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Inference in first-order logic 

Chapter 9 

(Please turn your mobile devices 
to silent.  Thanks!) 



Last Time 

 First Order Logic 
 Reasons about objects, predicates 
 Introduces equality and quantifiers 

 Brief excursion into Prolog 
 To be finished and related to more in depth 

today 
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Outline 

 Reducing first-order inference to 
propositional inference 

 Unification 
 Generalized Modus Ponens 
 Forward chaining 
 Backward chaining 
 Resolution 
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Universal instantiation (UI) 

  Every instantiation of a universally quantified sentence is entailed by 
it: 

∀v α 
Subst({v/g}, α) 

 for any variable v and ground term g 

  E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields: 
King(John) ∧ Greedy(John) ⇒  Evil(John) 
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard) 
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John)) 
… 
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Existential instantiation (EI) 

 For any sentence α, variable v, and constant 
symbol k that does not appear elsewhere in the 
knowledge base: 

∃v α 
Subst({v/k}, α) 

 E.g., ∃x Crown(x) ∧ OnHead(x,John) yields: 

Crown(C1) ∧ OnHead(C1,John) 
 provided C1 is a new constant symbol, called a 
Skolem constant 
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Reduction to propositional inference 
Suppose the KB contains just the following: 

∀x King(x) ∧ Greedy(x) ⇒ Evil(x) 
King(John) 
Greedy(John) 
Brother(Richard,John) 

  Instantiating the universal sentence in all possible ways, we have: 
King(John) ∧ Greedy(John) ⇒ Evil(John) 
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard) 
King(John) 
Greedy(John) 
Brother(Richard,John) 

  The new KB is propositionalized: proposition symbols are 
   

 King(John), Greedy(John), Evil(John), King(Richard), etc. 
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Propositionalization 

  Every FOL KB can be propositionalized so as to 
preserve entailment 
 Convert it to propositional logic  
 A ground sentence is entailed by new KB iff entailed by original KB 

  Idea: propositionalize KB and query, apply resolution, 
return result 

  But there’s a problem: with function symbols, there are 
infinitely many ground terms: 
 e.g., Father(Father(Father(John))) 

Blank spaces to fill in on this slide 
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Propositionalization, continued 

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it 
is entailed by a finite subset of the propositionalized KB 

Idea: For n = 0 to ∞ do 
    create a propositional KB by instantiating with depth-n terms 
    see if α is entailed by this KB 

Problem: works if α is entailed, loops if α is not entailed 

Theorem: Turing (1936), Church (1936) Entailment for FOL is 
 semidecidable (algorithms exist that say yes to every entailed 

sentence, but no algorithm exists that also says no to every non-
entailed sentence.) 

Blank spaces to fill in on this slide 

Remind 
you of any 
other 
algorithm? 
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Problems with propositionalization 

  Propositionalization seems to generate lots of irrelevant sentences. 

  E.g., from: 
∀x King(x) ∧ Greedy(x) ⇒ Evil(x) 
King(John) 
∀y Greedy(y) 
Brother(Richard,John) 

  it seems obvious that Evil(John), but propositionalization produces 
lots of facts such as Greedy(Richard) that are irrelevant 

  With p k-ary predicates and n constants, there are p·nk 
instantiations. 
  E.g., p=1 k=2 n=3,  Rel(_,_).   3 × 3 = 32 = 9 possibilities 
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Unification 
  We can get the inference immediately if we can find a substitution θ 

such that King(x) and Greedy(x) match King(John) and Greedy(y) 

θ = {x/John,y/John} works 

  Unify(α,β) = θ if αθ = βθ  
p    q     θ   
Knows(John,x)  Knows(John,Jane)  {x/Jane}} 
Knows(John,x)  Knows(y,OJ)   {x/OJ,y/John}} 
Knows(John,x)  Knows(y,Mother(y))  {y/John,x/Mother(John)}} 
Knows(John,x)  Knows(x,OJ)   {fail} 

  Standardizing apart eliminates overlap of variables,  
e.g., Knows(z17,OJ) 

Blank spaces to fill in on this slide 
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Unification 

 To unify Knows(John,x) and Knows(y,z), 
 θ = {y/John, x/z } or  
θ = {y/John, x/John, z/John} 

 The first unifier is more general than the second. 

