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Constraint Satisfaction 
Problems 

Chapter 6 
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Outline 

  Constraint Satisfaction Problems (CSP) 
  Backtracking search for CSPs 
  Local consistency in constraint propagation 
  Other topics 

  Local search for CSPs 
  The structure of problems 
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Constraint satisfaction problems (CSPs) 

  Standard search problem: 
  state is a “black box” – any data structure that supports successor 

function, heuristic function, and goal test 

  CSP: 
  state is defined by variables Xi with values from domain Di 
  goal test is a set of constraints specifying allowable combinations of 

values for subsets of variables 

  Simple example of a formal representation language 
  Allows useful general-purpose algorithms with more power 

than standard search algorithms 
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Example: Map-Coloring 

  Variables: WA, NT, Q, NSW, V, SA, T  
  Domains: Di = {red,green,blue} 
  Constraints: adjacent regions must have different colors 

  e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), 
(green,blue),(blue,red),(blue,green)} 
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Example: Map-Coloring 

  Solutions are complete and consistent assignments, 
e.g., WA = red, NT = green,Q = red, NSW = 
green, V = red, SA = blue, T = green 
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Constraint graph 

  Binary CSP: each constraint relates two variables 

  Constraint graph: nodes are variables, arcs are constraints 



Cryptarithmetic 

  TWO + TWO = FOUR 
  SEND + MORE = MONEY 
  GO * FLY = KITES 
  HAPPY + HAPPY + HAPPY + DAYS =  

AHEAD 
  ALL + COWS + EAT = GRASS 
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Job shop scheduling 

  Assembling a car, by breaking it down into 
15 tasks:  
  E.g., Axles, Wheels, Nuts, Caps, Inspect 

  Precedence Constraints 
  AxleF + 10 ≤ WheelRF 

  Disjunctive Constraints 
  (AxleF + 10 ≤ AxleB) or (AxleB + 10 ≤ AxleF) 
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Varieties on the CSP formalism 

  Discrete variables 
  finite domains: 

  n variables, domain size d  O(dn) complete assignments 
  e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete) 

  infinite domains: 
  integers, strings, etc. 
  e.g., job scheduling, variables are start/end days for each job 
  need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3 

  Continuous variables 
  e.g., start/end times for Hubble Space Telescope observations 
  linear constraints solvable in polynomial time by linear programming 
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Varieties of constraints 

  Unary constraints involve a single variable,  
  e.g., SA ≠ green 

  Binary constraints involve pairs of variables, 
  e.g., SA ≠ WA 

  Higher-order constraints involve 3 or more 
variables, 
  e.g., cryptarithmetic column constraints 
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Example: Cryptarithmetic 

  Variables: F T U W  
               R O X1 X2 X3 

  Domains: {0,1,2,3,4,5,6,7,8,9} 
  Constraints: Alldiff (F,T,U,W,R,O) 

  O + O = R + 10 · X1 
  X1 + W + W = U + 10 · X2 
  X2 + T + T = O + 10 · X3 
  X3 = F, T ≠ 0, F ≠ 0 



Example: Sudoku 
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  Variables:  up to 81 variables 
  Domains: {0,1,2,3,4,5,6,7,8,9} 
  Constraints: Alldiff (…) * 27 (columns, rows, boxes) 
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Real-world CSPs 

  Assignment problems 
  e.g., who teaches what class 

  Timetabling problems 
  e.g., which class is offered when and where? 

  Transportation scheduling 
  Factory scheduling 

  Many real-world problems involve real-valued 
variables 

  Many problems also feature preferences  
(I don’t want to on Monday morning) 
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Standard search formulation (incremental) 

Let's start with the straightforward approach, then fix it 

States are defined by the values assigned so far 

  Initial state: the empty assignment { } 
  Successor function: assign a value to an unassigned variable that does 

not conflict with current assignment 
 fail if no legal assignments 

  Goal test: the current assignment is complete 

1.  This is the same for all CSPs 
2.  Every solution appears at depth n with n variables 

 use depth-first search 
3.  Path is irrelevant, so can also use complete-state formulation 
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CSP Search tree size 

b = (n - l )d at depth l, hence n! · dn leaves 
{} Variables: A,B,C,D 

Domains: 1,2,3 

A=1 A=2 D=3 … B=1 … 

A=1, 
B=1 

A=1, 
B=2 

A=1, 
C=1 

A=1, 
D=3 … … 

Depth 1: 4 variables x 3 domains  
= 12 states 

Depth 2: 3 variables x 3 domains  
= 9 states 

Depth 3: 2 variables x 3 domains  
= 6 states 

Depth 4: 1 variable x 3 domains  
= 3 states (leaf level) 
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Backtracking search 

