
CS 3243 - Constraint Satisfaction 1

Constraint Satisfaction
Problems

Chapter 6

CS 3243 - Constraint Satisfaction 2

Outline

  Constraint Satisfaction Problems (CSP)
  Backtracking search for CSPs
  Local consistency in constraint propagation
  Other topics

  Local search for CSPs
  The structure of problems

CS 3243 - Constraint Satisfaction 3

Constraint satisfaction problems (CSPs)

  Standard search problem:
  state is a “black box” – any data structure that supports successor

function, heuristic function, and goal test

  CSP:
  state is defined by variables Xi with values from domain Di
  goal test is a set of constraints specifying allowable combinations of

values for subsets of variables

  Simple example of a formal representation language
  Allows useful general-purpose algorithms with more power

than standard search algorithms

CS 3243 - Constraint Satisfaction 4

Example: Map-Coloring

  Variables: WA, NT, Q, NSW, V, SA, T
  Domains: Di = {red,green,blue}
  Constraints: adjacent regions must have different colors

  e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

CS 3243 - Constraint Satisfaction 5

Example: Map-Coloring

  Solutions are complete and consistent assignments,
e.g., WA = red, NT = green,Q = red, NSW =
green, V = red, SA = blue, T = green

CS 3243 - Constraint Satisfaction 6

Constraint graph

  Binary CSP: each constraint relates two variables

  Constraint graph: nodes are variables, arcs are constraints

Cryptarithmetic

  TWO + TWO = FOUR
  SEND + MORE = MONEY
  GO * FLY = KITES
  HAPPY + HAPPY + HAPPY + DAYS =

AHEAD
  ALL + COWS + EAT = GRASS

CS 3243 - Constraint Satisfaction 7

Job shop scheduling

  Assembling a car, by breaking it down into
15 tasks:
  E.g., Axles, Wheels, Nuts, Caps, Inspect

  Precedence Constraints
  AxleF + 10 ≤ WheelRF

  Disjunctive Constraints
  (AxleF + 10 ≤ AxleB) or (AxleB + 10 ≤ AxleF)

CS 3243 - Constraint Satisfaction 8

CS 3243 - Constraint Satisfaction 9

Varieties on the CSP formalism

  Discrete variables
  finite domains:

  n variables, domain size d O(dn) complete assignments
  e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

  infinite domains:
  integers, strings, etc.
  e.g., job scheduling, variables are start/end days for each job
  need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

  Continuous variables
  e.g., start/end times for Hubble Space Telescope observations
  linear constraints solvable in polynomial time by linear programming

CS 3243 - Constraint Satisfaction 10

Varieties of constraints

  Unary constraints involve a single variable,
  e.g., SA ≠ green

  Binary constraints involve pairs of variables,
  e.g., SA ≠ WA

  Higher-order constraints involve 3 or more
variables,
  e.g., cryptarithmetic column constraints

CS 3243 - Constraint Satisfaction 11

Example: Cryptarithmetic

  Variables: F T U W
 R O X1 X2 X3

  Domains: {0,1,2,3,4,5,6,7,8,9}
  Constraints: Alldiff (F,T,U,W,R,O)

  O + O = R + 10 · X1
  X1 + W + W = U + 10 · X2
  X2 + T + T = O + 10 · X3
  X3 = F, T ≠ 0, F ≠ 0

Example: Sudoku

CS 3243 - Constraint Satisfaction 12

  Variables: up to 81 variables
  Domains: {0,1,2,3,4,5,6,7,8,9}
  Constraints: Alldiff (…) * 27 (columns, rows, boxes)

3

9

1

2

3 5

8 6

6

1

4

8

6

1 2

7 8

9

8

2

2

8

5

6 9

2 3

1

5

9

3

CS 3243 - Constraint Satisfaction 13

Real-world CSPs

  Assignment problems
  e.g., who teaches what class

  Timetabling problems
  e.g., which class is offered when and where?

  Transportation scheduling
  Factory scheduling

  Many real-world problems involve real-valued
variables

  Many problems also feature preferences
(I don’t want to on Monday morning)

CS 3243 - Constraint Satisfaction 14

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

  Initial state: the empty assignment { }
  Successor function: assign a value to an unassigned variable that does

not conflict with current assignment
 fail if no legal assignments

  Goal test: the current assignment is complete

1.  This is the same for all CSPs
2.  Every solution appears at depth n with n variables

 use depth-first search
3.  Path is irrelevant, so can also use complete-state formulation

CS 3243 - Constraint Satisfaction 15

CSP Search tree size

b = (n - l)d at depth l, hence n! · dn leaves
{} Variables: A,B,C,D

Domains: 1,2,3

A=1 A=2 D=3 … B=1 …

A=1,
B=1

A=1,
B=2

A=1,
C=1

A=1,
D=3 … …

Depth 1: 4 variables x 3 domains
= 12 states

Depth 2: 3 variables x 3 domains
= 9 states

Depth 3: 2 variables x 3 domains
= 6 states

Depth 4: 1 variable x 3 domains
= 3 states (leaf level)