 There is a single most general unifier (MGU) that 
is unique up to renaming of variables. 

MGU = { y/John, x/z } 
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The unification algorithm 
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The unification algorithm 



Let’s do one together 
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Blank spaces to fill in on this slide 

Knows(John,x)   Knows(y,Mother(y)) 
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Generalized Modus Ponens (GMP) 

p1', p2', … , pn', ( p1 ∧ p2 ∧ … ∧ pn ⇒q) 
                         qθ 
p1' is King(John)   p1 is King(x)  
p2' is Greedy(y)   p2 is Greedy(x)  
θ is {x/John,y/John}  q is Evil(x)  
q θ is Evil(John) 

  GMP used with KB of definite clauses (exactly one positive literal) 
  n.b. recall Horn form allows at most one positive literal (less restrictive) 

  All variables assumed universally quantified 

where pi'θ = pi θ for all i 
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Let’s do an example with a KB 

  The law says that it is a crime for an American to sell 
weapons to hostile nations.  The country Nono, an 
enemy of America, has some missiles, and all of its 
missiles were sold to it by Colonel West, who is 
American. 

  Prove that Colonel West is a criminal 
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The example KB in FOL 

... it is a crime for an American to sell weapons to hostile nations: 
American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x) 

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x): 
Owns(Nono,M1) and Missile(M1) 

… all of its missiles were sold to it by Colonel West 
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono) 

Missiles are weapons: 
Missile(x) ⇒ Weapon(x) 

An enemy of America counts as "hostile“: 
Enemy(x,America) ⇒ Hostile(x) 

West, who is American … 
American(West) 

The country Nono, an enemy of America … 
Enemy(Nono,America) 
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Forward chaining algorithm 
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Forward chaining proof 



CS3243 - Inference 20 

Forward chaining proof 
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Forward chaining proof 



CS3243 - Inference 22 

Soundness of GMP 

  Need to show that  

p1', …, pn', (p1 ∧ … ∧ pn ⇒ q) ╞ qθ 

 provided that pi'θ = piθ for all I 

  Lemma: For any sentence p, we have p ╞ pθ by UI 

1.  (p1 ∧ … ∧ pn ⇒ q) ╞ (p1 ∧ … ∧ pn ⇒ q)θ = (p1θ ∧ … ∧ pnθ ⇒ qθ) 

2.  p1', …, pn' ╞ p1' ∧ … ∧ pn' ╞ p1'θ ∧ … ∧ pn'θ  

3.  From 1 and 2, qθ follows by ordinary Modus Ponens 
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Properties of forward chaining 

  Sound and complete for first-order definite clauses 

  Datalog = first-order definite clauses + no functions 
  FC terminates for Datalog in finite number of iterations 

  May not terminate in general if α is not entailed 

  This is unavoidable: entailment with definite clauses is 
again semidecidable 
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Equivalence to CSPs 

  Each conjunct can be viewed as a constraint on a 
variable. 

  Every finite CSP can be expressed as a single definite 
clause together with some facts. 

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧  
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧  
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒ 
Colorable() 

Diff(Red,Blue)    Diff (Red,Green)  
Diff(Green,Red)  Diff(Green,Blue)  
Diff(Blue,Red)    Diff(Blue,Green) 

Definite 
clause 

Some facts 
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Improving efficiency 

The algorithm presented earlier isn’t efficient.  Let’s make it 
better. 