  Variable assignments are commutative, i.e., 
[ WA = red then NT = green ] same as [ NT = green then WA 

= red ] 

  Only need to consider assignments to a single variable at 
each node 
  Fix an order in which we’ll examine the variables 
 b = d and there are dn leaves 

  Depth-first search for CSPs with single-variable assignments 
is called backtracking search 

  Is the basic uninformed algorithm for CSPs 
  Can solve n-queens for n ≈ 25 
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Backtracking search 
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Backtracking example 
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Backtracking example 
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Backtracking example 
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Backtracking example 
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Exercise - paint the town! 

  Districts across corners can be colored using the same color. 



CS 3243 - Constraint Satisfaction 23 

Constraint Graph 
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How would you  
color this map? 

Consider its constraints? 
Can you do better than blind search? 
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Improving backtracking efficiency 

  General-purpose methods can yield 
significant gains in speed: 

  Which variable should be assigned next? 
  In what order should its values be tried? 
  Can we detect inevitable failure early? 
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Most constrained variable 

  Most constrained variable: 
choose the variable with the fewest legal values 

  a.k.a. minimum remaining values (MRV) 
heuristic 
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Most constraining variable 

  Tie-breaker among most constrained 
variables 

  Most constraining variable: 
  choose the variable with the most constraints on 

remaining variables 
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Least constraining value 

  Given a variable, choose the least 
constraining value: 
  the one that rules out the fewest values in the 

remaining variables 

  Combining these heuristics makes 1000 
queens feasible 
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Forward checking 

  Idea:  
  Keep track of remaining legal values for unassigned variables 
  Terminate search when any variable has no legal values 
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Forward checking 
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Forward checking 

  Idea:  
  Keep track of remaining legal values for unassigned variables 
  Terminate search when any variable has no legal values 
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Constraint propagation 

  Forward checking propagates information from assigned to 
unassigned variables, but doesn't provide early detection for 
all failures: 

  NT and SA cannot both be blue! 
  Constraint propagation repeatedly enforces constraints 

locally 



Inference in CSPs 

  Besides searching, in 
CSPs we can try to 
infer illegal values for 
variables by performing 
constraint propagation 

  Node consistency for 
unary constraints 

  Arc consistency for 
binary constraints 

  … 

  Can interleave with 
searching or do as 
preprocessing 
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Searching 

Constraint  
Propagation 
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Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X there is some allowed y 
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More on arc consistency 

  Arc consistency is based on a very simple concept 
  if we can look at just one constraint and see that x=v is 

impossible … 
  obviously we can remove the value x=v from 

consideration 

  How do we know a value is impossible? 
  If the constraint provides no support for the value 
  e.g. if Dx = {1,4,5} and Dy = {1, 2, 3} 

  then the constraint x > y provides no support for x=1 
  we can remove x=1 from Dx 
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Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X there is some allowed y 

  Arcs are directed, a binary constraint becomes two arcs   
  NSW ⇒ SA arc originally not consistent, is consistent after 

deleting blue 



CS 3243 - Constraint Satisfaction 37 

Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X there is some allowed y 

  If X loses a value, neighbors of X need to be (re)checked 
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Arc consistency propagation 

  When we remove a value from Dx, we may get new 
removals because of it 

  E.g. Dx = {1,4,5}, Dy = {1, 2, 3}, Dz= {2, 3, 4, 5} 
  x > y,  z > x 
  As before we can remove 1 from Dx, so Dx = {4,5} 
  But now there is no support for Dz = 2,3,4 
  So we can remove those values, Dz = {5}, so z=5 
  Before AC applied to y-x, we could not change Dz 

  This can cause a chain reaction 



Sudoku Chain Reaction 
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  Alldiff from box makes domain of red square {3,4,5,6,9} 
Column constraints reduces domain to {4} 

  Then consider purple square.  Original column and box 
constraints yield domain of {1,4}.  Red square forces {1} 

  Then final blue box must by {7} as column already has 
eight values. 
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Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X there is some allowed y 

  If X loses a value, neighbors of X need to be (re)checked 
  Arc consistency detects failure earlier than forward checking 
  Can be run as a preprocessor or after each assignment 
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Arc consistency algorithm AC-3 

  Time complexity: O(n2d3) 
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Time complexity of AC-3 