CS 3243 - Constraint Satisfaction 16

Backtracking search

  Variable assignments are commutative, i.e.,
[WA = red then NT = green] same as [NT = green then WA

= red]

  Only need to consider assignments to a single variable at
each node
  Fix an order in which we’ll examine the variables
 b = d and there are dn leaves

  Depth-first search for CSPs with single-variable assignments
is called backtracking search

  Is the basic uninformed algorithm for CSPs
  Can solve n-queens for n ≈ 25

CS 3243 - Constraint Satisfaction 17

Backtracking search

CS 3243 - Constraint Satisfaction 18

Backtracking example

CS 3243 - Constraint Satisfaction 19

Backtracking example

CS 3243 - Constraint Satisfaction 20

Backtracking example

CS 3243 - Constraint Satisfaction 21

Backtracking example

CS 3243 - Constraint Satisfaction 22

Exercise - paint the town!

  Districts across corners can be colored using the same color.

CS 3243 - Constraint Satisfaction 23

Constraint Graph

BCN

WN

TOH

CSW

BMG

ST

EC

CPR

How would you
color this map?

Consider its constraints?
Can you do better than blind search?

CS 3243 - Constraint Satisfaction 24

Improving backtracking efficiency

  General-purpose methods can yield
significant gains in speed:

  Which variable should be assigned next?
  In what order should its values be tried?
  Can we detect inevitable failure early?

CS 3243 - Constraint Satisfaction 25

Most constrained variable

  Most constrained variable:
choose the variable with the fewest legal values

  a.k.a. minimum remaining values (MRV)
heuristic

CS 3243 - Constraint Satisfaction 26

Most constraining variable

  Tie-breaker among most constrained
variables

  Most constraining variable:
  choose the variable with the most constraints on

remaining variables

CS 3243 - Constraint Satisfaction 27

Least constraining value

  Given a variable, choose the least
constraining value:
  the one that rules out the fewest values in the

remaining variables

  Combining these heuristics makes 1000
queens feasible

CS 3243 - Constraint Satisfaction 28

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

CS 3243 - Constraint Satisfaction 29

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

CS 3243 - Constraint Satisfaction 30

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

CS 3243 - Constraint Satisfaction 31

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

CS 3243 - Constraint Satisfaction 32

Constraint propagation

  Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for
all failures:

  NT and SA cannot both be blue!
  Constraint propagation repeatedly enforces constraints

locally

Inference in CSPs

  Besides searching, in
CSPs we can try to
infer illegal values for
variables by performing
constraint propagation

  Node consistency for
unary constraints

  Arc consistency for
binary constraints

  …

  Can interleave with
searching or do as
preprocessing

CS 3243 - Constraint Satisfaction 33

Searching

Constraint
Propagation

CS 3243 - Constraint Satisfaction 34

Arc consistency

  Simplest form of propagation makes each arc consistent
  X Y is consistent iff

for every value x of X there is some allowed y

CS 3243 - Constraint Satisfaction 35

More on arc consistency

  Arc consistency is based on a very simple concept
  if we can look at just one constraint and see that x=v is

impossible …
  obviously we can remove the value x=v from

consideration

  How do we know a value is impossible?
  If the constraint provides no support for the value
  e.g. if Dx = {1,4,5} and Dy = {1, 2, 3}

  then the constraint x > y provides no support for x=1
  we can remove x=1 from Dx

CS 3243 - Constraint Satisfaction 36

Arc consistency

  Simplest form of propagation makes each arc consistent
  X Y is consistent iff

for every value x of X there is some allowed y

  Arcs are directed, a binary constraint becomes two arcs
  NSW ⇒ SA arc originally not consistent, is consistent after

deleting blue

CS 3243 - Constraint Satisfaction 37

Arc consistency

  Simplest form of propagation makes each arc consistent
  X Y is consistent iff

for every value x of X there is some allowed y

  If X loses a value, neighbors of X need to be (re)checked

CS 3243 - Constraint Satisfaction 38

Arc consistency propagation

  When we remove a value from Dx, we may get new
removals because of it

  E.g. Dx = {1,4,5}, Dy = {1, 2, 3}, Dz= {2, 3, 4, 5}
  x > y, z > x
  As before we can remove 1 from Dx, so Dx = {4,5}
  But now there is no support for Dz = 2,3,4
  So we can remove those values, Dz = {5}, so z=5
  Before AC applied to y-x, we could not change Dz

  This can cause a chain reaction

Sudoku Chain Reaction

CS 3243 - Constraint Satisfaction 39

  Alldiff from box makes domain of red square {3,4,5,6,9}
Column constraints reduces domain to {4}

  Then consider purple square. Original column and box
constraints yield domain of {1,4}. Red square forces {1}

  Then final blue box must by {7} as column already has
eight values.