1.  Matching itself is expensive, Database indexing allows 
O(1) retrieval of known facts 
 e.g., query a table where all instantations of p(x) are stored; 

Missile(x) retrieves Missile(M1) 

For predicates with many subgoals, the conjunct 
ordering problem applies 

 e.g., for Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West, x, Nono)| 
if there are many things owned by Nono, perhaps better to start 
with Missile(x) conjunct 



Improving efficiency, continued 

2.  Incremental forward chaining: Only match rules on 
iteration k if a premise was added on iteration k-1 
⇒ Original algorithm discards partially matched rules  
⇒ Instead, keep track of conjuncts matched to avoid duplicate work 

⇒ Match each rule whose premise contains a newly added positive 
literal 

 Leads to the development of Rete (“Ree-Tee”) networks 
in real world production systems 

3.  Irrelevant Facts: several ways to address … let’s segue 
to Backward Chaining. 
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Backward chaining algorithm 

SUBST(COMPOSE(θ1, θ2), p) =  
SUBST(θ2, SUBST(θ1, p)) 

What type of 
search algorithm 
is this? 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Properties of backward chaining 

 Depth-first recursive proof search: space is 
linear in size of proof 

 Incomplete due to infinite loops 
⇒ fix by checking current goal against every goal on stack 

 Inefficient due to repeated subgoals (both 
success and failure) 
⇒ fix using caching of previous results (extra space) 

 Widely used for logic programming 
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Logic programming: Prolog 
  Backward chaining with Horn clauses + bells & whistles 

  Program = set of clauses = head :- literal1, … literaln. 
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z). 

  Depth-first, left-to-right backward chaining 
  Built-in predicates for arithmetic etc., e.g., X is Y*Z+3 
  Built-in predicates that can have side effects (e.g., input and output 

predicates, assert/retract predicates) 
  Closed-world assumption / database semantics ("negation as failure")  

  e.g., given alive(X) :- not dead(X). 
  alive(joe) succeeds if dead(joe) fails 

  No checks for infinite recursion 
  No occurs check for unification 
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Resolution: recap and look at FOL 

  Full first-order version: 
l1 ∨ ··· ∨ lk,          m1 ∨ ··· ∨ mn 

(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ 

 where Unify(li, ¬mj) = θ. 

  The two clauses are assumed to be standardized apart so that they 
share no variables. 

  For example, 
 ¬Rich(x) ∨ Unhappy(x),   Rich(Ken) 

Unhappy(Ken) 
 with θ = {x/Ken} 

  Apply resolution steps to CNF(KB ∧ ¬α); complete for FOL* 
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Conversion to CNF 

 Everyone who loves all animals is loved by 
someone: 
∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)] 

 1. Eliminate biconditionals and implications 
∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)] 

 2. Move ¬ inwards:  ¬∀x p ≡ ∃x ¬p,  
    ¬∃x p ≡ ∀x ¬p 

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]  
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  

Is this the 
same y? 
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Conversion to CNF, continued 

3.  Standardize variables: each quantifier should use a different one 
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)]  

4.  Skolemize: a more general form of existential instantiation. 
Each existential variable is replaced by a Skolem function of the enclosing 

universally quantified variables: 
 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x) 

5.  Drop universal quantifiers: 
 [Animal(F(x)) ∧ ¬Loves(x,F(x))]  ∨ Loves(G(x),x) 

6.  Distribute ∨ over ∧ : 
 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)] 

Why do we need a 
function and not a 
variable? 
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Resolution proof: definite clauses 
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Resolution proof: definite clauses 
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Resolution proof: definite clauses 



CS3243 - Inference 43 

Resolution proof: definite clauses 
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Resolution proof: definite clauses 



Refutation completeness 

 Resolution can say yes to any entailed 
sentence but cannot be used to generate 
all entailed sentences 
 E.g., won’t generate Animal(x) ∨ ¬Animal(x) 

CS3243 - Inference 45 



Resolution special cases 

 Factoring: may need 
to remove redundant 
literals (literals that 
are unifiable) 

 L(x) ∨ G(a,b) 
 ¬L(x) ∨ G(K,L) 
   

 To handle equality 
x=y, need to use 
demodulation (sub x 
for y in some clause 
that has x). 

 B = Son(A) 
 Property(B) 
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Blank spaces to fill in on this slide 



Summary 

 Examined our three strategies for logic 
inference in FOL: 
 Forward Chaining 
 Backward Chaining (what Prolog uses) 
 Resolution 

 To think about: when is each of the three 
systems the most appropriate? 
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