  CSP has n2 directed  
arcs 

  Each arc Xi,Xj has d 
possible values.  
For each value we  
can reinsert the  
neighboring arc  
Xk,Xi at most d times because Xi has d values 

  Checking an arc requires at most d2 time 

  O(n2 * d * d2) = O(n2d3) 



CS 3243 - Constraint Satisfaction 43 

Maintaining AC (MAC) 

  We can use AC in search 
  i.e. search proceeds as follows: 

  establish AC at the root 
  when AC3 terminates, choose a new variable/value 
  re-establish AC given the new variable choice (i.e. 

maintain AC) 
  repeat;  
  backtrack if AC gives domain wipe out 

  The hard part of implementation is undoing effects 
of AC 
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Special kinds of Consistency 

  Some kinds of constraint lend themselves to special 
kinds of arc-consistency 

  Consider the all-different constraint 
  the named variables must all take different values 
  not a binary constraint 
  can be expressed as n(n-1)/2 not-equals constraints 

  We can apply (e.g.) AC3 as usual 
  But there is a much better option  
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All Different 

  Suppose Dx = {2,3} = Dy, Dz = {1,2,3} 
  All the constraints x≠y, y≠z, z≠x are all arc 

consistent 
  e.g. x=2 supports the value z = 3 

  The single ternary constraint AllDifferent(x,y,z) is 
not! 
  We must set z = 1 

  A special purpose algorithm exists for All-Different 
to establish GAC in efficient time 
  Special purpose propagation algorithms are vital 
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K-consistency 

  Arc Consistency (2-consistency) can be extended to k-
consistency 

  3-consistency (path consistency): any pair of adjacent 
variables can always be extended to a third neighbor. 
  Catches problem with Dx, Dy and Dz, as assignment of Dz = 2 and 

Dx = 3 will lead to domain wipe out. 
  But is expensive, exponential time 

  n-consistency means the problem is solvable in linear time 
  As any selection of variables would lead to a solution 

  In general, need to strike a balance between consistency 
and search. 
  This is usually done by experimentation. 
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Local search for CSPs 

  Hill-climbing, simulated annealing typically work with 
"complete" states, i.e., all variables assigned 

  To apply to CSPs: 
  allow states with unsatisfied constraints 
  operators reassign variable values 

  Variable selection: randomly select any conflicted variable 
  Value selection by min-conflicts heuristic: 

  choose value that violates the fewest constraints 
  i.e., hill-climb with h(n) = total number of violated constraints 
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Example: 4-Queens 

  States: 4 queens in 4 columns (44 = 256 states) 
  Actions: move queen in column 
  Goal test: no attacks 
  Evaluation: h(n) = number of attacks 

  Given random initial state, can solve n-queens in almost 
constant time for arbitrary n with high probability (e.g., n = 
10,000,000) 



Min-conflicts 
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The structure of problems 

  Independent subproblems = unconnected components 
  (Return to this point after midterm) 

  Tree based CSPs can be solved by topological sort 
  Pick a root and “dangle” other nodes by it 
  Will have n-1 arcs, can make arc consistent in O(n) 
  O(nd2) 
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Reducing CSP Trees 

  Reduce other problems to trees, to use Tree-CSP-Solver, which yields 
solutions without backtracking.  Aim to reduce to many small 
subproblems. 

  Two approaches: 
  Remove nodes from CSP graph to make a tree 

  Assign values to removed nodes and remove used domains from tree nodes 
  Tree decomposition: make tree CSP with nodes as subproblems 
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Summary 

  CSPs are a special kind of problem: 
  states defined by values of a fixed set of variables 
  goal test defined by constraints on variable values 

  Backtracking = depth-first search with one variable assigned per node 

  Variable ordering and value selection heuristics help significantly 

  Forward checking prevents assignments that guarantee later failure 

  Constraint propagation (e.g., arc consistency) does additional work to 
constrain values and detect inconsistencies 

  Iterative min-conflicts is usually effective in practice 
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Midterm test  

  4 or 5 questions, first hour of class (be on time!) 
  Topics to be covered (CSP is not on the midterm): 

  Chapter 2 – Agents 
  Chapter 3 – Uninformed Search 
  Chapter 3 and 4 – Informed Search 

  Not including the parts of 3.5.3-4 (memory-bounded heuristic 
search), 3.6.3-4 (other heuristics) and 4.5 (online search) 

  Chapter 5 – Adversarial Search 
  Not including 5.6 (Partially observable games) 


