Inference in first-order logic

Chapter 9

(Please turn your mobile devices to silent. Thanks!)

Last Time

- First Order Logic

Reasons about objects, predicates
OIntroduces equality and quantifiers

- Brief excursion into Prolog

OTo be finished and related to more in depth today

Outline

- Reducing first-order inference to propositional inference
- Unification
- Generalized Modus Ponens
- Forward chaining
- Backward chaining
- Resolution

Universal instantiation (UI)

- Every instantiation of a universally quantified sentence is entailed by it:

$$
\frac{\forall v a}{\text { Subst(\{v/g\}, a) }}
$$

for any variable v and ground term g
E.g., $\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow E v i l(x)$ yields: King(John) ^ Greedy(John) \Rightarrow Evil(John)
King(Richard) ^ Greedy(Richard) \Rightarrow Evil(Richard)
King(Father(John)) ^ Greedy(Father(John)) $\Rightarrow \operatorname{Evil}(F a t h e r(J o h n))$

Existential instantiation (EI)

- For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$
\frac{\exists v a}{\operatorname{Subst}(\{v / k\}, \alpha)}
$$

- E.g., $\exists x \operatorname{Crown}(x) \wedge$ OnHead($x, J o h n)$ yields:

$$
\operatorname{Crown}\left(C_{1}\right) \wedge \operatorname{OnHead}\left(C_{1}, \text { John }\right)
$$

provided C_{1} is a new constant symbol, called a Skolem constant

Reduction to propositional inference

Suppose the KB contains just the following:

```
\forallx King(x) ^ Greedy(x) = Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)
```

- Instantiating the universal sentence in all possible ways, we have:

King(John) ^ Greedy(John) $\Rightarrow \operatorname{Evil}(J o h n)$
King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

- The new KB is propositionalized: proposition symbols are
King(John), Greedy(John), Evil(John), King(Richard), etc.

Propositionalization

- Every FOL KB can be propositionalized so as to preserve entailment
- Convert it to propositional logic

A ground sentence is entailed by new KB iff entailed by original KB

- Idea: propositionalize KB and query, apply resolution, return result
- But there's a problem: with , there are infinitely many ground terms:

Propositionalization, continued

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB

Remind you of any other algorithm?
create a propositional KB by instantiating with depth- n terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed
Theorem: Turing (1936), Church (1936) Entailment for FOL is semidecidable (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.)

Problems with propositionalization

- Propositionalization seems to generate lots of irrelevant sentences.
- E.g., from:
$\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
King(John)
$\forall y$ Greedy(y)
Brother(Richard,John)
- it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant
- With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations.
E.g., $\mathrm{p}=1 \mathrm{k}=2 \mathrm{n}=3, \operatorname{Rel}\left(\ldots, _\right) . \rightarrow 3 \times 3=3^{2}=9$ possibilities

Unification

- We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match King(John) and Greedy(y)
$\theta=\{x /$ John, $\mathrm{y} / \mathrm{John}\}$ works
- Unify $(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows(John,x)	Knows(John,Jane)	
Knows(John,x)	Knows(y,OJ)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

- Standardizing apart eliminates overlap of variables, e.g., Knows($\mathrm{Z}_{17}, \mathrm{OJ}$)

Unification

- To unify Knows(John, x) and Knows(y,z), $\theta=\{y / J o h n, x / z\}$ or $\theta=\{y / J o h n, x / J o h n, z / J o h n\}$
- The first unifier is more general than the second.
- There is a single most general unifier (MGU) that is unique up to renaming of variables.
$M G U=\{y / J o h n, x / z\}$

The unification algorithm

```
function UNIFY}(x,y,0)\mathrm{ returns a substitution to make }x\mathrm{ and }y\mathrm{ identical
    inputs: x, a variable, constant, list, or compound
    y, a variable, constant, list, or compound
    0, the substitution built up so far
    if }0=\mathrm{ failure then return failure
    else if }x=y\mathrm{ then return }
    else if Variable?(x) then return Unify-Var ( }x,y,0
    else if Variable?(y) then return Unify-Var( }(y,x,0
    else if Compound?(x) and Compound?(y) then
        return Unify(Args[x], Args[y], Unify(Op[x],Op[y],0))
    else if List? (x) and List?(y) then
        return Unify(Rest [x],Rest[y], Unify(First[x], First[y],0))
    else return failure
```


