z$, $z \neq x$ are all arc consistent
 - e.g. $x=2$ supports the value $z = 3$
- The single ternary constraint $\text{AllDifferent}(x,y,z)$ is not!
 - We must set $z = 1$
- A special purpose algorithm exists for All-Different to establish GAC in efficient time
 - Special purpose propagation algorithms are vital
K-consistency

- Arc Consistency (2-consistency) can be extended to k-consistency
- 3-consistency (path consistency): any pair of adjacent variables can always be extended to a third neighbor.
 - Catches problem with D_x, D_y and D_z, as assignment of $D_z = 2$ and $D_x = 3$ will lead to domain wipe out.
 - But is expensive, exponential time
- n-consistency means the problem is solvable in linear time
 - As any selection of variables would lead to a solution
- In general, need to strike a balance between consistency and search.
 - This is usually done by experimentation.
Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned

- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values

- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with \(h(n) = \) total number of violated constraints
Example: 4-Queens

- **States**: 4 queens in 4 columns ($4^4 = 256$ states)
- **Actions**: move queen in column
- **Goal test**: no attacks
- **Evaluation**: $h(n) = \text{number of attacks}$

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)
function MIN-CONFLICTS(csp, max_steps) returns a solution or failure

inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up

current ← an initial complete assignment for csp
for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosen, conflicted variable from VARIABLES[csp]
 value ← the value v for var that minimizes CONFLICTS(var, v, current, csp)
 set var = value in current
return failure

Figure 5.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The initial state may be chosen randomly or by a greedy assignment process that chooses a minimal-conflict value for each variable in turn. The CONFLICTS function counts the number of constraints violated by a particular value, given the rest of the current assignment.
The structure of problems

- Independent subproblems = unconnected components
- (Return to this point after midterm)

- Tree based CSPs can be solved by topological sort
 - Pick a root and “dangle” other nodes by it
 - Will have n-1 arcs, can make arc consistent in $O(n)$
 - $O(nd^2)$
Reducing CSP Trees

- Reduce other problems to trees, to use Tree-CSP-Solver, which yields solutions without backtracking. Aim to reduce to many small subproblems.

- Two approaches:
 - Remove nodes from CSP graph to make a tree
 - Assign values to removed nodes and remove used domains from tree nodes
 - Tree decomposition: make tree CSP with nodes as subproblems
Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values

- Backtracking = depth-first search with one variable assigned per node

- Variable ordering and value selection heuristics help significantly

- Forward checking prevents assignments that guarantee later failure

- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

- Iterative min-conflicts is usually effective in practice
Midterm test

- 4 or 5 questions, first hour of class (be on time!)
- Topics to be covered (**CSP is not on the midterm**):
 - Chapter 2 – Agents
 - Chapter 3 – Uninformed Search
 - Chapter 3 and 4 – Informed Search
 - Not including the parts of 3.5.3-4 (memory-bounded heuristic search), 3.6.3-4 (other heuristics) and 4.5 (online search)
 - Chapter 5 – Adversarial Search
 - Not including 5.6 (Partially observable games)