
1

CS 3243 – Algorithms review

Chapters 2-4 and 6
Note: you will want to print this

with notes.

2

Problem-solving agents

Note here that the sequence of actions precomputed by the agent.
Subsequent actions are returned off of the queue, without recomputation.
Only when the queue of actions is exhausted does the S-P-S-A compute new
moves.
To think about: what does this mean in terms of unexpected results of actions and
noisy environments?

3

Tree search

Tree search is the basic algorithm in which we can change into other uninformed
and informed searches based on what methods we use to decide which candidate
to expand. Initially only the initial state is in the search tree as a simple. The above
figure used in the slides is the English version of the pseudo code version on pg 72.

In both, the current node is checked to see whether it is a goal state. If so, the
solution is returned (the path through the tree). Otherwise the node is expanded
and its descendents placed into the fringe in some order. The specific order is
important and subject to the strategy employed by the agent (e.g., DFS, BFS, etc.).
Note that the ordering the nodes in the fringe can be done in the REMOVE-FIRST,
INSERT-ALL stages. The EXPAND function itself cannot do this entirely by itself as
it does not have access to the fringe, merely the set of successors that it generates.

4

Depth-limited search

Depth limited search calls its recursive partner RECURSIVE-DLS to search the
search tree using a depth limit.

RECURSIVE-DLS implements the TREE-SEARCH algorithm using depth first
search with a depth limit. You can see the effect of the depth limit in the else if
statement, the 4th line in the RECURSIVE-DLS method() . Here, if the depth limit is
reached, a flag cutoff is returned to the caller (either DEPTH-LIMITED-SEARCH or
RECURSIVE-DLS). In the latter case, RECURSIVE-DLS backtracks and has to try
another successor if possible. In the former (when cutoff is returned to the calling
function DEPTH-LIMIT-SEARCH, the search tree (to depth limit) has been entirely
explored and exhausted for goal states.

The depth limit limit is propagated in each recursive call and does not change (is
invariant). The Depth[node] call in line 4 retrieves the node’s depth and checks it
with the limit.

5

Iterative deepening search

ITERATIVE-DEEPENING-SEARCH is a shell around the DEPTH-LIMITED-
SEARCH that calls the DEPTH-LIMITED-SEARCH with increasingly large depth
limits. It increments the depth limit by 1 each time.

To think about: ITERATIVE-DEEPENING-SEARCH only increases by one each
time, which leads to overhead. However, we’ve shown in class that the overhead
can be relatively small compared to the final cost. Still, would increasing this rate
be useful in some configurations?

6

Graph search

GRAPH-SEARCH (pg. 83) is an adaptation of TREE-SEARCH to handle cases in
which multiple paths can lead to the same state. Here we create a closed list to
explicitly store all the nodes that we have expanded and an open list to store all
nodes on the fringe that are currently unexpanded.

When a previously visited state is removed from the fringe it will be tested in the if
STATE[node] line and it will not be re-expanded. Note that this check is done after
the state is removed and tested for the goal condition. It does not prevent repetitive
states from being reinserted in the fringe. Also note that the algorithm will return the
first goal solution (even when there are multiple paths to the same goal state of
different costs) so can only be optimal if the first path encountered to a goal state is
the cheapest.

To think about: the goal-test is performed before checking whether the state has
been seen before. What ramifications does that have in search performance?
Does it have any benefits?

7

Greedy best-first vs. A* search

Greedy best first expands the node that
gives the least estimated cost to the goal:
f(n) = h(n). It ignores the step cost
entirely.

A* combines uniform cost search and
greedy best first search f(n) = g(n) + h(n).

Figure 4.2 (pg. 96) shows GREEDY-BEST-FIRST-SEARCH finding a solution
without backtracking.
To think about: is this always the case?
Also: Can you come up with search trees in which GREEDY-BEST-FIRST-
SEARCH would be better suited than UNIFORM-COST-SEARCH? How about the
other way around?

Note that in all cases that the appearance of a goal state in the fringe does not
mean that the search will terminate right away and choose to expand that state. To
think about: can you make any general statements that quantify the time in which a
goal state appears on the fringe and when the search algorithm terminates with a
goal?

8

Hill-climbing search

HILL-CLIMBING is the first local search algorithm which we covered. It requires a
complete state specification and moves between leaf nodes in the search tree by
computing valid moves that end up in other complete states. It terminates at the
maximal value of the objective function for some states.

9

Simulated annealing search

SIMULATED-ANNEALING allows the agent to take steps with decreases in the
objective function with some probability. The probability depends on the schedule
AND on the degree of “badness” of the move. In this sense all bad moves are not
created equal. As more steps are taken in the algorithm, the probability of a
backward move decreases and converges to only taking moves with increasing
utility. If the rate of annealing is correctly set, the algorithm is guaranteed to find a
solution if one exists.

Note that it picks a move at random. The probability transition is only used for
moves with negative value. Any positive valued move (which increases the
objective function’s value) is taken with probability 1 if it is chosen, no matter how
big or small the gain is.

To think about: what types of problems would this algorithm work well on? Work
poorly on?

10

Local Beam Search

• Idea: instead of one state, keep track of
many.

• Begins at k random states
• Generates all successors, keeps k best for

next step.

LOCAL-BEAM-SEARCH can be seen as a cross between running k HILL-
CLIMBING searches at random states and GENETIC-ALGORITHMS.
To think about: why is this?

11

Genetic Algorithms

(pg 119, figure 4.17)
• Consists three parts:

– a pool of states (also called individuals)
– genetic crossbreeding of states according to

some fitness
– mutation of population

To think about: what happens in the case when you remove one of these three
parts from the genetic algorithm blueprint?

12

Minimax algorithm

MINIMAX-DECISION calculates a best move in a ply (two turns by opposing
players). It assumes that it is moving for the first player, and thus wants to
maximize its utility value for its move.
In odd levels of the tree the MAX-VALUE function is run, and at even levels, the
MIN-VALUE function is run.
Calculation in the tree runs in a depth first manner until we reach a leaf (either at an
even or an odd level) and the values are then propagated back up successively
higher levels of the tree.

The either tree (initial state to the leaf nodes) must be searched before MINIMAX
returns a decision. As this is not a realistic possibility (except for trivially small
games) we must change this initial version of the algorithm such that decision can
be made in reasonable (e.g. real) time.

13

The α-β algorithm

ALPHA-BETA-SEARCH adds alpha (max) and beta (min) values to the MINIMAX
algorithm. In a node at a MAX level (an odd level), we know that its parent, a MIN
node, will never choose this MAX node if there is another previously evaluated node
with a known lower utility value. This is represented by beta (the value of the
lowest-value choice along the path to that MIN node). In this case the search can
be pruned and we can save execution time by not evaluating the remaining leaves
of the tree.

In a node at the MIN level (an even level), we have a similar situation that uses
alpha to decide whether to prune the node or not. Figure 6.5d (pg. 168) shows
where a pruning action in the MIN-VALUE function kicks in. In Figure 6.5, pruning
in MAX-VALUE doesn’t occur. The pruning is brought about by the return
statement in the SUCCESSORS function in the MIN- and MAX-VALUE procedures.