The unification algorithm

function UnIFy-VAR $(v a r, x, \theta)$ returns a substitution
inputs: var, a variable
x, any expression
θ, the substitution built up so far
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{UNiFy}($ val, $x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return $\operatorname{Unify}($ var, val, $\theta)$
else if OCCUR-CHECK? $($ var,$x)$ then return failure
else return add $\{\operatorname{var} / x\}$ to θ

Let's do one together

function $\operatorname{UNIFY}(x, y, \theta)$ returns a substitution to make x and y identical
Knows(John,x) Knows(y,Mother(y))
inputs: x, a variable, constant, list, or compound
y, a variable, constant, list, or compound
θ, the substitution built up so far
if $\theta=$ failure then return failure
else if $x=y$ then return θ
else if $\operatorname{Variable} ?(x)$ then return $\operatorname{Unify}-\operatorname{Var}(x, y, \theta)$
else if Variable? (y) then return $\operatorname{Unify-} \operatorname{Var}(y, x, \theta)$
else if Compound? (x) and Compound? (y) then
return $\operatorname{Unify}(\operatorname{Args}[x], \operatorname{Args}[y], \operatorname{Unify}(\operatorname{Op}[x], \operatorname{Op}[y], \theta))$
else if List? (x) and List? (y) then
return $\operatorname{Unify}(\operatorname{Rest}[x], \operatorname{Rest}[y], \operatorname{Unify}(\operatorname{First}[x], \operatorname{First}[y], \theta))$ else return failure

```
function UNIFY-VAR(var, x,0) returns a substitution
    inputs: var, a variable
        x, any expression
        0, the substitution built up so far
    if {var/val}}\in0\mathrm{ then return UNify(val, x, 诺
    else if {x/val} \in then return Unify(var,val, }0\mathrm{ )
    else if OCCUR-CHECK?(var,x) then return failure
    else return add {var/x} to }
```


Generalized Modus Ponens (GMP)

$\frac{p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{q \theta}$ where $p_{i}{ }^{\prime} \theta=p_{i} \theta$ for all i
$\mathrm{p}_{1}{ }^{\prime}$ is $\operatorname{King}(J o h n) \quad \mathrm{p}_{1}$ is $\operatorname{King}(x)$
$\mathrm{p}_{2}{ }^{\prime}$ is $\operatorname{Greed} y(y) \quad \mathrm{p}_{2}$ is $\operatorname{Greed} y(x)$
θ is $\{x / J o h n, y / J o h n\} \quad q$ is $\operatorname{Evil}(x)$
q θ is Evil(John)

- GMP used with KB of definite clauses (exactly one positive literal)

○.b. recall Horn form allows at most one positive literal (less restrictive)

- All variables assumed universally quantified

Let's do an example with a KB

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Prove that Colonel West is a criminal

The example KB in FOL

... it is a crime for an American to sell weapons to hostile nations:
American (x) ^ Weapon(y) ^Sells (x, y, z) ^ Hostile(z) \Rightarrow Criminal (x)
Nono ... has some missiles, i.e., $\exists x$ Owns(Nono,x) \wedge Missile(x):
Owns(Nono, M_{1}) and $\operatorname{Missile}\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West
Missile (x) ^ Owns(Nono, x) \Rightarrow Sells(West, x,Nono)
Missiles are weapons:

$$
\text { Missile }(x) \Rightarrow \text { Weapon }(x)
$$

An enemy of America counts as "hostile":
Enemy(x,America) \Rightarrow Hostile(x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...
Enemy(Nono,America)

Forward chaining algorithm

```
function \(\mathrm{FOL}-\mathrm{FC}-\mathrm{Ask}(K B, \alpha)\) returns a substitution or false
    repeat until new is empty
    new \(\leftarrow\}\)
    for each sentence \(r\) in \(K B\) do
        \(\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow \operatorname{STANDARDIZE-APART}(r)\)
            for each \(\theta\) such that \(\left(p_{1} \wedge \ldots \wedge p_{n}\right) \theta=\left(p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right) \theta\)
                for some \(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\) in \(K B\)
            \(q^{\prime} \leftarrow \operatorname{SUBST}(\theta, q)\)
            if \(q^{\prime}\) is not a renaming of a sentence already in \(K B\) or new then do
            add \(q^{\prime}\) to new
            \(\phi \leftarrow \operatorname{UNIFY}\left(q^{\prime}, \alpha\right)\)
            if \(\phi\) is not fail then return \(\phi\)
    add new to \(K B\)
return false
```


