Introduction to Advanced AI Topics

Vision
Natural Language Processing
Robotics
Advanced Topics Overview

- Agents have sensors and actuators

- Sensors:
 - Seeing (visual input) ⇒ Image Processing and Computer Vision
 - Hearing (audio input) ⇒ Natural Language Processing

- Actuators:
 - Moving and manipulating ⇒ Robotics
Computer Vision

Perception
Definition: versus graphics

- **Graphics**
 - Have world model W
 - Generate the sensory stimulus from the model $S = f(W)$

- **Vision**
 - Generate the model from the sensors: $W = f^{-1}(S)$
 - To think about: $f()$ doesn’t have a proper inverse. Why?
Ambiguity in sensory input

- Girls playing with dollhouses
- Or giants playing with people?

• Many possible world models to choose from.
• Vision works on choosing the best model given the input.
Definition: versus image processing

- **Image Processing**
 - A transformation of data to other data
 - e.g., smoothing

- **Computer Vision**
 - Reduction in data to a (more useful) abstraction
 - e.g., digit / face recognition
Applications

- Surveillance – can we detect objects or people as they move around our field of vision?
- Handwriting recognition – from handwritten addresses to barcodes
- Content based Image Retrieval – query for images using without any text features. “Show me similar pictures”
- Automated Driving – speaks for itself
Natural Language Processing

Communication

N.B. We will go over this area in more detail towards the end of the course
Definition of NLP

- Examines communication in human languages.
 - Theoretical and practical aspects.
 - Similar to vision, has production and understanding affects
 - Understanding: speech / text to meaning
 - Generation: meaning to speech / text
 - Both processes have inherent ambiguity
Not so great newspaper headlines

- Squad helps dog bite victim.
- Helicopter powered by human flies
- Portable toilet bombed; police have nothing to go on.
- British left waffles on Falkland Islands.
- Teacher strikes idle kids.
Sample Applications

- **Restaurant Query** converts English queries into SQL.
- **MS Dictation** converts speech into text
- **Babelfish** translates Web pages to different languages
- Summarizing **multiple news articles** from the web
Robotics

Planning in the real world environment
Getting around

- **Effectors**
 - Sensors on effectors? Is the output noisy?
 - Low-level: need to build higher-level abstractions
Problems

- Localization – where am I?
 - Mobile robots but also robotic arms
- Mapping – what does my environment look like?
- Moving – how do I get from here to my goal? What type of plan do I have execute?
Applications of robotics

- Robotic Flight – robotic helicopter, unmanned piloting
- Path planning for exploration
- Rock climbing, perhaps difficult even for some of us
Summary

- All three areas deal with search:
 - Vision: search for most likely world w given input sensor s
 - Natural Language Processing: given an input utterance / text i, find most likely meaning m
 - Robotics:
 - Localization: given unknown input configuration / location, determine configuration.
 - Planning: given goal g and state s output plan p to reach g from s
Summary

- All three areas use heuristics:
 - Vision: trihedral structure
 - Natural Language Processing: grammars of language, most frequent meanings
 - Robotics: decomposition of problems into cells, maximizing distance between obstacles

- Many of these heuristics involve probability, which we will get to soon