
CS3243 - Inference 1

Inference in first-order logic

Chapter 9

(Please turn your mobile devices
to silent. Thanks!)

Last Time

 First Order Logic
 Reasons about objects, predicates
 Introduces equality and quantifiers

 Brief excursion into Prolog
 To be finished and related to more in depth

today

CS3243 - Inference 2

CS3243 - Inference 3

Outline

 Reducing first-order inference to
propositional inference

 Unification
 Generalized Modus Ponens
 Forward chaining
 Backward chaining
 Resolution

CS3243 - Inference 4

Universal instantiation (UI)

  Every instantiation of a universally quantified sentence is entailed by
it:

∀v α
Subst({v/g}, α)

 for any variable v and ground term g

  E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))
…

CS3243 - Inference 5

Existential instantiation (EI)

 For any sentence α, variable v, and constant
symbol k that does not appear elsewhere in the
knowledge base:

∃v α
Subst({v/k}, α)

 E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)
 provided C1 is a new constant symbol, called a
Skolem constant

CS3243 - Inference 6

Reduction to propositional inference
Suppose the KB contains just the following:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

  Instantiating the universal sentence in all possible ways, we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

  The new KB is propositionalized: proposition symbols are

 King(John), Greedy(John), Evil(John), King(Richard), etc.

CS3243 - Inference 7

Propositionalization

  Every FOL KB can be propositionalized so as to
preserve entailment
 Convert it to propositional logic
 A ground sentence is entailed by new KB iff entailed by original KB

  Idea: propositionalize KB and query, apply resolution,
return result

  But there’s a problem: with function symbols, there are
infinitely many ground terms:
 e.g., Father(Father(Father(John)))

Blank spaces to fill in on this slide

CS3243 - Inference 8

Propositionalization, continued

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it
is entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do
 create a propositional KB by instantiating with depth-n terms
 see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is
 semidecidable (algorithms exist that say yes to every entailed

sentence, but no algorithm exists that also says no to every non-
entailed sentence.)

Blank spaces to fill in on this slide

Remind
you of any
other
algorithm?

CS3243 - Inference 9

Problems with propositionalization

  Propositionalization seems to generate lots of irrelevant sentences.

  E.g., from:
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀y Greedy(y)
Brother(Richard,John)

  it seems obvious that Evil(John), but propositionalization produces
lots of facts such as Greedy(Richard) that are irrelevant

  With p k-ary predicates and n constants, there are p·nk
instantiations.
  E.g., p=1 k=2 n=3, Rel(_,_). 3 × 3 = 32 = 9 possibilities

CS3243 - Inference 10

Unification
  We can get the inference immediately if we can find a substitution θ

such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

  Unify(α,β) = θ if αθ = βθ
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,OJ) {fail}

  Standardizing apart eliminates overlap of variables,
e.g., Knows(z17,OJ)

Blank spaces to fill in on this slide

CS3243 - Inference 11

Unification

 To unify Knows(John,x) and Knows(y,z),
 θ = {y/John, x/z } or
θ = {y/John, x/John, z/John}

 The first unifier is more general than the second.

 There is a single most general unifier (MGU) that
is unique up to renaming of variables.

MGU = { y/John, x/z }

CS3243 - Inference 12

The unification algorithm

CS3243 - Inference 13

The unification algorithm

Let’s do one together

CS3243 - Inference 14

Blank spaces to fill in on this slide

Knows(John,x) Knows(y,Mother(y))

CS3243 - Inference 15

Generalized Modus Ponens (GMP)

p1', p2', … , pn', (p1 ∧ p2 ∧ … ∧ pn ⇒q)
 qθ
p1' is King(John) p1 is King(x)
p2' is Greedy(y) p2 is Greedy(x)
θ is {x/John,y/John} q is Evil(x)
q θ is Evil(John)

  GMP used with KB of definite clauses (exactly one positive literal)
  n.b. recall Horn form allows at most one positive literal (less restrictive)

  All variables assumed universally quantified

where pi'θ = pi θ for all i

CS3243 - Inference 16

Let’s do an example with a KB

  The law says that it is a crime for an American to sell
weapons to hostile nations. The country Nono, an
enemy of America, has some missiles, and all of its
missiles were sold to it by Colonel West, who is
American.

  Prove that Colonel West is a criminal

CS3243 - Inference 17

The example KB in FOL

... it is a crime for an American to sell weapons to hostile nations:
American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)

CS3243 - Inference 18

Forward chaining algorithm

CS3243 - Inference 19

Forward chaining proof

CS3243 - Inference 20

Forward chaining proof

CS3243 - Inference 21

Forward chaining proof

CS3243 - Inference 22

Soundness of GMP

  Need to show that

p1', …, pn', (p1 ∧ … ∧ pn ⇒ q) ╞ qθ

 provided that pi'θ = piθ for all I

  Lemma: For any sentence p, we have p ╞ pθ by UI

1.  (p1 ∧ … ∧ pn ⇒ q) ╞ (p1 ∧ … ∧ pn ⇒ q)θ = (p1θ ∧ … ∧ pnθ ⇒ qθ)

2.  p1', …, pn' ╞ p1' ∧ … ∧ pn' ╞ p1'θ ∧ … ∧ pn'θ

3.  From 1 and 2, qθ follows by ordinary Modus Ponens

CS3243 - Inference 23

Properties of forward chaining

  Sound and complete for first-order definite clauses

  Datalog = first-order definite clauses + no functions
  FC terminates for Datalog in finite number of iterations

  May not terminate in general if α is not entailed

  This is unavoidable: entailment with definite clauses is
again semidecidable

CS3243 - Inference 24

Equivalence to CSPs

  Each conjunct can be viewed as a constraint on a
variable.