Forward chaining proof

Forward chaining proof

Forward chaining proof

Soundness of GMP

- Need to show that

$$
p_{1}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \neq q \theta
$$

provided that $p_{i}^{\prime} \theta=p_{i} \theta$ for all $/$

- Lemma: For any sentence p, we have $p \neq p \theta$ by UI

1. $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)=\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \theta=\left(p_{1} \theta \wedge \ldots \wedge p_{n} \theta \Rightarrow q \theta\right)$
2. $p_{1}{ }^{\prime}, \ldots, p_{n}{ }^{\prime} \neq p_{1}{ }^{\prime} \wedge \ldots \wedge p_{n}{ }^{\prime} \vDash p_{1}{ }^{\prime} \theta \wedge \ldots \wedge p_{n}{ }^{\prime} \theta$
3. From 1 and $2, q \otimes$ follows by ordinary Modus Ponens

Properties of forward chaining

- Sound and complete for first-order definite clauses
- Datalog = first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations
- May not terminate in general if α is not entailed
- This is unavoidable: entailment with definite clauses is again semidecidable

Equivalence to CSPs

$\operatorname{Diff}(w a, n t) \wedge \operatorname{Diff}(w a, s a) \wedge \operatorname{Diff}(n t, q) \wedge$ $\operatorname{Diff}(n t, s a) \wedge \operatorname{Diff}(q, n s w) \wedge \operatorname{Diff}(q, s a) \wedge$ $\operatorname{Diff}(n s w, v) \wedge \operatorname{Diff}(n s w, s a) \wedge \operatorname{Diff}(v, s a) \Rightarrow$ Colorable()

Diff(Red,Blue) Diff (Red,Green) Diff(Green,Red) Diff(Green,Blue) Diff(Blue,Red) Diff(Blue,Green)

```
                                    Some facts
```

- Each conjunct can be viewed as a constraint on a variable.
- Every finite CSP can be expressed as a single definite clause together with some facts.

Improving efficiency

The algorithm presented earlier isn't efficient. Let's make it better.

1. Matching itself is expensive, Database indexing allows O(1) retrieval of known facts
e.g., query a table where all instantations of $p(x)$ are stored; Missile(x) retrieves Missile $\left(M_{1}\right)$

For predicates with many subgoals, the conjunct ordering problem applies
\bigcirc e.g., for $\operatorname{Missile(x)~\wedge ~Owns(Nono,~} x) \Rightarrow$ Sells(West, x, Nono) if there are many things owned by Nono, perhaps better to start with Missile (x) conjunct

Improving efficiency, continued

2. Incremental forward chaining: Only match rules on iteration k if a premise was added on iteration $k-1$
\Rightarrow Original algorithm discards partially matched rules
\Rightarrow Instead, keep track of conjuncts matched to avoid duplicate work
\Rightarrow Match each rule whose premise contains a newly added positive literal

Leads to the development of Rete ("Ree-Tee") networks in real world production systems
3. Irrelevant Facts: several ways to address ... let's segue to Backward Chaining.

Backward chaining algorithm

function FOL-BC-ASK ($K B$, goals, θ) returns a set of substitutions

inputs: $K B$, a knowledge base
goals, a list of conjuncts forming a query

What type of search algorithm is this?
local variables: ans, a set of substitutions, initially empty
if goals is empty then return $\{\theta\}$
$q^{\prime} \leftarrow \operatorname{SuBST}(\theta, \operatorname{First}($ goals $))$
 and $\theta^{\prime} \leftarrow \operatorname{Unify}\left(q, q^{\prime}\right)$ succeeds ans $\leftarrow \operatorname{FOL}-\operatorname{BC}-\operatorname{Ask}\left(K B,\left[p_{1}, \ldots, p_{n} \mid \operatorname{Rest}(\right.\right.$ goals $\left.\left.)\right], \operatorname{Compose}\left(\theta, \theta^{\prime}\right)\right) \cup$ ans return ans
$\operatorname{SUBST}\left(\operatorname{COMPOSE}\left(\theta_{1}, \theta_{2}\right), \mathrm{p}\right)=$ $\operatorname{SUBST}\left(\theta_{2}, \operatorname{SUBST}\left(\theta_{1}, \mathrm{p}\right)\right)$