3

9

1

2

3 5

8 6

6

1

4

8

6

1 2

7 8

9

8

2

2

8

5

6 9

2 3

1

5

9

3

CS 3243 - Constraint Satisfaction 40

Arc consistency

  Simplest form of propagation makes each arc consistent
  X Y is consistent iff

for every value x of X there is some allowed y

  If X loses a value, neighbors of X need to be (re)checked
  Arc consistency detects failure earlier than forward checking
  Can be run as a preprocessor or after each assignment

CS 3243 - Constraint Satisfaction 41

Arc consistency algorithm AC-3

  Time complexity: O(n2d3)

CS 3243 - Constraint Satisfaction 42

Time complexity of AC-3

  CSP has n2 directed
arcs

  Each arc Xi,Xj has d
possible values.
For each value we
can reinsert the
neighboring arc
Xk,Xi at most d times because Xi has d values

  Checking an arc requires at most d2 time

  O(n2 * d * d2) = O(n2d3)

CS 3243 - Constraint Satisfaction 43

Maintaining AC (MAC)

  We can use AC in search
  i.e. search proceeds as follows:

  establish AC at the root
  when AC3 terminates, choose a new variable/value
  re-establish AC given the new variable choice (i.e.

maintain AC)
  repeat;
  backtrack if AC gives domain wipe out

  The hard part of implementation is undoing effects
of AC

CS 3243 - Constraint Satisfaction 44

Special kinds of Consistency

  Some kinds of constraint lend themselves to special
kinds of arc-consistency

  Consider the all-different constraint
  the named variables must all take different values
  not a binary constraint
  can be expressed as n(n-1)/2 not-equals constraints

  We can apply (e.g.) AC3 as usual
  But there is a much better option

CS 3243 - Constraint Satisfaction 45

All Different

  Suppose Dx = {2,3} = Dy, Dz = {1,2,3}
  All the constraints x≠y, y≠z, z≠x are all arc

consistent
  e.g. x=2 supports the value z = 3

  The single ternary constraint AllDifferent(x,y,z) is
not!
  We must set z = 1

  A special purpose algorithm exists for All-Different
to establish GAC in efficient time
  Special purpose propagation algorithms are vital

CS 3243 - Constraint Satisfaction 46

K-consistency

  Arc Consistency (2-consistency) can be extended to k-
consistency

  3-consistency (path consistency): any pair of adjacent
variables can always be extended to a third neighbor.
  Catches problem with Dx, Dy and Dz, as assignment of Dz = 2 and

Dx = 3 will lead to domain wipe out.
  But is expensive, exponential time

  n-consistency means the problem is solvable in linear time
  As any selection of variables would lead to a solution

  In general, need to strike a balance between consistency
and search.
  This is usually done by experimentation.

CS 3243 - Constraint Satisfaction 47

Local search for CSPs

  Hill-climbing, simulated annealing typically work with
"complete" states, i.e., all variables assigned

  To apply to CSPs:
  allow states with unsatisfied constraints
  operators reassign variable values

  Variable selection: randomly select any conflicted variable
  Value selection by min-conflicts heuristic:

  choose value that violates the fewest constraints
  i.e., hill-climb with h(n) = total number of violated constraints

CS 3243 - Constraint Satisfaction 48

Example: 4-Queens

  States: 4 queens in 4 columns (44 = 256 states)
  Actions: move queen in column
  Goal test: no attacks
  Evaluation: h(n) = number of attacks

  Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability (e.g., n =
10,000,000)

Min-conflicts

CS 3243 - Constraint Satisfaction 49

The structure of problems

  Independent subproblems = unconnected components
  (Return to this point after midterm)

  Tree based CSPs can be solved by topological sort
  Pick a root and “dangle” other nodes by it
  Will have n-1 arcs, can make arc consistent in O(n)
  O(nd2)

CS 3243 - Constraint Satisfaction 50

C

A

DB

F

E

A B DC E F

Reducing CSP Trees

  Reduce other problems to trees, to use Tree-CSP-Solver, which yields
solutions without backtracking. Aim to reduce to many small
subproblems.

  Two approaches:
  Remove nodes from CSP graph to make a tree

  Assign values to removed nodes and remove used domains from tree nodes
  Tree decomposition: make tree CSP with nodes as subproblems

CS 3243 - Constraint Satisfaction 51

WA

NT
Q

NSW

V

T
T

N
T

W
A

S
A

N
T

S
A

Q

S
A

NSW

V

S
A

Q

NSW

CS 3243 - Constraint Satisfaction 52

Summary

  CSPs are a special kind of problem:
  states defined by values of a fixed set of variables
  goal test defined by constraints on variable values

  Backtracking = depth-first search with one variable assigned per node

  Variable ordering and value selection heuristics help significantly

  Forward checking prevents assignments that guarantee later failure

  Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

  Iterative min-conflicts is usually effective in practice

CS 3243 - Constraint Satisfaction 53

Midterm test

  4 or 5 questions, first hour of class (be on time!)
  Topics to be covered (CSP is not on the midterm):

  Chapter 2 – Agents
  Chapter 3 – Uninformed Search
  Chapter 3 and 4 – Informed Search

  Not including the parts of 3.5.3-4 (memory-bounded heuristic
search), 3.6.3-4 (other heuristics) and 4.5 (online search)

  Chapter 5 – Adversarial Search
  Not including 5.6 (Partially observable games)