  Every finite CSP can be expressed as a single definite
clause together with some facts.

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒
Colorable()

Diff(Red,Blue) Diff (Red,Green)
Diff(Green,Red) Diff(Green,Blue)
Diff(Blue,Red) Diff(Blue,Green)

Definite
clause

Some facts

CS3243 - Inference 25

Improving efficiency

The algorithm presented earlier isn’t efficient. Let’s make it
better.

1.  Matching itself is expensive, Database indexing allows
O(1) retrieval of known facts
 e.g., query a table where all instantations of p(x) are stored;

Missile(x) retrieves Missile(M1)

For predicates with many subgoals, the conjunct
ordering problem applies

 e.g., for Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West, x, Nono)|
if there are many things owned by Nono, perhaps better to start
with Missile(x) conjunct

Improving efficiency, continued

2.  Incremental forward chaining: Only match rules on
iteration k if a premise was added on iteration k-1
⇒ Original algorithm discards partially matched rules
⇒ Instead, keep track of conjuncts matched to avoid duplicate work

⇒ Match each rule whose premise contains a newly added positive
literal

 Leads to the development of Rete (“Ree-Tee”) networks
in real world production systems

3.  Irrelevant Facts: several ways to address … let’s segue
to Backward Chaining.

CS3243 - Inference 26

CS3243 - Inference 27

Backward chaining algorithm

SUBST(COMPOSE(θ1, θ2), p) =
SUBST(θ2, SUBST(θ1, p))

What type of
search algorithm
is this?

CS3243 - Inference 28

Backward chaining example

CS3243 - Inference 29

Backward chaining example

CS3243 - Inference 30

Backward chaining example

CS3243 - Inference 31

Backward chaining example

CS3243 - Inference 32

Backward chaining example

CS3243 - Inference 33

Backward chaining example

CS3243 - Inference 34

Backward chaining example

CS3243 - Inference 35

Properties of backward chaining

 Depth-first recursive proof search: space is
linear in size of proof

 Incomplete due to infinite loops
⇒ fix by checking current goal against every goal on stack

 Inefficient due to repeated subgoals (both
success and failure)
⇒ fix using caching of previous results (extra space)

 Widely used for logic programming

CS3243 - Inference 36

Logic programming: Prolog
  Backward chaining with Horn clauses + bells & whistles

  Program = set of clauses = head :- literal1, … literaln.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

  Depth-first, left-to-right backward chaining
  Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
  Built-in predicates that can have side effects (e.g., input and output

predicates, assert/retract predicates)
  Closed-world assumption / database semantics ("negation as failure")

  e.g., given alive(X) :- not dead(X).
  alive(joe) succeeds if dead(joe) fails

  No checks for infinite recursion
  No occurs check for unification

CS3243 - Inference 37

Resolution: recap and look at FOL

  Full first-order version:
l1 ∨ ··· ∨ lk, m1 ∨ ··· ∨ mn

(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ

 where Unify(li, ¬mj) = θ.

  The two clauses are assumed to be standardized apart so that they
share no variables.

  For example,
 ¬Rich(x) ∨ Unhappy(x), Rich(Ken)

Unhappy(Ken)
 with θ = {x/Ken}

  Apply resolution steps to CNF(KB ∧ ¬α); complete for FOL*

CS3243 - Inference 38

Conversion to CNF

 Everyone who loves all animals is loved by
someone:
∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)]

 1. Eliminate biconditionals and implications
∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)]

 2. Move ¬ inwards: ¬∀x p ≡ ∃x ¬p,
 ¬∃x p ≡ ∀x ¬p

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]

Is this the
same y?

CS3243 - Inference 39

Conversion to CNF, continued

3.  Standardize variables: each quantifier should use a different one
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)]

4.  Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the enclosing

universally quantified variables:
 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

5.  Drop universal quantifiers:
 [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

6.  Distribute ∨ over ∧ :
 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

Why do we need a
function and not a
variable?

CS3243 - Inference 40

Resolution proof: definite clauses

CS3243 - Inference 41

Resolution proof: definite clauses

CS3243 - Inference 42

Resolution proof: definite clauses

CS3243 - Inference 43

Resolution proof: definite clauses

CS3243 - Inference 44

Resolution proof: definite clauses

Refutation completeness

 Resolution can say yes to any entailed
sentence but cannot be used to generate
all entailed sentences
 E.g., won’t generate Animal(x) ∨ ¬Animal(x)

CS3243 - Inference 45

Resolution special cases

 Factoring: may need
to remove redundant
literals (literals that
are unifiable)

 L(x) ∨ G(a,b)
 ¬L(x) ∨ G(K,L)
 

 To handle equality
x=y, need to use
demodulation (sub x
for y in some clause
that has x).

 B = Son(A)
 Property(B)
 

CS3243 - Inference 46

Blank spaces to fill in on this slide

Summary

 Examined our three strategies for logic
inference in FOL:
 Forward Chaining
 Backward Chaining (what Prolog uses)
 Resolution

 To think about: when is each of the three
systems the most appropriate?

CS3243 - Inference 47

