
CS3243, Tutorial 3— 1

National University of Singapore
School of Computing

CS3243: Introduction to Artificial Intelligence
Tutorial 3

Readings: AIMA Chapters 3 (Sections 3.5 – 3.6.3), 4 & 5

1. Consider the 8-puzzle that we discussed in class. Suppose we define a new heuristic function
h3 which is the average of h1 and h2, and another heuristic function h4 which is the sum of
h1 and h2. That is,

h3 =
h1 + h2

2

h4 = h1 + h2

where h1 and h2 are defined as “the number of misplaced tiles”, and “the sum of the distances
of the tiles from their goal positions”, respectively. Are h3 and h4 admissible? If admissible,
compare their dominance with respect to h1 and h2.

2. Refer to the Figure 1 below. Apply the best-first search algorithm to find a path from Fagaras
to Craiova, using the following evaluation function f(n):

f(n) = g(n) + h(n)

where h(n) = |hSLD(Craiov) − hSLD(n)| and hSLD(n) is the straight-line distance from any
city n to Bucharest. Trace the best-first search algorithm by showing the series of search trees
as each node is expanded, based on the TREE-SEARCH algorithm below. Prove that h(n) is an
admissible heuristic.

Figure 1: Graph of Romania.

CS3243, Tutorial 3— 2

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test[problem] applied to State(node) succeeds return node

fringe← InsertAll(Expand(node,problem), fringe)

3. (a) Given that a heuristic h is such that h(G) = 0, where G is any goal state, prove that if
h is consistent, then it must be admissible.

(b) Give an example of an admissible heuristic function that is not consistent.

(c) Is it possible for a heuristic to be consistent and yet not admissible? If not, prove it. If
it is, define one such heuristic.

4. Assume that we have the following initial state and goal state for the 8-puzzle game. We will
use h1 defined as “the number of misplaced tiles” to evaluate each state.

1 2 3

4

567

8

1 2

567

4 3

8

goal stateinitial state

(a) Apply the hill-climbing search algorithm in Figure 4.2 (reproduced below). Can the
algorithm reach the goal state?

function Hill-Climbing(problem) returns a state that is a local maximum

current←Make-Node(Initial-State[problem])
loop do

neighbor← a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
current← neighbor

end

(b) Identify a sequence of actions leading from the initial state to the goal state. Is it possible
for simulated annealing to find such a solution?

5. Consider Figure 5.1 in the textbook (reproduced in Figure 2). The Tic-Tac-Toe search space
can actually be reduced by means of symmetry. This is done by eliminating those states
which become identical with an earlier state after a symmetry operation (e.g. rotation). The
following diagram shows a reduced state space for the first three levels with the player making

CS3243, Tutorial 3— 3

the first move using “x” and the opponent making the next move with “o”. Assume that the
following heuristic evaluation function is used at each leaf node n:

Eval(n) = P (n)−O(n)

where P (n) is the number of winning lines for the player while O(n) is the number of winning
lines for the opponent. A winning line for the player is a line (horizontal, vertical or diagonal)
that either contains nothing or “x”. For the opponent, it is either nothing or “o” in the
winning line. Thus, for the leftmost leaf node in Figure 3, Eval(n) = 6− 5 = 1.

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

Figure 2: Search space for Tic-Tac-Toe.

(a) Use the minimax algorithm to determine the first move of the player, searching 2-ply
deep search space shown in Figure 3.

(b) Assume that the “x” player will now make his second move after his opponent has placed
an “o”. Complete the following minimax tree in Figure 4 by filling the remaining blank
boards at the leaf nodes. Compute the evaluation function for each of the filled leaf
nodes and determine the second move of the “x” player (searching 2-ply deep).

(c) The minimax search tree in Figure 5 has heuristic evaluation function values with respect
to the max player for all the leaf nodes, where square leaf nodes denote end of game
with +∞ representing that the max player wins the game and −∞ representing that
the min player is the winner. Do a minimax search and determine the next move of the
max player from node A. Which is the target leaf node that the max player hopes to
reach?

CS3243, Tutorial 3— 4

Figure 3: 2-ply deep search space

(d) Suppose we use alpha-beta pruning in the direction from left to right to prune the search
tree in question 3. Indicate which arcs are pruned by the procedure. Do you get the
same answer in terms of the max player’s next move and target leaf node?

CS3243, Tutorial 3— 5

Figure 4: 3-ply deep search space

CS3243, Tutorial 3— 6

Figure 5: minimax search tree