Backward chaining example

Criminal(West)

Backward chaining example

Properties of backward chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
\Rightarrow fix by checking current goal against every goal on stack
- Inefficient due to repeated subgoals (both success and failure)
\Rightarrow fix using caching of previous results (extra space)
- Widely used for logic programming

Logic programming: Prolog

- Backward chaining with Horn clauses + bells \& whistles
- Program = set of clauses $=$ head $:-$ literal $_{1}, .$. literal ${ }_{n}$. criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
- Depth-first, left-to-right backward chaining
- Built-in predicates for arithmetic etc., e.g., X is $\mathrm{Y} * \mathrm{Z}+3$
- Built-in predicates that can have side effects (e.g., input and output predicates, assert/retract predicates)
- Closed-world assumption / database semantics ("negation as failure")

O e.g., given alive(X) :- not dead(X).

- alive (joe) succeeds if dead (joe) fails
- No checks for infinite recursion
- No occurs check for unification

Resolution: recap and look at FOL

- Full first-order version:

$$
\frac{\zeta_{1} \vee \cdots \vee \zeta_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\left(\zeta_{1} \vee \cdots \vee \zeta_{i-1} \vee \zeta_{i+1} \vee \cdots \vee \zeta_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta}
$$

where $\operatorname{Unify}\left(\mathcal{K}_{\mathrm{j}}, \neg m_{\mathrm{j}}\right)=\theta$.

- The two clauses are assumed to be standardized apart so that they share no variables.
- For example,

$$
\neg \frac{\neg \operatorname{Rich}(x) \vee \text { Unhappy }(x), \quad \text { Rich }}{\text { Unhappy }(K e n)}
$$

with $\theta=\{x /$ Ken $\}$

- Apply resolution steps to $\mathrm{CNF}(\mathrm{KB} \wedge \neg \alpha)$; complete for FOL^{*}

Conversion to CNF

- Everyone who loves all animals is loved by someone:
$\forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]$

Is this the same y ?

- 1. Eliminate biconditionals and implications $\forall x[\neg \forall y \neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$
- 2. Move \neg inwards: $\begin{array}{r}\neg \forall x p \equiv \exists x \neg p, \\ \neg \exists \mathrm{x} p \equiv \forall \mathrm{p} \neg \mathrm{p}\end{array}$
$\forall x[\exists y \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \operatorname{Loves}(y, x)]$ $\forall x[\exists y \neg \neg \operatorname{Animal}(\mathrm{y}) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$ $\forall x[\exists y$ Animal $(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$

Conversion to CNF, continued

3. Standardize variables: each quantifier should use a different one $\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]$
4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall x[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$

Why do we need a function and not a variable?
5. Drop universal quantifiers: $[$ Animal $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
6. Distribute \vee over \wedge :
$[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]$

Resolution proof: definite clauses

Resolution proof: definite clauses

Resolution proof: definite clauses

Resolution proof: definite clauses

Resolution proof: definite clauses

\neg American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile $(z) \vee$ Criminal (x)
\neg Criminal(West)

Refutation completeness

- Resolution can say yes to any entailed sentence but cannot be used to generate all entailed sentences
O.g., won’t generate Animal(x) v \neg Animal(x)

Resolution special cases

- Factoring: may need to remove redundant literals (literals that are unifiable)
- To handle equality $x=y$, need to use demodulation (sub x for y in some clause that has x).
- $L(x) \vee G(a, b)$
- $\neg \mathrm{L}(\mathrm{x}) \vee \mathrm{G}(\mathrm{K}, \mathrm{L})$
- $B=\operatorname{Son}(A)$
- Property(B)

Summary

- Examined our three strategies for logic inference in FOL:
OForward Chaining
OBackward Chaining (what Prolog uses)
-Resolution
- To think about: when is each of the three systems the most appropriate?

