Introduction to Advanced AI Topics

Vision Natural Language Processing Robotics

Advanced Topics Overview

- □ Agents have sensors and actuators
- □ Sensors:
 - Seeing (visual input) ⇒ Image Processing and Computer Vision
 - Hearing (audio input) ⇒ Natural Language Processing
- □ Actuators:
 - Moving and manipulating \Rightarrow Robotics

Computer Vision

Perception

Definition: versus graphics

□ Graphics

- Have world model *W*
- Generate the sensory stimulus from the model S = f(W)
- □ Vision
 - Generate the model from the sensors: $W = f^{-1}(S)$
 - To think about: f() doesn't have a proper inverse. Why?

Ambiguity in sensory input

 Girls playing with dollhouses
 Or giants playing with people?

- Many possible world models to choose from.
- Vision works on choosing the best model given the input.

Definition: versus image processing

- □ Image Processing
 - A transformation of data to other data
 - e.g., smoothing
- □ Computer Vision
 - Reduction in data to a (more useful) abstraction
 - e.g., digit / face recognition

Applications

- □ Surveillance can we detect objects or people as they move around our field of vision?
- Handwriting recognition from handwritten addresses to barcodes
- Content based Image Retrieval query for images using without any text features.
 "Show me similar pictures"
- □ <u>Automated Driving</u> speaks for itself

Natural Language Processing

Communication

N.B. We will go over this area in more detail towards the end of the course

Definition of NLP

- Examines communication in human languages.
 - Theoretical and practical aspects.
 - Similar to vision, has production and understanding affects
 - □ Understanding: speech / text to meaning
 - □ Generation: meaning to speech / text
 - Both processes have inherent ambiguity

Not so great newspaper headlines

- □ Squad helps dog bite victim.
- □ Helicopter powered by human flies
- Portable toilet bombed; police have nothing to go on.
- □ British left waffles on Falkland Islands.
- □ Teacher strikes idle kids.

Sample Applications

- Restaurant Query converts English queries into SQL.
- □ MS Dictation converts speech into text
- □ <u>Babelfish</u> translates Web pages to different languages
- Summarizing <u>multiple news articles</u> from the web

Robotics

Planning in the real world environment

Getting around

□ Effectors

- Sensors on effectors? Is the output noisy?
- Low-level: need to build higher-level abstractions

Problems

- □ Localization where am I?
 - Mobile robots but also robotic arms
- Mapping what does my environment look like?
- Moving how do I get from here to my goal?
 What type of plan do I have execute?

Applications of robotics

- Robotic Flight robotic helicopter, unmanned piloting
- □ <u>Path planning</u> for exploration
- Rock climbing, perhaps difficult even for some of us

Summary

□ All three areas deal with search:

- Vision: search for most likely world w given input sensor s
- Natural Language Processing: given an input utterance / text *i*, find most likely meaning *m*
- Robotics:
 - Localization: given unknown input configuration / location, determine configuration.
 - □ Planning: given goal g and state s output plan p to reach g from s

Summary

- □ All three areas use heuristics :
 - Vision: trihedral structure
 - Natural Language Processing: grammars of language, most frequent meanings
 - Robotics: decomposition of problems into cells, maximizing distance between obstacles
- Many of these heuristics involve probability, which we will get to soon